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Key Points

•Blockade of CD7 ex-
pression with a novel
method, combined with
a second-generation
CAR, results in highly
potent anti-CD7 CAR
T cells.

• This practical strategy
provides a new treat-
ment option for patients
with high-risk T-cell
malignancies, including
ETP-ALL.

Effective immunotherapies for T-cell malignancies are lacking.We devised a novel approach

based on chimeric antigen receptor (CAR)–redirected T lymphocytes. We selected CD7 as a

target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL),

including the most aggressive subtype, early T-cell precursor (ETP)–ALL. In 49 diagnostic

T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was .99%; CD7

expression remained high at relapse (n 5 14), and during chemotherapy (n 5 54). We

targeted CD7 with a second-generation CAR (anti-CD7–41BB-CD3z), but CAR expression in

T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To

downregulate CD7 and control fratricide, we applied a new method (protein expression

blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an

intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually

instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% 6 1.7%

were CD71 vs 98.1% 6 1.5% of mock-transduced T cells (n 5 5; P , .0001). PEBL expression

did not impair T-cell proliferation, interferon-g and tumor necrosis factor–a secretion, or

cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly

cytotoxic against CD71 leukemic cells in vitro and were consistently more potent than CD71

T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line– and

patient-derived T-ALL xenografts. The strategy described in this study fits well with

existing clinical-grade cell manufacturing processes and can be rapidly implemented for the

treatment of patients with high-risk T-cell malignancies.

Introduction

T lymphocytes can be induced to specifically recognize and kill tumor cells through the expression of
chimeric antigen receptors (CARs).1-5 Central to the effective application of this technology is the
identification of a suitable target for the CAR. This must be highly expressed by tumor cells and should
be absent in normal cells, or be expressed only by normal cells whose temporary absence is clinically
manageable.6 Thus, leukemias and lymphomas of B-cell origin can be targeted with CARs directed
against CD195,7 or CD22,8 which are normally expressed only by B-lymphoid cells.9,10 Infusion of
autologous T cells expressing anti-CD19 CARs in patients with B-cell refractory leukemia and lymphoma
resulted in major clinical responses.11-18 These exciting results have provided indisputable evidence of
the power of this technology and suggest the possibility of wider applications in oncology.

The development of CAR T-cell therapies for T-cell malignancies has lagged far behind that of their
B-cell counterparts. The need for effective therapies in this area is particularly urgent because of the
poor prognosis associated with some T-cell leukemia and lymphoma subtypes. For example, children
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and adolescents with early T-cell progenitor (ETP) acute lympho-
blastic leukemia (ALL) have the poorest response to initial therapy
among all patients with ALL.19-21 Intensive chemotherapy and/or
allogeneic hematopoietic stem cell transplant often do not prevent
treatment-refractory relapse; for these patients, and those with
other high-risk features, such as adult age, there is a dearth of
treatment options.19,22-25

A major obstacle to the development of effective CAR T cells for
T-cell malignancies is that the surface marker profile of malignant
T cells (which generally lack CD19 or CD22 expression) largely
overlaps that of activated T lymphocytes.19,26 CARs directed
against such targets are likely to lead to the self-elimination of the
CAR T cells.27,28 In this study, we sought to develop a practical
technology for CAR T-cell therapy of ETP-ALL and other T-cell
acute lymphoblastic leukemia (T-ALL) subtypes. First, we made a
CAR directed against CD7, a 40-kDa type I transmembrane
glycoprotein, which is a primary marker for T-cell malignancies,29-32

and is highly expressed in all cases of T-cell ALL, including ETP-
ALL.19 Second, we designed a way to rapidly and effectively
downregulate CD7 expression in T cells, which averts the fratricide
effect, does not involve gene editing, and can be immediately
translated into clinical application.

Materials and methods

Cells and culture conditions

The leukemia cell lines Jurkat, CCRF-CEM, Loucy, MOLT4, and
KG1a were from the American Type Culture Collection (Rockville,
MD). The B-lineage ALL cell line OP-1 was developed in our
laboratory.33 We transduced CCRF-CEM cells with a murine stem
cell virus (MSCV)–internal ribosome entry site–green fluorescent
protein (GFP) retroviral vector (Vector Development and Produc-
tion Shared Resource Laboratory, St. Jude Children’s Research
Hospital, Memphis, TN) containing the firefly luciferase gene. We
used the same vector to transduce CCRF-CEM and Jurkat cells
with the CD19 gene, which we cloned from the complementary
DNA of the RS4;11 B-cell line (American Type Culture Collection).
Cell lines were maintained in RPMI 1640 (Thermo Fisher Scientific,
Waltham, MA) supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin-streptomycin.

