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Viewing BCL2 and cell death control from an
evolutionary perspective

Andreas Strasser*,1,2 and David L Vaux*,1,2

The last 30 years of studying BCL2 have brought cell death research into the molecular era, and revealed its relevance to human
pathophysiology. Most, if not all metazoans use an evolutionarily conserved process for cellular self destruction that is controlled
and implemented by proteins related to BCL2. We propose the anti-apoptotic BCL2-like and pro-apoptotic BH3-only members of
the family arose through duplication and modification of genes for the pro-apoptotic multi-BH domain family members, such as
BAX and BAK1. In that way, a cell suicide process that initially evolved as a mechanism for defense against intracellular parasites
was then also used in multicellular organisms for morphogenesis and to maintain the correct number of cells in adults by
balancing cell production by mitosis.
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Facts

� The function of BCL2, which is one member of a family of
proteins, is to inhibit cell suicide.

� Failure of BCL2-regulated cell death can promote cancer
and autoimmune disease.

� Not all programmed cell death pathways, and not even all
apoptosis, can be inhibited by BCL2.

� Cell death pathways are evolutionarily conserved – but not
completely.

� Anticancer therapeutics act (at least in part) by activating
the BCL2-regulated cell death pathway.

Open Questions

� Are there any BCL2 or BAX/BAK1 ancestors in protozoans,
fungi or plants?

� What is the overall role of the different cell death processes
in mammalian embryonic development?

� How are the initiators of apoptosis, the BH3-only proteins,
regulated?

� How should BH3 mimetic drugs be combined with other
cancer therapies?

� Will MCL1 inhibitors have a useful therapeutic index?

All living things are made of cells, and each of them carries the
genetic material needed for their reproduction. Generation after
generation, the genomes of our ancestors were refined through
natural selection to allow all of them, without exception, to
survive long enough to reproduce. It is therefore somewhat
surprising that evolution also allowed generation of a molecular
mechanismwhose role is not cell survival, but the opposite – cell
suicide. Even though cell suicide has been recognized for over
150 years, and is vital for our development and well-being, an
understanding of the molecular mechanisms by which our cells
kill themselves was only achieved in the last 30 years. This
review will look at the BCL2 family of proteins, their functions in
regulating and implementing the cell death program, and it
speculates on how themembers of this familymay have evolved.

The Function of BCL2: The First Molecular Clue into Cell
Death Mechanisms

The BCL2 gene was discovered because chromosomal
translocations involving the BCL2 locus frequently occur in
certain human lymphomas. Rowley was looking for correlations
between particular chromosomal translocations and various
types of human leukemias and lymphomas, and found the t
[14;18] translocation frequently occurred in a type of blood
cancer, the follicular center B-cell lymphoma.1 Tsujimoto et al.2

in Carlo Croce’s lab first cloned the chromosomal breakpoint
and then the affected gene on chromosome 18, which they
termed BCL2 for ‘B-cell leukemia/lymphoma gene number 2’.
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A full-length BCL2 cDNA (first for human and then also for
mouse) was also cloned by Tsujimoto, and independently by
Cleary in Jeffrey Sklar’s lab.3,4 Efforts then began to confirm
whetherBCL2was, as suspected, an oncogene that had a role
in causing lymphoma, as well as to determine its function in
normal cells. BCL2’s sequence did not provide many clues – it
did not bear any known structural motifs, and the only known
gene with similar sequence was one of then unknown function
from Epstein–Barr virus, BHRF1.4

The ability of BCL2 to promote cancer, and its function in
normal cells, namely to prevent them from killing themselves,
were discovered by enforcing expression of a BCL2 cDNA in
growth factor-dependent myeloid and lymphoid progenitor cell
lines (Figure 1).5 Unlike some other oncogenes known at the
time (e.g., v-Abl6), enforced expression of BCL2 did not
stimulate cell growth and proliferation when growth factors
were removed. BCL2 had a different and unique effect; it
prevented cells from killing themselves when growth factors
were withdrawn. Rather than dying, they persisted in the
quiescent G0 state of the cell cycle. When growth factor was
returned to the cultures, these ‘saved’ cells began to grow and
proliferate once more. Although on its own enforced BCL2
expression was incapable of transforming normal cells to full

malignancy, its ability to prevent the suicide of oncogenically
stressed cells enabled it to potently synergize with conven-
tional growth-promoting oncogenes, such as c-Myc or v-Abl to
generate malignant cells both in vitro and in vivo.5,7–10

