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How does p53 induce apoptosis and how does this
relate to p53-mediated tumour suppression?

Brandon J Aubrey1,2, Gemma L Kelly1,2, Ana Janic1,2, Marco J Herold1,2 and Andreas Strasser*,1,2

The tumour suppressor gene TP53 is mutated in ~ 50% of human cancers. In addition to its function in tumour suppression, p53
also plays a major role in the response of malignant as well as nontransformed cells to many anticancer therapeutics, particularly
those that cause DNA damage. P53 forms a homotetrameric transcription factor that is reported to directly regulate ~ 500 target
genes, thereby controlling a broad range of cellular processes, including cell cycle arrest, cell senescence, DNA repair, metabolic
adaptation and cell death. For a long time, induction of apoptotic death in nascent neoplastic cells was regarded as the principal
mechanism by which p53 prevents tumour development. This concept has, however, recently been challenged by the findings that
in striking contrast to Trp53-deficient mice, gene-targeted mice that lack the critical effectors of p53-induced apoptosis do not
develop tumours spontaneously. Remarkably, even mice lacking all mediators critical for p53-induced apoptosis, G1/S boundary
cell cycle arrest and cell senescence do not develop any tumours spontaneously. In this review we discuss current understanding
of the mechanisms by which p53 induces cell death and how this affects p53-mediated tumour suppression and the response of
malignant cells to anticancer therapy.
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Facts

� TP53 is a critical tumour suppressor that is mutated in
~ 50% of human cancers.

� In unstressed cells p53 protein levels are very low because
it is targeted for proteasomal degradation by the E3
ubiquitin ligase MDM2.

� TP53 is activated in response to many stress stimuli,
including activation of oncogenes and DNA damage.

� Upon activation, p53 directly regulates the transcription of
~ 500 genes and indirectly regulates many additional genes
and thereby controls diverse cellular processes.

� P53 induces apoptosis in nontransformed cells mostly by
direct transcriptional activation of the pro-apoptotic BH3-
only proteins PUMA and (to a lesser extent) NOXA.

� Combined loss of the p53 effectors of apoptosis (PUMA
plus NOXA) and cell cycle arrest/cell senescence (p21)
does not cause spontaneous tumour development.

� Apoptosis induction via PUMA and NOXA is critical for the
killing of malignant cells by anticancer drugs that activate
TP53 but other effectors contribute also.

Open Questions

� Which processes and target genes activated by p53 are
critical for the prevention of cancer?

� Loss of which p53-induced processes cooperate with loss
of p53-induced apoptosis to cause cancer?

� Why do certain malignant as well as nontransformed cells
undergo apoptosis upon TP53 activation, whereas others
do not die, but instead undergo cell cycle arrest and/or
senescence?

� What are the differences in p53-induced apoptosis between
nontransformed and malignant cells?

� How do the hot spot p53 mutant proteins inhibit wild-type
p53-induced apoptosis in nascent neoplastic as well as
malignant cells?

Discovery of p53 and Discovery of Mutations in the TP53
Gene in Human Cancer

The p53 protein (also called TP53) was discovered as a
protein bound to the SV40 large Tantigen in transformed cells
(reviewed in Levine et al.1 and Lane and Benchimol2).
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Inadvertently, some of the first experiments in which p53 was
overexpressed in cell lines used constructs encoding cancer-
derived mutant TP53. Such enforced mutant p53 expression
enhanced cell growth, and it was therefore concluded that p53
functions as an oncoprotein (reviewed in Levine et al.1 and
Lane and Benchimol2). Subsequent studies found, however,
that enforced expression of wild-type (WT) TP53 actually
impaired the growth of transformed cells in culture, providing
the first evidence that TP53 can function as a tumour
suppressor.3,4 At about the same time, it was discovered that
many sporadic human cancers of diverse origins carried
mutations in TP53, usually a point mutation in one allele that
permitted expression of mutant p53 protein (often at abnor-
mally high levels; see below) accompanied by a deletion that
removed the other allele, including adjoining regions.5,6

Moreover, individuals with the Li–Fraumeni syndrome, who
carry germline heterozygous mutations in TP53, usually
developmultiple cancers over their lifetime, often from a young
age.7,8