Peripheral blood samples were obtained from discarded
anonymized byproducts of platelet donations from healthy
adult donors at the National University Hospital Blood Bank,
Singapore. Bone marrow aspirates from patients with ALL were
obtained for diagnostic immunophenotyping and monitoring of
treatment response19,26; banked surplus material was used in
some experiments, with approval from the Institutional Review
Board of the National University of Singapore. Mononucleated
cells were separated by centrifugation on a Lymphoprep density
step (Axis-Shield, Oslo, Norway) and washed twice in RPMI
1640. T cells were enriched with Dynabeads Human T-Activator
CD3/CD28 (Thermo Fisher Scientific) and cultured in RPMI
1640, 10% FBS, 1% penicillin-streptomycin, and interleukin-2
(IL-2; 120 IU/mL; Proleukin, Novartis, Basel, Switzerland).

Gene cloning, retroviral transduction, and messenger

RNA electroporation

The single-chain variable fragment (scFv) of the anti-CD7 mono-
clonal antibody TH6934 was joined to the CD8a signal peptide,

CD8a hinge and transmembrane domain, and the intracellular
domains of 4-1BB and CD3z of an anti-CD19–41BB-CD3z
CAR previously developed in our laboratory.5 The same scFv
was also joined to the CD8a signal peptide and sequences
encoding endoplasmic reticulum (ER)/Golgi retention peptides
EQKLISEEDLKDEL, (GGGGS)4AEKDEL, or CD8a hinge and
transmembrane domain followed by LYKYKSRRSFIDEKKMP.
These were subcloned into the MSCV vector, with or without
GFP or mCherry.

Preparation of the retroviral supernatant and transduction was
performed as previously described.5,35 Briefly, pMSCV retroviral
vector–conditioned medium was added to RetroNectin-coated
(Takara, Otsu, Japan) polypropylene tubes. After centrifugation and
removal of the supernatant, T cells were added to the tubes and left
at 37°C for 12 hours. Fresh viral supernatant was added on 2 other
successive days. T lymphocytes were maintained in RPMI 1640
with FBS, antibiotics, and 200 IU/mL IL-2.

For transient CAR expression, anti-CD7 and anti-CD19 CAR
constructs were subcloned into EcoRI and XhoI sites of the pVAXI
vector (Thermo Fisher Scientific) and transcribed into messenger
RNA (mRNA) using T7 mScript (CellScript, Madison, WI).36 For
mRNA electroporation, cells were suspended in electroporation
buffer (Amaxa Cell Line Nucleofector Kit V, Lonza, Basel,
Switzerland) containing 200 mg of CAR mRNA, and electroporated
with an Amaxa Nucleofector 2b (Lonza) using program X-001.36,37

Cells electroporated without mRNA were used as control.

Detection of CAR, protein expression blocker, and

surface markers

CARs were detected with a biotin-conjugated goat anti-mouse
F(ab9)2 antibody (Jackson ImmunoResearch Laboratories, West
Grove, PA) followed by allophycocyanin (APC)-conjugated strepta-
vidin (Jackson ImmunoResearch Laboratories). Phycoerythrin (PE)-
or APC-conjugated anti-CD7 (M-T701), CD4 (RPA-T4), CD8
(RPA-T8), CD3 (SK7), and nonreactive isotype-matched antibodies
were from BD Biosciences (San Jose, CA). CD19 (LT19) was from
Miltenyi Biotech. Cell staining was analyzed using Accuri C6,
Fortessa, or LSRII flow cytometers (BD Biosciences) with Diva (BD
Biosciences) or FlowJo software (FlowJo, Ashland, OR).