Because aberrant expression of BCL2 was associated with
lymphoma, these experiments linked inhibition of cell suicide
with malignancy in humans, implicating a novel oncogenic
mechanism. They also provided the first molecular handle into
the molecular mechanism of apoptosis, and demonstrated
that growth factor receptor-driven promotion of cell prolifera-
tion versus cell survival are subject to distinct control, with only
the latter affected by BCL2.
Although the fact that cells in animals can kill themselves

under certain circumstances had already been recognized for
over a century, the term ‘apoptosis’ for this process was only
adopted by Kerr et al.11 However, interest in apoptosis
remained low until the discovery of the molecular mechanism,
beginning with BCL2.

Cell Death Mechanisms Across Species: Insights from
the Worm

Cell death research was also progressing independently using
invertebrate models. By the late 1980s, Sulston, Horvitz and
colleagues had assembled a collection of mutant worms that
allowed them to deduce a genetic pathway specific for the
programmed cell deaths that occur during development of the
nematode Caenorhabditis elegans.12 However, the genes
involved were not cloned until the 1990s, so at that time the
nature of the proteins encoded and how they functioned in cell
killing was unknown. Furthermore, it was not clear whether
there was anything in common between the mechanism for
programmed cell death in the worm and the mechanism for
apoptosis of mammalian cells.
The experiment that showed that programmed cell death in

worms and apoptosis in human cells were implemented by
similar, evolutionarily conserved, mechanisms was expres-
sion of a human BCL2 transgene in C. elegans.13 Because
human BCL2 was able to reduce the amount of programmed
cell death occurring during development of worm embryos,
human BCL2 protein must have been able to engage with, and
inhibit, the worm’s cell death machinery. Furthermore, this
experiment implied that the way to find out how BCL2
prevented apoptosis of mammalian cells was to clone the
worm’s cell death genes, and then find their homologs in
mammals. Cloning of the C. elegans cell death genes by
Horvitz and his colleagues confirmed that the mechanism of
programmed cell death was conserved between worms and
humans, and illuminated the pathway for cell death in both
nematodes and mammals.14,15

The ced-9 gene in the worm, which was known to encode a
cell death inhibitor,15,16 was found to have a sequence similar
to that of human BCL2, confirming that they are homologs.
Furthermore, transgenic studies revealed that human BCL2
could not only function in the worm,13 but was even able to
compensate (albeit incompletely) for the loss of CED-9
function.15 TheC. elegans killer gene ced-3 encoded a protein
that resembled the then already known mammalian cysteine
protease interleukin 1β-converting enzyme, now termed
caspase-1,14,17,18 and a mammalian homolog for the CED-3-

Figure 1 Separate growth factor receptor-activated pathways regulating cell
division and cell survival. Ligation of growth factor receptors was known to signal
survival and proliferation (a and b). Enforced expression of BCL2 (c) showed that
growth factor receptors control independent mechanisms for cell proliferation and cell
survival/cell death (d). These experiments showed that BCL2 inhibited cell death, but
had no impact on cell division
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activating adaptor protein CED-419 was found with the
purification and identification of the caspase-9-activating
adaptor APAF1.20

The research on cell death in C. elegans suggested that
BCL2 would act in mammalian cells as CED-9 does in the
worm, namely to promote cell survival by somehow preventing
the activation of caspases. This was a major step forward, and
shows the value of research on model organisms. Never-
theless, although they are similar, and both cell death
processes evolved from the same ancestral mechanism,
there are key differences between the way CED-9 inhibits cell
death in the worm, and how BCL2 inhibits the apoptotic death
of mammalian cells.21 For example, later work showed that
CED-9 directly binds to the adaptor protein CED-4, to prevent
it activating the caspase CED-3, but that the protein EGL-1
also binds to CED-9, and can promote cell death by displacing
CED-4. When expressed in the worm, human BCL2 acts as a
sink by binding pro-apoptotic EGL-1, but human BCL2 cannot
bind to and inhibit CED-4. In theworm, therefore, BCL2 inhibits
cell death by reducing the amount of EGL-1 that is free to bind
to CED-9.22