Most of the mutations in TP53 detected in cancer cells are
point mutations in the DNA-binding domain. Thesemutant p53
proteins are thought to be unable to regulate the transcription
of WT p53 target genes (loss of function (LOF)) (reviewed in
Vousden and Lane9 and Freed-Pastor and Prives10). Interest-
ingly, many mutant p53 proteins are detected at high levels in
malignant cells. Therefore, by forming mixed tetramers with
WT p53, mutant p53 proteins can exert dominant negative
effects (DNEs) that are likely to play critical roles early during
transformation when nascent neoplastic cells still retain their
WT TP53 allele (reviewed in Vousden and Lane9 and Freed-
Pastor and Prives10). In addition, certain p53 mutants have
been reported to exert gain-of-function (GOF) effects by
binding to and thereby modulating the functions of other
tumour suppressors and transcriptional regulators (reviewed
in Vousden and Lane9 and Freed-Pastor and Prives10). It
remains unclear which of the LOF, the DNE or the GOF effects
of mutant p53 are most important during the development and

sustained growth of a cancer, and it appears likely that this
may vary depending on both the cell of origin undergoing
transformation and the nature of the cooperating oncogenic
lesions that drive the neoplastic transformation of these cells.

Control of TP53 Activation and Cellular Responses
Activated by p53

Unstressed, nontransformed cells contain very low (often
undetectable) levels of WT p53 protein despite readily
detectable mRNA expression.11 The main reason for this is
that p53 is targeted for proteasomal degradation by the E3
ligase, MDM2 (Figure 1).12–14 In response to diverse stress
stimuli, including activation of oncogenes, DNA damage or
nutrient deprivation, the levels of p53 protein rise substantially
because several signalling pathways that are activated in
response to the aforementioned stressors converge upon the
inhibition of MDM2, whereas some lead to modifications (e.g.,
acetylation, phosphorylation) in the p53 protein itself (Figure 1)
(see reviews9,10,15). Upon activation, p53 binds as a homo-
tetramer to specific sequences in the regulatory regions of its
target genes (~500).16–20 Studies using enforced expression
or conditional activation (e.g., using temperature-sensitive
mutants) of p53 in cell lines revealed that p53 can activate
diverse cellular effector processes, including cell cycle arrest,
cellular senescence, coordination of various DNA damage
repair pathways, metabolic adaptation and apoptotic cell
death (reviewed in Vousden and Lane9 and Freed-Pastor and
Prives10). Gene expression studies and functional assays
using gene-targeted mice soon identified genes that are
essential for certain p53-activated cellular responses. For
example, the cyclin-dependent kinase inhibitor (CDKi) p21 is
critical for p53-mediated G1/S boundary cell cycle arrest and
cell senescence21 (although additional p53 target genes also
play a role in the latter process). Moreover, several genes
implicated in various DNA repair processes were found to be
either direct targets of p53 or indirectly regulated by p53.22
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Figure 1 Regulation of p53 protein level and activity in unstressed versus stressed cells.Models depicting the mechanisms that regulate p53 protein levels and activity
in unstressed cells and in cells undergoing stress, for example, due to the activation of oncogenes or DNA lesions that they have sustained. (Ub, ubiquitin; P, phosphorylation; Ac,
acetylation)
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Finally, direct transcriptional induction of Mdm2 by p53 was
recognised as a major negative feedback loop in p53
signalling.23 This is most spectacularly demonstrated by the
finding that loss of MDM2 causes excess p53 activation,
resulting in early embryonic lethality in mice, and that this
lethality can be prevented by concomitant loss of Trp53.24,25

P53-Mediated Induction of Apoptosis

The first clue that p53 can induce apoptotic cell death came
from studies using a myeloid leukaemia cell line expressing a
temperature-sensitive conditionally active mutant of p53 (i.e.,
at 37 °C this protein behaves as mutant p53 but at 32 °C it
assumes WT p53 structure and function).26 The observation
that p53 can induce apoptosiswas confirmed and extended by
similar experiments in which a temperature-sensitive p53 or
WT p53 was also enforcibly expressed in erythroleukaemia
cells,27 a colon cancer cell line28 and a Burkitt lymphoma
line.29