Western blotting was performed as previously described.35 Briefly,
cell lysates were extracted using CelLytic M cell lysis reagent
(Sigma-Aldrich, Saint Louis, MO) before protein quantification with
Pierce BCA protein assay kit (Thermo Fisher Scientific). Cell lysates
were diluted with 43 Laemmli sample buffer (Bio-Rad, Hercules,
CA) and separated on 10% polyacrylamide gel by electrophoresis
under reducing or nonreducing conditions. Blotted membranes
were probed with mouse anti-human CD3z antibody (8D3; BD
Biosciences), goat anti-mouse immunoglobulin G horseradish
peroxidase–conjugated (R&D Systems, Minneapolis, MN), and
Clarity Western ECL substrate (Bio-Rad). Staining was visualized
using ChemiDoc Touch Imager (Bio-Rad).

Cell aggregation, cytotoxicity, cell proliferation, and

cytokine production

To measure cell-cell aggregation, Jurkat cells were cocultured with
CD71 or CD7– cells labeled with calcein red-orange AM (Thermo
Fisher Scientific) for 30 minutes; cell doublets were counted by flow
cytometry. In some experiments, target cells were preincubated for
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10 minutes before coculture with a soluble anti-CD7 scFv obtained
from the supernatant of Jurkat or 293T cells transduced with a
construct consisting of the scFv without transmembrane or
signaling sequences.

To test cytotoxicity, target cells were labeled with calcein
red-orange AM and placed into a 96-well, round bottom plate
(Corning Costar, Corning, NY). T cells were added at different
effector-to-target (E:T) ratios with target cells and cultured for 4
hours at 37°C and 5% carbon dioxide. Viable target cells were
counted by flow cytometry.38 To measure exocytosis of lytic
granules, anti-human CD107a-PE (H4A3; BD Biosciences) was
added to the cocultures. After 1 hour, monensin (BD GolgiStop)
was added, and cultures were continued for another 3 hours
before flow cytometric analysis.

To assess cell proliferation, T cells were cultured alone or in the
presence of MOLT-4 cells at a 1:1 E:T ratio in RPMI 1640 with FBS
and 120 IU/mL IL-2 at 37°C and 5% carbon dioxide. Target cells,
irradiated or treated with Streck cell preservative (Streck Laboratories,
Omaha, NE) to inhibit proliferation, were added to the cultures every 7
days. Viable GFP1 or mCherry1 T cells were enumerated by flow
cytometry. For interferon-g (IFN-g) and tumor necrosis factor–a
(TNF-a) production, target and effector cells at a 1:1 E:T ratio were
plated as above. After 1 hour, brefeldin A (BD GolgiPlug) was added
to the cultures, which continued for another 5 hours. Subsequently,
intracellular staining with anti–IFN-g–PE (clone 25723.11; BD
Biosciences) or anti–TNF-a–PE (6401.1111; BD Biosciences) was
done before flow cytometric analysis.

Xenograft models

CCRF-CEM cells transduced with luciferase were injected IV in
NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NOD/scid IL2RGnull) mice
(The Jackson Laboratory, Bar Harbor, ME) at 1 3 106 cells per
mouse. Three and/or 7 days later, mice received T cells with
downregulated CD7 and anti-CD7 CAR expression at 2 3 107

T cells per mouse. Other mice received T cells transduced with
GFP alone or RPMI 1640 with 10% FBS instead of T cells. All mice
received 20 000 IU of IL-2 intraperitoneally (IP) every 2 days. Tumor
load was determined using the Xenogen IVIS-200 System (Caliper
Life Sciences, Waltham, MA) after injecting aqueous D-luciferin
potassium salt (Perkin Elmer, Waltham, MA) IP (2 mg per mouse).
Luminescence was analyzed with the Living Image 3.0 software.
Mice were euthanized when luminescence reached 1 3 1010

photons per second or sooner if physical signs warranting euthanasia
appeared.

For the patient-derived xenograft (PDX) model, primary ETP-ALL
cells were injected IV in NOD/scid IL2RGnull mice and propagated
for 7 to 8 subsequent generations. ETP-ALL cells were then
reinjected in NOD/scid IL2RGnull mice, which were either treated
with protein expression blocker (PEBL)-CAR T cells or left
untreated. Peripheral blood and tissues were monitored for the
presence of ALL cells by flow cytometry.19,26 After treatment with
red blood cell lysing buffer (Sigma-Aldrich), cells were stained with
anti-mouse CD45-PE-cyanine 7 (30-F11, BioLegend), as well as
anti-human CD45-APC-H7 (2D1), CD7-PE (M-T701), CD3 APC
(SK7), CD34-peridinin chlorophyll protein (8G12) (all from BD
Biosciences), and CD33-Brilliant Violet 421 (WM53, BioLegend).
Cells were analyzed with a Fortessa flow cytometer using Diva and
FlowJo software.