Using techniques such as the yeast-two-hybrid method,
lambda phage expression library screening, and co-
immunoprecipitation, researchers looked for proteins that
could bind to BCL2. Korsmeyer’s group identified a protein
that resembled BCL2 in having several BCL2 homology
(BH) domains, but instead of promoting cell survival, this
protein, they called BAX, had the opposite function – it
enhanced cell killing under conditions of stress.23 It is now
clear that the pathway for death of mammalian cells that
can be blocked by BCL2 requires the presence of BAX, or
its close relative, BAK1,24 whereas a similar death-

promoting activity is not involved in developmental pro-
grammed cell death in the worm.
When free from inhibition by BCL2, or related pro-survival

family members (i.e., BCLXL, MCL1, A1/BFL1, and BCLW),
the pro-apoptotic multi-BH domain proteins BAX and BAK1
can become activated to cause mitochondrial outer mem-
brane permeabilization (MOMP) that allows the release of
mitochondrial proteins, such as cytochrome c (see review by
Green25 in this volume). Once in the cytoplasm, cytochrome c
can bind to the WD40 domains of APAF1, the homolog of
C. elegans CED-4. This allows APAF1 to activate caspase-
9,20,26 a so-called initiator caspase that functions as a
homolog of C. elegans CED-3. Therefore, in mammals, BAX
and BAK1 are the key effectors of apoptosis; MOMP is the
point of no return for dying cells; and in contrast to CED-4/
CED-3 from C. elegans, the APAF1/caspase-9 apoptosome is
not essential for cell death, but has a role in efficient,
immunologically silent, disposal of the cell’s constituents.27–29

In C. elegans there is no BAX/BAK1-like protein, and CED-9
promotes cell survival by binding directly to the adaptor protein
CED-4, thereby preventing it from activating the caspase CED-
3,30 Thus, in C. elegans there is no role for a BAX/BAK1-like
function in programmed cell death, no role for cytochrome c in
caspase activation, and caspase activation, rather than MOMP,
is the point of no return.
Although the steps downstream of BCL2 versus CED-9 in

cell death differ between mammals and nematodes, the steps
immediately upstream are very similar (Figure 2). Mammalian
pro-survival BCL2 family members can be inhibited by pro-
apoptotic BH3-only proteins, which are so-called because
they bear an alpha-helical region that resembles that of the BH
region 3 (BH3), but have no other resemblance to other BCL2

Figure 2 Comparison of pathways for programmed cell death in C. elegans and apoptosis in mammalian cells. Key differences are that in C. elegans anti-apoptotic CED-9
causes cell survival by preventing activation of CED-4, the activator of the caspase, CED-3, whereas in mammalian cells pro-survival BCL2 inhibits apoptosis by preventing
activation of BAX/BAK1 and by neutralizing BH3-only proteins. When expressed in C. elegans, human BCL2 prevents cell death by binding to the BH3-only protein EGL-1, but
cannot bind to CED-4 and prevent it activating the caspase CED-3. To block cell death in C. elegans, human BCL2 requires the presence of residual CED-9
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family members.31 Binding of a BH3-only protein, such as
BIM,32,33 PUMA,34–36 or activated tBid,37 to BCL2 or its pro-
survival relatives (BCLXL, MCL1, A1/BFL1, and BCLW) can
unleash the killing activity of BAX andBAK1 so that they are no
longer inhibited and are free to cause cell death. In a similar
way, C. elegans bears a gene for a BH3-only protein that we
have already met, EGL-1, that can bind to pro-survival CED-9
and prevent it from inhibiting CED-4, which is then free to
activate the caspase CED-3.38