There are two distinct, although ultimately converging,
pathways to apoptosis in mammalian cells:30 the so-called
BCL-2-regulated (also called intrinsic, mitochondrial or stress)
pathway that is activated by stress conditions, such as
cytokine deprivation, ER stress or DNA damage, and the so-
called death receptor (also called extrinsic) pathway that is
activated by ligation of members of the tumour necrosis factor
receptor (TNFR) family bearing an intracellular death
domain.31–33 In the BCL-2-regulated apoptotic pathway, cell
death is initiated by the transcriptional and/or post-
transcriptional upregulation of the so-called pro-apoptotic
BH3-only members of the BCL-2 protein family (BIM, PUMA,
BID, BMF, BAD, BIK, NOXA, HRK). The BH3-only proteins
bind and inhibit the pro-survival BCL-2 proteins (BCL-2, BCL-
XL, MCL-1, BCL-W and A1/BFL1), thereby unleashing the cell
death effectors BAX and BAK (the pro-apoptotic multi-BH
domain members of the BCL-2 family that may also include
BOK34–37). Certain BH3-only proteins were reported to also
activate BAX/BAK directly (see reviews32,38). Activation of
BAX/BAK causes mitochondrial outer membrane permeabi-
lisation (MOMP), the point of no return in apoptosis signalling,
with consequent activation of the cascade of aspartate-
specific cysteine proteases (caspases; in this pathway
initiated by caspase-939–41 and its activator APAF-142,43) that
dismantle the cell (Figure 2) (reviewed in Green32). Con-
versely, the death receptor pathway activates apoptosis by
recruitment and activation of the pro-form of caspase-8 via the
adaptors FADD, and in some cases also TRADD, at the ligated
death receptors at the plasma membrane.44,45 In so-called
type 1 cells (e.g., thymocytes), such caspase-8 activation with
consequent activation of the effector caspases (caspase-3
and -7) is sufficient for effective induction of apoptosis. In
contrast, in the so-called type 2 cells (e.g., hepatocytes),
efficient cell killing requires amplification of the caspase
cascade by crossover activation of the BCL-2-regulated
apoptotic pathway that is achieved by caspase-8-mediated
proteolytic activation of the otherwise inert BH3-only protein
BID.46–50

Studies using cell lines with enforced expression of WT p53
or temperature-sensitive p53 revealed that overexpression
of anti-apoptotic BCL-2 could prevent p53-induced

apoptosis.51–53 Notably, the cells rescued from p53-induced
death by expression of BCL-2 still underwent cell cycle
arrest,52 demonstrating that p53 was fully functional (i.e.,
BCL-2 does not directly block all p53 functions). Thus, p53
must induce cell cycle arrest and apoptosis through distinct
pathways, and BCL-2 (or other pro-survival BCL-2 family
members) inhibit p53-induced apoptosis at a downstream
point in apoptosis signalling (Figure 2).
The caveat with the aforementioned experiments is that the

levels of p53 used to induce apoptosis were abnormally high.
Hence, it was not yet proven that p53 could induce apoptosis
under physiological conditions, that is, when expressed at
normal levels. This was established when it was shown that
thymocytes and other lymphoid cell subsets from Trp53
knockout mice are completely resistant to apoptosis induced
by γ-radiation and treatment with chemotherapeutic drugs that
induce DNA damage (e.g., etoposide, cyclophosphamide,
cisplatin).52,54,55

Discovery of the p53-Activated Inducers of the BCL-2-
Regulated Apoptotic Pathway