Results

Validation of CD7 as a target for CAR T-cell therapy

in leukemia

In leukemic cells from diagnostic bone marrow samples obtained
from 49 patients with T-ALL (including 14 patients with ETP-ALL), the
median percentage of CD7 expression was .99% (range, 79%
to.99%). In only 3 cases (6.1%), CD7 was,99%: 98% in 2 cases
and 79% in 1 case (Figure 1A). High CD7 expression was also
observed in samples collected from 14 patients with relapsed T-ALL
(Figure 1A). Mean fluorescence intensity (MFI) of CD7 in leukemic
cells at diagnosis or relapse consistently exceeded that measured in
residual normal T cells in the same samples. The median MFI was 20
617 (range, 4105-66 674) in T-ALL cells vs 3032 (range, 1301-
9582) in normal T cells (n 5 19; P , .0001) (Figure 1B).

To determine whether chemotherapy affected CD7 expression, we
examined bone marrow samples collected during therapy that
contained minimal residual disease (MRD). In all 54 samples (from
21 patients), .99% of residual leukemic cells were CD71

(Figure 1A). In 18 patients, we monitored CD7 levels during the
course of the disease. As shown in Fig. 1C-D, CD7 remained high
during therapy. These results validate CD7 as a target for CAR
T-cell therapy in T-ALL.

Design and expression of an anti-CD7 CAR

To target CD7, we designed an anti-CD7 CAR composed of the
scFv of the anti-CD7 antibody TH69 joined to the signaling domains
of 4-1BB (CD137) and CD3z via the hinge and transmembrane
domain of CD8a (Figure 2A). Retroviral transduction of this
construct in Jurkat cells resulted in high expression of anti-CD7
CAR (Figure 2B), which appeared as monomer, dimer, and
oligomer by western blotting (Figure 2C).

To confirm that the TH69 scFv could bind CD7, we produced it in
soluble form and tested it on CD71 MOLT-4 and CD7– OP-1 cells;
MOLT-4 cells were labeled, whereas OP-1 cells were not
(supplemental Figure 1A). In addition, staining with an anti-CD7
monoclonal antibody was significantly reduced when MOLT-4 cells
were preincubated with the anti-CD7 scFv supernatant; CD7 MFI 6
standard deviation (SD) went from 31 730 6 1144 to 5987 6 241
(n5 3). Jurkat cells expressing an anti-CD7 CAR formed aggregates
with CD71 MOLT-4 cells, whereas those transduced with GFP
only or an anti-CD19 CAR did not; conversely, the anti-CD19 CAR
induced cell aggregation with CD191 OP-1 cells, whereas the
anti-CD7 CAR did not (supplemental Figure 1B). Preincubation of
MOLT-4 or CCRF-CEM with the soluble anti-CD7 scFv prevented
the formation of aggregates (supplemental Figure 1C).

To determine whether the anti-CD7 CAR was functional, we
measured levels of the activation markers CD25 and CD69 in Jurkat
cells after 24-hour coculture with MOLT4. There was a clear
upregulation of both activation markers in cells expressing the
anti-CD7 CAR (Figure 2D-E). In sum, the anti-CD7–41BB-CD3z
CAR can bind to its cognate antigen and transduces activation
signals on ligation.

Expression of anti-CD7 CAR in T cells

causes fratricide

To determine the effects of anti-CD7–41BB-CD3z CAR in
peripheral blood T lymphocytes, we used 2 different methods to
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express it: retroviral transduction (supplemental Figure 2) and
mRNA electroporation. However, it markedly reduced T-cell viability.
Mean 6 SD T-cell recovery 24 hours after mRNA electroporation
was 39.8% 6 13.0% (n 5 7) of the recovery after electroporation
without mRNA (Figure 3A); if the CAR was introduced by viral
transduction, cell recovery was 25.1% 6 16.2% (n 5 10) that of
mock-transduced T cells (Figure 3B); overall, CAR expression
reduced cell recovery to 31.1% 6 16.3% (n 5 17) after 24 hours.
Prolonging cell culture further increased the difference in numbers
between CAR- and mock-transduced cells overall (Figure 3C). In
the absence of target cells, CAR expression induced exocytosis of
lytic granules revealed by CD107a expression (Figure 3D),
suggesting that impaired cell recovery was caused by fratricide.