A recent study usingCRISPR/Cas9 technology to delete the
genes for all BCL2 family members in two human cancer-
derived cell lines has shown that reintroduced BAX or BAK1
can activate spontaneously (even in the absence of all
recognized BH3-only proteins) when all pro-survival BCL2
family members are absent.39 This is consistent with a model
in which BH3-only proteins induce apoptosismainly by binding
the pro-survival BCL2-like proteins, thereby blocking their
ability to restrain BAX and BAK1, although it remains possible
that in cells expressing all three subgroups of the BCL2 family,
certain BH3-only proteins may also directly activate BAX and
BAK1.40,41

The shared motifs and interconnected functions suggest
how the three subtypes of BCL2 family members might
have evolved (Figure 3). If there was an original BCL2-
like protein that functioned like BAX or BAK1, then
duplication of the genes followed by mutations that blocked
the killing function would have generated proteins that
act as dominant negative inhibitors of BAX/BAK1’s
killing function, that is, resulting in BCL2/CED-9-like pro-
survival proteins. Further duplication of BCL2 family genes,

followed by different mutations that removed all conserved
regions except the BH3 domain, could have yielded
proteins that retain the ability to bind to pro-survival
BCL2 family members, and could thereby displace and
free the cell death executioners BAX/BAK1. At least some
of these BH3-only proteins might also have retained the
ability to bind to and thereby directly trigger activation of
BAX/BAK1 to induce cell death, even though on their own,
they could not kill cells. Interestingly, full-length BID is the
only BH3-only protein that has a long half-life and has a
structure that closely resembles that of BAX/BAK1,
indicating that it still retains BH1, BH2, and BH4 folds/
domains.42 BID only assumes pro-apoptotic BH3-only
protein function after its cleavage by caspase-8 (and
possibly certain other caspases) into tBID.43,44 It is
tantalizing to speculate that an ancestral form of full-
length BID, similar to BOK,45–47 may have had a BAX/
BAK1-like killing function.
If the ancestral BCL2 family protein was like pro-apoptotic

BAX or BAK1, duplication and loss of killing functions could
have generated the anti-apoptotic BCL2 family members.
Evolution of C. elegans CED-9 from an ancestral BAX- or
BAK1-like protein would have required not only loss of its
ability to oligomerize to form amembrane channel48,49 but also
gain of the ability to bind to and inhibit CED-4. It would be
interesting to know whether the ability of CED-4 to activate
caspases without the need to be triggered by cytochrome c
arose before or after CED-9 acquired the ability to bind to
CED-4.

Figure 3 Speculative evolution of the BCL2 protein subfamilies. The first members were like pro-apoptotic BAX and BAK1, and had three functions: exposing a BH3 domain;
binding a BH3 domain of another protein; and forming oligomers that could act as channels allowing proteins to cross membranes. Anti-apoptotic family members (such as BCL2
itself) arose by gene duplication from a BAX/BAK1-like ancestor, and mutations that caused the protein to lose its ability to expose its BH3 domain in a way that higher-order
multimers could form, whilst retaining its ability to bind to the BH3 domains of other proteins, such as BAX and BAK1. In this way, anti-apoptotic BCL2 family members act as
dominant negative versions of BAX and BAK1. BH3-only family members arose as proteins that could bind to anti-apoptotic BCL2 family members to unleash BAX or BAK1, or
could bind to BAX or BAK1 to activate them directly, in both ways triggering formation of multimers. Cartoons are diagrammatic only
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Cell Death Throughout Evolution: from a Defense
Strategy to a Tailoring Tool for Development and
Homeostasis

Although there are key differences, the striking conservation of
the mechanisms for apoptosis between nematodes and
mammals, and the finding of similar genetic pathways
involving BCL2 family members, caspases, and their adaptors
among other metazoan phyla, such as sponges, molluscs,
arthropods, and helminths, raises the possibility that apoptosis
evolved very early in metazoan evolution, and perhaps even
earlier, in the protozoa.50,51