The demonstration that p53-induced apoptosis can be
blocked byBCL-2 overexpression launched the hunt to identify
the p53-activated initiators of the cell death pathway that is
regulated by BCL-2. Many candidates were identified by
searching for genes that were upregulated in response to
overexpression of p53 at highly nonphysiological levels.
Perhaps predictably, most of these candidates have still not
been proven to have roles in apoptosis. The two notable
exceptions are Puma/Bbc3 and Noxa/Pmaip: both of these
genes are direct p53 targets and encode pro-apoptotic BH3-
only proteins.56–59 These genes are directly upregulated by
p53 and their enforced expression causes rapid apoptosis in
cell lines, whereas their knockdown protects cells against
cytotoxic stimuli that trigger apoptosis in a p53-dependent
manner.56–59 Studies with gene-targeted mice revealed that
PUMA and to a lesser extent NOXA are critical for p53-
mediated apoptosis (e.g., apoptosis induced by γ-radiation or
chemotherapeutic drugs that cause DNA damage) in a broad
range of cell types, including lymphoid aswell asmyeloid cells,
fibroblasts and skin keratinocytes, both in culture and
in vivo.60–63 Remarkably, thymocytes from Puma/Noxa double
knockout mice are as resistant to γ-radiation in vivo as those
from Trp53 knockout mice (Figure 2).64 Loss of PUMA
generally affords many cell types with much greater protection
against cytotoxic agents that trigger apoptosis via p53
activation (e.g., γ-radiation in lymphoid cells) than loss of
NOXA.61,64 Curiously, however, in certain cell types and under
certain conditions the impact of loss of NOXA is more
pronounced. For example, NOXA deficiency protects skin
keratinocytes and fibroblasts more potently against UV
radiation (a p53-dependent apoptotic stimulus) than loss of
PUMA.63 This suggests that the relative contributions of
PUMA versus NOXA to the induction of apoptosis may vary
depending on the cytotoxic insult, the nature of the responding
cell or both. Of note, NOXA preferentially inhibits MCL-1 and
(in contrast to other BH3-only proteins that can bind to MCL-1)
promotes the degradation of this pro-survival protein.65,66 The
prominent role of NOXA in UV radiation-induced apoptosis
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may therefore be explained if MCL-1 is the critical pro-survival
protein protecting skin keratinocytes and fibroblasts against
UV radiation.
Even though in non-transformed cells combined loss of

PUMA and NOXA provides full protection (i.e., as potent as
loss of TP53 itself) against apoptosis induced by γ-radiation or
chemotherapeutic drugs that induce DNA damage,64 this is
not the case in malignant lymphoma and leukaemia cells. For
example, mouse Eμ-Myc lymphoma cells lacking both PUMA
and NOXA are much less resistant to cyclophosphamide,
etoposide or nutlin-3a (that activates p53 in a nongenotoxic
manner by blocking its major inhibitor, the MDM2 E3 ubiquitin
ligase67) than loss of p53 or overexpression of anti-apoptotic
BCL-2.68,69 Interestingly, additional loss of the BH3-only
protein BIM70,71 (i.e., combined loss of PUMA, NOXA plus
BIM) provided as potent protection against nutlin-3a and
etoposide as loss of p53 (Figure 2).68,69 After treatment with
etoposide or nutlin-3a, BIM expression was upregulated inEμ-
Myc lymphoma cells at a considerably later time compared
with the induction of PUMA and NOXA.68,69 Therefore, p53
may indirectly regulate BIM expression, perhaps through
repression of a microRNA that regulates BIM. However,
evidence for direct activation of Bim transcription by p53 has
also been reported.72–74 Collectively, these findings reveal that
p53-induced apoptosis is likely to be more complex in
malignant cancer cells compared with nontransformed cells
(Figure 2).
It is also noteworthy that two additional constituents of the

BCL-2-regulated apoptotic pathway, the pro-apoptotic effector

BAX and APAF-1 (the scaffold protein for caspase-9 activa-
tion) have been convincingly shown to be transcriptionally
regulated by p53.75–77 However, p53 is not a sine qua non
for BAX and APAF-1 expression. This is best demonstrated
by the observations that Trp53-deficient haematopoietic
cells express normal levels of BAX and APAF-1 and undergo
apoptosis as readily as control (wild-type) cells after exposure
to cytotoxic insults that induce BAX/BAK-dependent
apoptosis,78 involving APAF-1,42,43,79 in a p53-independent
manner (e.g., cytokine deprivation, treatment with glucocorti-
coids).52 Accordingly, we conclude that p53-mediated tran-
scriptional induction of BAX and APAF-1 is not essential for
induction of apoptosis, at least in haematopoietic cells, but
may serve in certain other cell types, as a mechanism to make
the system work more efficiently or even allow this pathway to
operate. This may relate to the observation that the levels of
BAX, APAF-1 and other constituents of the apoptosis
machinery are much lower in many tissues (e.g., heart,
kidney, brain) in adult mice and humans compared with
newborns. This may account for the reduced sensitivity to
apoptotic stimuli of cells from these tissues in adults compared
with newborns.80