Downregulation of CD7 prevents T-cell fratricide and

does not affect T-cell function

If the poor T-cell recovery was caused by fratricide mediated by
CAR binding to CD7 expressed by the T cells, then it should
improve by downregulating CD7 before CAR expression. To test
this prediction, we applied a rapid and practical method recently
developed in our laboratory (T.K. and D.C., manuscript submitted
September 2017) based on the expression of the anti-CD7 scFv
linked to amino acid sequences containing the ER retention
domains KDEL or KKMP (anti-CD7 PEBL) (Figure 3E). These
fasten the constructs to the ER/Golgi, preventing secretion or

membrane expression of the targeted protein.39,40 We tested 3
anti-CD7 PEBL constructs and selected PEBL-1 for the next
experiments (Figure 3E-F). CD7 surface expression was essen-
tially abrogated in all T cells transduced with this construct,
whereas CD7 mRNA expression was retained (Figure 3F;
supplemental Figure 3). In 5 experiments, 98.1% 6 1.5%
mock-transduced T cells were CD71 vs 2.0% 6 1.7% for
T cells transduced with the anti-CD7 PEBL (P , .0001)
(Figure 3G). When the anti-CD7 CAR was expressed by
electroporation in cells with downregulated CD7, it was clearly
detectable by flow cytometry (Figure 3H). By expressing the CAR in
cells with CD7 knockdown, T-cell viability markedly improved
(Figure 3I). In 6 paired experiments, viable cell recovery after CAR
mRNA electroporation was consistently superior in T cells that had
been previously transduced with the anti-CD7 PEBL (P 5 .008).

After anti-CD7 PEBL transduction, the proportion of CD4 and CD8
cells was similar to that of mock-transduced cells (Figure A).
Absence of CD7 expression on the surface membrane did not
affect T-cell survival in culture (Figure 4B). To further probe the
functional capacity of T cells transduced with anti-CD7 PEBL, we
engineered them to express the anti-CD19–CAR (Figure 4C) and
tested their capacity to exert cytotoxicity, release cytotoxic granules,
and secrete IFN-g in the presence of CD191 ALL cells. As shown in
Figure 4D-F, PEBL transduction and lack of surface CD7 did not
alter CAR-mediated cell function.
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Anti-CD7–41BB-CD3z CAR induces powerful

cytotoxicity against CD71 leukemic cells

We prepared CD7-negative T cells using anti-CD7 PEBL and
electroporated them with the anti-CD7–41BB-CD3z CAR mRNA.
We then assessed their anti-leukemic capacity in cocultures with the
CD71 leukemia cell lines MOLT-4, CCRF-CEM, Jurkat, Loucy, or
KG1a. As shown in Figure 5A, cytotoxicity was dramatically increased
by CAR expression. PEBL-CAR T cells were also highly effective
against primary T-ALL cells obtained from patients (Figure 5B).

We compared the cytotoxicity of PEBL-CAR T cells to that of the
residual T cells recovered after CAR electroporation in cells not

transduced with PEBL. In 45 experiments with cells from 3 donors,
the cytotoxicity of the PEBL-CAR cells consistently surpassed that
of non-PEBL T cells (Figure 5C). The superior activity of the former
cells was also observed when we compared the expression of
CD107a (Figure 5D), IFN-g, and TNF-a (supplemental Figure 4).
The expression of PEBL and CAR by sequential retroviral
transduction also produced powerful cytotoxicity against patient-
derived T-ALL cells (Figure 5E) and cell lines (supplemental
Figure 5). Proliferation of anti-CD7 PEBL-CAR T cells in the
presence of CD71 target cells was much higher than that of CAR
T cells without CD7 downregulation by PEBL (P, .01) (Figure 5F).
Finally, we compared the cytotoxicity exerted by anti-CD7
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PEBL-CAR T cells to that of T cells expressing an anti-CD19–
41BB-CD3z CAR5 against the same target cells. To this end, we
transduced CCRF-CEM and Jurkat cells with CD19 and expressed
either CAR in cells previously transduced with anti-CD7 PEBL
(supplemental Figure 6A-B). Anti-CD7 and anti-CD19 CAR T cells
had similar short- and long-term cytotoxicity (supplemental
Figure 6C-D); long-term proliferative capacity in the presence of
CD191 CD71 target cells was slightly lower for the anti-CD7 CAR

T cells (supplemental Figure 6E), which might be explained by the
lower expression of CD7 vs CD19 on target cells (supplemental
Figure 6B).