While it initially seems counter-intuitive to think that a
mechanism for cell suicide could have evolved in a single-
celled organism, because once themechanismwas activated,
the genes could not be passed on from the dying cell, it is
plausible that cell death arose in a community of single-celled
organisms as a defense strategy against intracellular para-
sites. While triggering of the cell death mechanism by an
infected cell would prevent that particular cell from passing on
its genes, the rest of the community that shared the same (or
highly related) genes would be advantaged compared to
communities of cells that could not kill themselves by being
able to resist the spread of infection.52,53

There are several observations that are consistent with the
notion that apoptosis (and additional cell death processes)
initially evolved as a defense strategy that was later duplicated
and adapted to be used for organismal development, and to
maintain correct cell numbers by balancing mitotic cell
division. First, certain caspases, most notably caspase-1
and caspase-11, are activators of pro-inflammatory cytokines,
such as IL-1β and IL-18, suggesting that defensive cell death
could be pro-inflammatory, such that the immune system was
alerted and primed to fight the infection.17,18,54 Second, many
viruses carry genes for cell death inhibitors, including ones
resembling pro-survival BCL2. Indeed, the first BCL2-like
gene to be identified was BHRF1 from Epstein–Barr virus (see
above), and subsequently BCL2 homolog have also been
found in herpesviruses, adenoviruses, and African swine fever
virus, among others.52 Similarly, some viruses carry genes for
caspase inhibitors.55,56 Presumably, viruses that have cap-
tured genes for cell death inhibitors are advantaged because
they can use them to prevent demolition of the cell until after
viral replication has taken place.57–59

The broad existence of the BAX/BAK1-dependent cell
death mechanism among the metazoans, and the possibility
that this mechanism might have arisen as an altruistic suicide
strategy to prevent the spread of infection by an intracellular
parasitic microorganism within a community of cells, might
help explain why BAX/BAK1 cause cell death by targeting
mitochondria. Early in eukaryotic evolution, a prokaryote was
engulfed by an early eukaryotic cell, and the prokaryote
gradually developed into amitochondrion. Thus, a BAX/BAK1-
like ancestral protein that initially evolved to protect the early
eukaryotic cell by puncturing invading bacteria might subse-
quently have been co-opted to cause suicide of the host cell by
destroying their mitochondria. On the other hand, the absence
of BCL2 family members in plants and fungi argues that if they
arose in a single-celled organism, it was a protozoan, after the

split between the animal and plant kingdoms, or that the genes
were subsequently lost in plants.
Once anti-apoptotic BCL2 family members had evolved

from duplicated and mutated BAX/BAK1-like genes, they
would have been available for capture by viruses, which would
have allowed the viruses in turn to protect themselves against
defensive suicide of the infected host cell.
If such a scenario arose, there would, of course, have been

selective pressure for host organisms to come up with cell
death mechanisms that can bypass or override the blocks
caused by viral pro-survival BCL2-like proteins. Indeed, it was
the search for cases of apoptosis that could not be blocked by
BCL2 (or its pro-survival relatives) that provided the first
evidence for cell death pathways that can operate indepen-
dently of the BCL2 family.
For example, one of the major defenses of vertebrates

against viruses are cytotoxic T cells (CTL) that can cause
death of infected target cells. That CTL-mediated killing, which
is mediated in part by perforin and granzymes,60 was not
blocked by the overexpression of BCL2 in the target cells
provided evidence that there was more than one pathway to
apoptosis, and that some could not be blocked by BCL2.61,62

The fact that in some cell types BCL2 could block apoptosis
induced by a variety of agents but not by ligation of the ‘death
receptor’ FAS (CD95/APO-1) provided further evidence of
distinct, independent pathways to apoptosis, only some of
which involved BCL2 family members.63,64 Notably, in certain
cells (called type 2), such as hepatocytes or pancreatic β cells,
BCL2 (or its pro-survival relatives) can inhibit FASL/FAS-
induced apoptosis, because efficient cell killing requires the
death receptor pathway (reliant on caspase-8) to engage the
BCL2-regulated (mitochondrial) apoptotic pathway by proteo-
lytic activation of BID to tBID.65–67