Mechanisms of Induction of Apoptosis by p53-Related
Proteins

For many years p53 was thought to have no relatives, but then
within a short time frame, two closely related proteins, called
p6381 and p73,82 were discovered. P63 and p73 share

activated caspase 9

p53

inhibition of
pro-survival
BCL2 family

members

BTG2/PLK2

FAS/DR5

miR-34a BCL-2

sensitisation 
to the death 

receptor pathway

modifiers
of apoptosis

pro-survival
functions

p53

1) induction of the intrinsic apoptotic pathway

2) modification of the apoptotic response

ZMAT3 ??

induction of
BH3-only 
proteins

MOMP

derepression
of apoptosis

effectors

PUMA

NOXA

BIM BCL-XL

MCL-1

BCL-2

BAX

BAK apoptosome formation

effector caspase 
activation

cell demolition

cytochrome C
release

APAF-1

Figure 2 Mechanisms of p53-induced apoptosis. Model depicting the mechanism by which activated p53 induces apoptosis through the BCL-2-regulated pathway. Fat arrows
indicate p53-induced targets that are essential for p53-induced apoptosis. Thin arrows indicate p53-induced targets that are constituents of the BCL-2-regulated apoptotic
pathway but are still expressed at levels sufficient for apoptosis induction in the complete absence of p53; that is, their induction by p53 may make the pathway work more
efficiently, but this induction is not a sine qua non for p53-induced apoptosis, at least in haematopoietic cells. The broken arrow indicates that p53 may also activate BIM
expression indirectly. The possible scenario that activation of targets that are not constituents of the apoptosis machinery per se can impact on apoptosis indirectly is also depicted

Mechanisms by which p53 induces cell death
BJ Aubrey et al

107

Cell Death and Differentiation



similarity with p53 in their DNA-binding and transactivation
domains and it is therefore widely assumed that many
recognised p53 target genes, and hence the cellular pro-
cesses they control, can also be regulated by p63 and p73.83

Some early studies showed that overexpression (although at
clearly nonphysiological levels) of p63 or p73 can cause cell
death with morphological and biochemical features of
apoptosis.81,84 The first demonstration that p63 can induce
apoptosis under physiological conditions came from elegant
studies in the mouse ovary. Even very low dose (0.5 Gy)
γ-radiation kills all primordial follicles in 5-day-old female mice
and renders these animals permanently infertile. This cell
death is completely prevented by loss of p63, but loss of p53
has no protective effect.85 Combined loss of PUMA and NOXA
protected the primary follicles in the ovary from γ-radiation to
the same extent as loss of p63.86 This demonstrates that p63
induces apoptosis in the same way as p53. Remarkably,
PUMA/NOXA double knockout and even PUMA single knock-
out females, when irradiated either as pups or as adults,
retained normal fertility. Of note, among several hundred
offspring of such irradiated Puma-/-Noxa-/- or Puma-/- mothers,
none were found to exhibit developmental abnormalities or
cancer predisposition.86 This means that primordial follicles
that are protected from γ-radiation-induced apoptosis due to
the absence of PUMA or PUMA plus NOXA must be able to
repair their DNA lesions highly efficiently.
Of note, the nematode C. elegans homologue of p53/p63/

p73 also has a function in DNA damage-induced killing of
female germ cells and it induces a pathway to apoptosis that is
initiated by the pro-apoptotic BH3-only protein, EGL-1, and
can be inhibited by the pro-survival BCL-2 homologue,
CED-9.87 This demonstrates that DNA damage-induced,
p63-induced apoptosis via the BCL-2-regulated pathway in
female germ cells is evolutionarily highly conserved and is
likely to play a critical role in safeguarding genomic stability in
the germline.88

Impact of p53 on the Death Receptor Apoptotic Pathway

Importantly, p53 can also regulate the expression of compo-
nents of the extrinsic apoptotic pathway. The p53 can
transcriptionally induce the genes encoding FAS (also called
APO-1 and CD95) and possibly other genes encoding related
death receptors.89 Some studies have reported that cytotoxic
drugs that cause activation of p53 (e.g., etoposide, cyclopho-
sphamide) and γ-radiation can induce apoptosis in leukaemic
cells through the death receptor pathway.90 However, experi-
ments using a panel of transgenic and gene knockout mice
demonstrated beyond doubt that DNA damage-inducing
anticancer drugs and γ-radiation kill normal as well as
transformed cells by activating the BCL-2-regulated apoptotic
pathway91,92 in a p53-dependent manner. In striking contrast,
complete loss of the death receptor apoptotic pathway (e.g.,
due to loss of function of caspase-8 or its activator FADD) does
not protect these cells from these agents.44,93 Although we
would conclude that p53-mediated upregulation of death
receptors is not essential for cell killing, it may serve to
sensitise cells to so-called death ligands (e.g., FASL, TNF; the
ligands for the death receptors FAS and TNFR1) expressed on
neighbouring cells. This would allow for paracrine killing by

cytotoxic T cells or NK cells and such a processmay contribute
to the effectiveness of cancer therapy in certain cancers.