Antileukemic activity of anti-CD7 PEBL-CAR T cells in

murine models of T-ALL

To further gauge the anti-tumor capacity of anti-CD7 PEBL-CAR
T cells, we engrafted NOD/scid IL2RGnull mice with CCRF-CEM
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anti-CD7 PEBL (n 5 6). The number of viable cells was measured by flow cytometry. **P , .01; ***P , .001.
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cells. T cells retrovirally transduced with anti-CD7 PEBL and anti-
CD7 CAR produced a considerable antileukemic effect, with a
marked reduction in leukemia cell burden and a decrease in
leukemia cell growth (Figure 6A-C; supplemental Figure 7). Three
weeks after leukemic cell injection, the median percentage of
CCRF-CEM cells in peripheral blood by flow cytometry was 68%
for control mice (n5 5) and 67% for those who receive GFP-alone
T cells (n5 5), but they were undetectable in mice treated with anti-
CD7 PEBL-CAR T cells (supplemental Figure 8A). Relapse

occurring after anti-CD7 PEBL-CAR T-cell treatment was not due
to CCRF-CEM cell subsets lacking CD7; leukemic cells continued
to express high levels of CD7, and sensitivity to anti-CD7 CAR
cytotoxicity remained high regardless of whether CCRF-CEM cells
were derived from livers or spleens of relapsing mice or directly from
the original cell culture (supplemental Figure 8B).

To test PEBL-CAR T cells against primary leukemic cells in vivo, we
used a PDX model of ETP-ALL, which allows propagation of
leukemic cells derived from a patient with ETP-ALL at diagnosis in
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NOD/scid IL2RGnull mice. Leukemic cells expanding in mice
retained an immunophenotype matching that of the patient’s
diagnostic sample, with expression of CD7, CD34, and CD33
and absence of surface CD3, CD1a, CD8, and CD5 (supplemental
Figure 9). The cells were unable to survive and expand ex vivo and

needed to be injected in mice for propagation. All mice had ETP-
ALL in peripheral blood at the time of CAR T-cell treatment
(Figure 7A). As shown in Figure 7B, ETP-ALL cells represented the
majority of leukocytes in the bone marrow, spleens, livers, and lungs.
After the administration of PEBL CAR T cells (2 3 107 in 1 mouse,
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2 3 106 in the remaining 4 mice), leukemic cell numbers in
peripheral blood decrease dramatically, whereas PEBL-CAR T cells
became detectable in all mice (Figure 7A). In blood smears, smudge
cells were prominent, suggesting leukemia cell lysis (Figure 7C).
Leukemia progressed in all 5 control mice, which were euthanized
when ETP-ALL constituted$80% of peripheral blood CD451 cells.
The mouse treated with 2 3 107 PEBL-CAR T cells died of
apparent graft-versus-host disease 23 days after PEBL-CAR T-cell
infusion. No ETP-ALL could be detected in blood, bone marrow,
livers, spleens, lungs and brains, whereas PEBL-CAR T cells were
detectable in all tissues (Figure 7D-E). The 4 mice treated with 2 3
106 PEBL-CAR T cells were alive 25 (n 5 1) to 39 (n 5 3) days
postinfusion with no signs of graft-versus-host disease.

Discussion

Durable remissions in patients with B-cell leukemia and lymphoma
can be achieved with CAR T cells, but effective options are lacking
for patients with T-cell malignancies. To bridge this gap, we sought
to develop a CAR T-cell approach that could be rapidly translated
into clinical intervention. We targeted CD7, a widely expressed

surface T-cell marker that is highly stable even in T-ALL cells
exposed to chemotherapy. We designed a second-generation anti-
CD7 CAR and found that suppression of CD7 surface expression in
T cells was essential; without it, the CAR caused severe T-cell loss,
and the full functional potential of CAR T cells could not be
achieved. Transduction of anti-CD7 PEBL resulted in virtually
instantaneous abrogation of CD7 expression. Expression of anti-
CD7 CAR in such cells produced powerful anti-leukemic activity in
vitro, as well as in xenograft and PDX models of T-ALL. Thus, by
using this strategy, we could rapidly generate large numbers of CAR
T cells exerting robust and specific cytotoxicity against T-cell
malignancies, including one of the most aggressive forms, ETP-ALL.