The generation of double-knockout mice deficient for both
perforin and FASL revealed that the perforin/granzyme and
‘death receptor’ pathways account for most if not all killing
activity of CTLs. This is demonstrated, for example, by the
observation that T cells from these double-knockout mice are
unable to elicit acute, lethal, graft versus host disease in
recipient animals.68,69

Cell Death with, and without, Inflammation

With the evolution of multicellularity in animals, there would
have been other circumstances, in addition to removal of
infected cells, when cell suicide would have been useful. In
multicellular organisms with separate germ cell and somatic
cell lineages, death of superfluous somatic cells could be
programmed, so that it was a cell fate, rather than cell death
purely being a contingent process. Regulation of programmed
cell death would have been facilitated by duplication and
mutational adaptation of the functions of the genes encoding
the components of the cell death machinery. Where cell death
is used as a program, such as to remove superfluous skin cells
or unconnected neurons during development, or to balance
cell production bymitosis, inflammation would not be required,
and would in fact often be detrimental to the organism.11,70

The fact that transgenic expression of BCL2 caused an
inflammatory autoimmune disease resembling SLE provided
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evidence that apoptosis is needed to control immune
responses.71

In contrast, when cells are killing themselves upon detection
of an infecting microorganism, inflammation would be desir-
able to alert neighboring cells to mount an immune response.
Such a scenario might explain the existence of caspases,
such as caspase-1 and caspase-11, that process and activate
pro-inflammatory cytokines, such as IL-1β and IL-1817,18 as
mentioned above, and also trigger the highly pro-inflammatory
pyroptotic cell death pathway through proteolytic activation of
gasdermin D.72,73 In contrast, the initiator caspase, caspase-
9, and the downstream effector caspases -3 and -7 (and
possible also -6), which help dismantle a cell after BAX/BAK1-
mediated cell death, operate in an immunologically silent
manner. These caspases not only do not activate pro-
inflammatory cytokines, they also actively prevent induction
of inflammation when mitochondrial DNA is released into the
cytoplasm of dying cells.29,74

Cell Death to Cope with Damage and Stress: Implications
for Cancer Therapy

The existence of cell death mechanisms that can be activated
to remove cells that are unwanted, for example, because they
have fulfilled their function, could also have been useful to
remove damaged cells. Under conditions of stress, for
example, when an important metabolic or synthetic process
cannot operate or is blocked, cells generally activate
processes to restore homeostasis, such as by increasing
expression of heat-shock proteins to refold denatured pro-
teins, metallo-thioneins to bind toxic metals, or cell cycle
inhibitors to delay DNA replication so that DNA lesions and

other cellular damage can be repaired.75 Triggering of
apoptosis is also a common response to cell stress, which
helps to explain why apoptosis can be induced by such a wide
variety of chemical and physical insults. The fact that cancer
cells can respond to chemotherapy or radiation by undergoing
apoptosis, and may do so at levels of insult below those
required for the drug or treatment to kill the cell directly, has
implications for how cancers are treated. On one hand, cancer
cells that happen to express abnormally high levels of a pro-
survival BCL2 family member would be rendered resistant to
treatment with chemotherapy or radiation,61,76 but on the other
hand, treatment with BH3-only mimetic drugs, such as
venetoclax/ABT-199 (inhibits BCL277), navitoclax/ABT-263
(inhibits BCL2, BCLXL, and BCLW78), or S63845 (inhibits
MCL179), would be predicted to act synergistically with
chemotherapy by lowering the threshold for cells to undergo
apoptosis (Figure 4).
In conclusion, we propose that the evolution of the BCL2

family of proteins began with the executioners of apoptosis,
the BAX/BAK1 proteins, plausibly in a unicellular organism, as
a contingent, altruistic defense against pathogens. With the
evolution of multicellular animals, and through gene duplica-
tion andmutation, this ancestral killing process evolved to also
be used for development and homeostasis of cell number,
such that even though the mechanisms for programmed cell
death in C. elegans, and apoptosis of mammalian cells have
key differences, they retain aspects that reflect their common
origin.
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