Indirect Effects of p53 on Apoptosis Signalling

To further add to the complexity of p53-mediated control of
apoptosis, p53 also drives the expression of several genes
whose functions do not lie within the two apoptotic pathways
per se but may modulate the cellular response to cell death-
inducing insults. For example, p53 drives expression of a
number of microRNA species, including miR-34,94 that is
known to target the pro-survival Bcl-2 gene.95 Thus, p53-
induced miR34a expression may sensitise cells to apoptotic
stimuli by reducing the levels of BCL-2. Another well-
characterised transcriptional target of TP53 is Zmat396 that
has a poorly defined function but has been shown to impact on
the response of cells to apoptotic stimuli.97 Of note, p53 can
also drive the expression of various genes that may serve pro-
survival functions, such as BTG2 and PLK2.96 Thus, p53
signalling should not be viewed as exclusively inducing
apoptosis, but in certain situations p53 activation may
preferentially activate processes that enhance cell survival
and cell growth. This may well be pertinent to tumour
development and cancer therapy.

Reported Roles of p53 in Other Forms of Cell Death

Although the role of p53 (and p63) in the induction of apoptosis
iswidely accepted, there are also reports that p53 can regulate
additional non-apoptotic cell death pathways. For example,
p53 was reported to open the mitochondrial permeability
transition pore to thereby induce necrotic cell death.98 More-
over, p53 has also been reported to sensitise cells to
ferroptosis, a non-apoptotic form of cell death,99 by repressing
expression of SLC7A11, a key component of the cystine/
glutamate antiporter.100 However, the relevance of these
processes to normal physiology (e.g., the death of nontrans-
formed cells with DNA lesions) or cancer therapy-induced
killing of tumour cells has not been established.

Future Directions in Research on p53-Induced Cell Death

A ‘holy grail’ in research on p53 is to understand the
mechanistic basis determining the strongly context-
dependent functional output following p53 activation. For
example, p53 activation by nutlin-3a results in apoptosis in
some cells but cell cycle arrest and senescence in others (both
malignant and nontransformed).67 Moreover, restoration of
wild-type p53 in cancers driven by loss of p53 (plus additional
oncogenic lesions) causes apoptosis in lymphoma cells but
cell senescence and cell cycle arrest in solid organ
cancers.101–104 Importantly, there is evidence that p53
activation and expression may occur without necessarily
resulting in apoptosis or senescence, as has been observed
in stem cells, where p53 activation may drive differentiation
rather than exerting antiproliferative effects.105 Finally, dra-
matic differences are seen in the sensitivity of different cell
types to p53 activation. For example, cells within the gastro-
intestinal tract106 and the haematopoietic system54,55,91 are
particularly vulnerable to p53-induced apoptosis that
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underlies their prominent involvement in toxicity associated
with DNA damage-inducing chemotherapy. We can speculate
on factors that may differentiate the p53 response: post-
translational modifications on the p53 protein (e.g., acetyla-
tion, phosphorylation) that alter the function of p53 as a
transcription factor, functional interaction between p53 and
other transcription factors that may vary according to cell type,
context-dependent regulation of specific target genes (e.g.,
altered regulation in the setting of oncogene expression),
epigenetic regulation of p53 target genes (e.g., p53 regulation
may vary depending on whether certain target genes are
epigenetically silenced) as well as post-transcriptional and
post-translational regulation of p53 target genes or their
protein products (e.g., a role for p53-independent microRNA-
mediated regulation). These are all fascinating possibilities
that require much further investigation.