The PEBL technology that we used to downregulate endogenous
CD7 is based on the use of a scFv directed against the targeted
antigen coupled with an ER/Golgi-retention motif. In this way, any
newly synthesized CD7 remains anchored in the ER and/or Golgi,
and its surface expression is prevented.We found this method to be
remarkably effective in downregulating CD7 and suppressing
CAR-mediated fratricide. Importantly, intracellular retention of
CD7 did not alter T-cell function and allowed normal expansion,
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cytokine secretion, and cytotoxicity. This is consistent with results of
studies with CD7-deficient mice, which showed normal lymphocyte
populations in lymphoid tissues.41,42 An alternative approach to
downregulate CD7 would be to apply gene editing methods, such
as meganucleases, TALEN, or CRISPR/Cas9.43 To this end, a
recent study reported an anti-CD7 CAR that was expressed in
T cells with CD7 gene deletion by CRISPR/Cas9.44 Besides
differences in costimulatory molecules (our CAR has 4-1BB instead
of CD28), which may have clinical impact,45,46 the high specificity
and practical nature of the PEBL strategy make it particularly
attractive for current clinical use. This method requires a simple

transduction with the same viral vector carrying the CAR, either as 2
sequential transductions or a single transduction with a bicistronic
vector carrying both constructs. It fits well with established, clinical-
grade cell manufacturing processes and does not raise possible
regulatory concerns associated with off-target activity.47,48

CD7 is a hallmark molecule for early T-cell differentiation; it is nearly
universally expressed in T-ALL and, among normal cells, its
expression is limited to T cells.19,29-32 In a clinical study with an
anti-CD7–ricin-A–chain immunotoxin in patients with T-cell lym-
phoma, the dose-limiting toxicity was vascular leak syndrome, a
side-effect seen with other toxin conjugates; no binding of anti-CD7
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was found in the endothelial cells of various tissues.49 Nevertheless,
transient expression of the CAR by mRNA electroporation might be
considered in early studies assessing the potential for acute
toxicities of anti-CD7 PEBL-CAR T cells. A concern of anti-CD7
CAR therapy is the depletion of normal T cells by the infused cells,
leading to immunodeficiency. We envisage the initial application of
our technology as a means to reduce MRD in patients with high-risk
T-ALL, therefore maximizing the success of allogeneic hematopoi-
etic stem cell transplantation.50 In such instances, anti-CD7 CAR
T cells would be eliminated by the transplant conditioning and the
T-cell compartment reconstituted from donor stem cells. Outside
the transplant setting, “suicide genes” could be activated once
leukemia eradication has been achieved.51 Ultimately, this may not
be an issue, because the infused anti-CD7 T cells (which retain their
endogenous CD3/TCR complex) might reconstitute a sufficiently
wide T-cell repertoire. To this end, it should be noted that subsets of
CD4 memory and CD8 effector T cells in human blood lymphocytes
that do not express CD7 have been described52,53 and that T-ALL
cells express CD7 at higher levels than normal T cells. Thus,
CD7-dim subsets might help to repopulate the T-cell repertoire
even after CD7-directed therapy.

The standard treatment of T-ALL mainly relies on intensive
chemotherapy plus hematopoietic stem cell transplant for patients
with high-risk disease, but results are far from satisfactory.54,55 The
findings presented in this study suggest the infusion of anti-CD7
PEBL-CAR T cells could significantly enhance, or perhaps replace,
existing chemotherapy- and transplant-based strategies. Conceiv-
ably, CAR expression together with downregulation of the targeted
antigen in T cells should also be applicable to other T-cell markers,

such as CD3, CD2, and CD5, whose expression is prevalent in
T-cell lymphoproliferative neoplasms. Because a fraction of high-risk
acute myeloid leukemia cases express CD7,19,30,56 testing the
potential of anti-CD7 CAR T cells for this leukemia subtype is also
warranted.
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