The Role of p53-Induced Apoptosis in p53-Mediated
Tumour Suppression

The finding that p53 can induce apoptosis led to the widely
accepted assumption that out of all the cellular effector
processes activated by p53 (Figure 3) this is the most critical,
possibly even the sole, process by which p53 suppresses
tumour development (reviewed in Vousden and Lane9). This
made sense: after all, if cells during the early stages of
neoplastic transformation are killed through p53-induced
apoptosis, no fully transformed malignant cells will emerge
from this clone. However, matters are not that simple. If
apoptosis is the critical process for p53-mediated tumour
suppression, it would be predicted that Puma-/-Noxa-/- mice
should be as prone to spontaneous or oncogene-driven
tumour development as Trp53-/- mice themselves, as com-
bined loss of PUMA and NOXA abrogates p53-induced
apoptosis in many (possibly all) cell types.64 Contrary to this
prediction, no spontaneous tumour development was
observed in a large cohort of Puma-/-Noxa-/- mice that were

monitored over a long time period.64,107 Induction of G1/S
boundary cell cycle arrest and cell senescence are also
thought to be processes that could be critical for p53 tumour
suppression (Figure 3). The CDK inhibitor p21 is essential for
cell cycle arrest and also a major contributor to cellular
senescence.108 It is therefore remarkable that mice with
mutations in Trp53 that impair its ability to transcriptionally
induce Puma, Noxa and p21 and even mice completely
deficient for these genes (i.e., Puma-/-Noxa-/-p21-/- mice) do
not spontaneously develop any tumours (Figure 4).107,109,110

Notably, the cells from all of these mutant mice are unable to
undergo apoptosis, cell cycle arrest or senescence upon p53
activation. This demonstrates that p53 is capable of preventing
spontaneous development of cancer in the complete absence
of its ability to induce apoptosis, G1/S cell cycle arrest and cell
senescence. Moreover, combined loss of PUMA and p21 or
mutations in the two transactivation domains of p53 that
are critical for the transcriptional induction of Puma, Noxa and
p21 accelerate c-MYC-driven lymphoma development and
mutant RAS-driven lung cancer development to a much lesser
extent than loss of p53 (Figure 4).111,112 The observation
that loss of PUMA (or combined loss of PUMA and NOXA or
PUMA and p21) can accelerate c-MYC-driven lymphoma
development112,113 does, however, show that p53-mediated
apoptosis (via PUMA and NOXA) can exert significant tumour
suppressive function. The relative importance of the induction
of apoptosis to overall TP53-mediated tumour suppression is
likely to vary depending on the type of cell undergoing
neoplastic transformation and the nature of the oncogenic
lesions that drive tumorigenesis.
Important insight into themechanisms that are critical for TP53-

mediated tumour suppression also came from experiments using
an elegant genetically engineered mouse model in which p53
activity can be turned on or off at will.114 These studies used the γ-
radiation-induced thymic T-cell lymphomamodel and showed that
the presence of p53 during the acute response to DNA damage
(characterised by extensive apoptosis of many haematopoietic
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cell types) was not needed for tumour suppression. Instead, p53
functionwas requiredduring the later recoveryphase.Accordingly,
p53-mediated tumour suppression was not activated through the
DNA damage sensing process but instead through p19/ARF114

that is activated in response to the expression of oncogenes (e.g.,
deregulated c-MYC expression). P19/ARF inhibits MDM2, the
major negative regulator of p53. This indicates that in this model,
thymic T-cell lymphomas emerge from the stem/progenitor cells
that have sustained potentially oncogenic DNA lesions and are
mobilised to replenish the haematopoietic system that was
depleted by γ-radiation. The very rapid proliferation of progenitor
cells bearing oncogenic lesions, which is likely to also be the basis
of the development of many other cancers, may facilitate the
acquisition of mutations in oncogenes or suppressor genes that
further drive neoplastic transformation. Some initially paradoxical
findings are consistent with this. In the aforementioned γ-radiation-
induced thymic T-cell lymphoma development mouse model, loss
of pro-apoptotic PUMA or overexpression of pro-survival BCL-2
completely prevented tumour development (Figure 4).115,116 The
explanation for this is that loss of pro-apoptotic PUMA or pro-
survival BCL-2 overexpression prevented the γ-radiation-induced
death of diverse leukocyte populations and this obviated the need
for mobilisation and excess proliferation of haematopoietic stem/
progenitor cells in the bone marrow that are thought to be the

lymphoma/leukaemia-initiating cancer stem cells in this model.117

This concept may extend to many additional cancers, including
epithelial ones, as overexpression of pro-survival BCL-2 para-
doxically delays liver cancer development,118 whereas, conver-
sely, loss of pro-survival MCL-1 promotes its development.119

Impact of Mutant p53 on WT p53-Induced Apoptosis and
on WT p53-Mediated Tumour Suppression

The p53 is unusual among tumour suppressors. In tumours
that are driven by mutations in the tumour suppressors PTEN
or RB, the expression of these proteins is usually lost
completely because of the nature of the mutations selected
for during tumorigenesis (reviewed in Knudsen and
Knudsen120 and Yin and Shen121). In contrast, many tumours
that are driven by mutations in TP53 express high levels of the
mutant p53 protein and show a loss of the other allele of TP53
(reviewed in Vousden and Lane9 and Freed-Pastor and
Prives10). In fact, the high-level mutant p53 protein expression
can be used as a diagnostic marker for cancers driven by
mutations in the TP53 gene (reviewed in Liu and Gelmann122).
The highly expressed mutant p53 protein can promote
tumorigenesis in three ways: (1) loss of the WT p53 activity,
(2) DNEs over the WT p53 protein early in transformation

1) defective p53-induced apoptosis with no oncogenic stimulus

3) defective p53-induced apoptosis obviating the need for stem/progenitor cell mobilisation

2) defective p53-induced apoptosis with oncogenic stimulus

no spontaneous
tumour development

accelerated
tumour development

delayed
tumour development

Puma-/-Noxa-/-

Eи-Myc;Puma-/-Noxa-/-

γ-irradiation-induced
tumour development

Puma-/- thymus

wild-type thymus

non-transformed cell
transformed cell

γ-irradiation

Figure 4 Impact of p53-induced apoptosis on tumour development. Models showing the impact of loss of p53-induced apoptosis on tumour development in different cancer
models/settings

Mechanisms by which p53 induces cell death
BJ Aubrey et al

110

Cell Death and Differentiation



before loss of the WT TP53 allele, through the formation of
mixed tetramers containing both wild-type and mutant p53
proteins and (3) de novo GOFs that are mediated through
interactions of mutant p53 protein with other transcription
factors and tumour suppressors (e.g., p63, p73) (Figure 5)
(reviewed in Vousden and Lane9 and Freed-Pastor and
Prives10). As early in transformation, mutant p53 levels are
often variable and low,123 it appears likely that the GOF effects
may only come into play at a late stage of transformation. It is
obvious how loss of the WT p53 function contributes to the
tumour promoting action of mutant p53 but themechanisms by
which the DNE and GOF effects of mutant p53 drive tumour
development are not established. A detailed understanding of
the role of these processes in the development as well as the
sustained growth of tumours is anticipated to identify
targetable vulnerabilities for the development of novel cancer
therapies.

Conclusions

In conclusion, TP53 is arguably one of the most important (if
not themost important) genes in human cancer. It appears that
p53 is critical for tumour suppression not during the acute
response to cellular stress, such as DNA damage (e.g. caused
by γ-radiation and reliant on the CHK1/CHK2 kinases) that is
characterised by extensive apoptosis, but for the killing or
silencing of the cancer-initiating (often thought to be stem/
progenitor) cells that have acquired oncogenic lesions that
drive the neoplastic transformation. The p53 transcription
factor activates several effector processes, apoptotic cell
death being one of them. Contrary to long-held perceptions,
loss of p53-induced apoptosis (via PUMA and NOXA) even
when combined with additional loss of induction of G1/S
boundary cell cycle arrest and cell senescence (via p21) does
not lead to spontaneous tumour development, in striking
contrast to loss or mutation of p53. Thus, additional cellular
processes, either by themselves or in a manner overlapping
with the aforementioned mechanisms, must account for the
potent tumour suppressive action of p53. Identifying these
signalling pathways and how they are integrated will provide
exciting research opportunities for several years. A better
understanding of p53-mediated apoptosis and p53-mediated
tumour suppression more generally holds promise for various
potential clinical applications. These include improving the
efficacy of anticancer therapies that rely on p53 activation,

reducing the toxicities associated with chemotherapy and
radiotherapy and improving haematopoietic stem cell trans-
plant conditioning regimens and perhaps also in nonmalignant
settingswhere abnormal induction of cell death pathways (that
may in part be driven by p53) contributes to tissue damage,
such as myocardial infarction and cerebral ischaemia.
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