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Abstract: The genomes of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Key words:
Huntiella decipiens, and Ophiostoma ips are presented in this genome announcement. Three of these genomes Gray Leaf Spot
are from plant pathogens and otherwise economically important fungal species. Fusarium pininemorale maize
and H. decipiens are not known to cause significant disease but are closely related to species of economic insect vectored fungi
importance. The genome sizes range from 25.99 Mb in the case of O. ips to 4.82 Mb for H. lignivorus. These Fusarium fujikuroi species
genomes include the first reports of a genome from the genus Hawksworthiomyces. The availability of these complex
genome data will allow the resolution of longstanding questions regarding the taxonomy of these species. In Ophiostomatales
addition these genome sequences through comparative studies with closely related organisms will increase wood decay
our understanding of how these species or close relatives cause disease. Ceratocystidaceae
blue stain
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IMA Genome-F 8A causal agents of GLS have been identified, with Cercospora
zeae-maydis the predominant pathogen in the USA (Wang et
Draft genome of an African isolate al. 1998), and to date, only Cercospora zeina reported from

of the maize fungal pathogen Africa (Crous et al. 2006, Meisel et al. 2009). These species
’ belong to the class Dothidiomycete, that contains several

Cercospora zeina important plant pathogens (Ohm et al. 2012). However, little

is known about pathogenicity mechanisms of C. zeina.

Maize (Zea mays) is one of the most important staple food

crops, especially in Sub-Saharan Africa. In the last three

decades, Gray Leaf Spot (GLS) has become a widespread SEQUENCED STRAIN

foliar disease of maize globally (Latterell & Rossi 1983, Ward

et al. 1999, Meisel et al. 2009, Berger et al. 2014). Since Zambia: Central region (Mkushi): isol. ex Zea mays (maize),

GLS leads to substantial yield losses, it poses a threat to March 2007, F.J. Kloppers & B. Meisel (CMW25467, MUCL

food security, especially in Africa (Meisel et al. 2009). Two 51677, CBS142763, PREM 61898 — dried culture).
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NUCLEOTIDE SEQUENCE ACCESSION

a flask containing the growth media. Media used included

'-_'IJ NUMBER Complete media (1 % (w/v) glucose, 0.1 % (w/v) yeast extract,
(@) 0.1 % (w/v) casein hydrolysate, 0.1 % (w/v) Ca(NO,),.4H,0,
- The draft genome has been deposited at DDBJ/ENA/ 1 % (v/v) mineral solution [2 % (w/v) KH,PO4, 2.5 % (w/v)
o GenBank and is available under the accession number MgSO,.7H,0, 1.5 % (w/v) NaCl]); 0.2x PDA (0.3 % (w/v)
< MVDWO00000000; Biosample SAMNO06067857; Bioproject Potato Dextrose Agar (PDA), 1.2 % (w/v) Bacterial Agar),
PRJNA355276. This paper describes the first version of 0.2x PDA supplemented with 10mM NH,H,PO,; Cornmeal
the genome. RNA sequencing data have been deposited agar (1.7 % (w/v)); PDA pH8 (3.9 % PDA, pH adjusted with
in the NCBI Gene Expression Omnibus (Accession number 0.29 % (w/v) Na,CO, and 0.76 % NaHCO,); PDB pH3 (2.4
GSE90705). % (w/v) PDB, pH adjusted with 1.67 % (w/v) citric acid and
0.58 % (w/v) Na,HPO,); and Yeast Extract Peptone Dextrose
(YPD, 0.05 % (w/v) peptone, 0.05 % (w/v) yeast extract, 0.5
MATERIALS AND METHODS % (W/v) glucose, 1.8 % (w/v) NaCl). With the exception of V8
agar, the cultures were kept in constant light at 25 °C for 7 d.
Conidia of Cercospora zeina were grown on V8 agar (20 % RNA was isolated using the Qiagen QlAzol Lysis Reagent
(v/v) Campbells V8 juice, 2 % (w/v) Bacterial Agar, 0.349 and on-column DNase treatment and RNA purification was
% (w/v) CaCQ,) at ambient room temperature in constant performed with the Qiagen RNeasy Mini kit, all according to
darkness to promote conidiation. Conidia were collected and the manufacturer’s specifications. lllumina HiSeq2000 100
1x10° conidia/ml cultured in Potato Dextrose Broth (PDB) bp read-length sequencing was performed on three DNA
at 25 °C with gentle shaking. Prior to cultures reaching the libraries (paired-end (PE), 3 kb and 8 kb mate-pair). Sequence
melanized stage DNA was isolated as described previously reads were quality filtered and trimmed using Trimmomatic v.
(Ma et al. 2010). 0.30 (Bolger et al. 2014) using the default parameters. Due
For RNA isolations C. zeina was cultured under seven to nucleotide content inconsistencies in the PE and 3 kb
different in vitro growth conditions. For solid media, conidia libraries the 8 kb mate-pair library reads were assembled as
were transferred from V8 agar onto sterile cellophane sheets single-end reads using Velvet (Zerbino & Birney 2008), with
overlain onto the particular media by subculturing. For liquid optimal k-mer size of 57 nt determined with VelvetOptimizer.
media, conidia were washed from the V8 agar using the Contigs were scaffolded using SSPACE v. 2.0 (Boetzer et al.
relevant media and a sterile L-spreader, and transferred to 2011) and scaffold gaps filled with Gapfiller v. 1.11 (Boetzer &
Table 1. Species and GenBank accessions for the Translation Elongation Factor 1-alpha (TEF 1-alpha) and Internal Transcribed Spacer (ITS)
sequences used for Maximum Parsimony inference.
GenBank accession
Species TEF 1-alpha ITS
Cercospora alchemillicola strain CPC 5259 JX143279.1 JX143525.1
Cercospora althaeina strain CBS 126.26 JX143282.1 JX143528.1
Cercospora apii strain CBS 116504 AY840487.1 AY840520.1
Cercospora beticola strain CBS 116502 AY840496.1 AY840529.1
Cercospora chinensis strain CBS 132612 JX143334.1 JX143578.1
Cercospora mercurialis strain CBS 549.71 JX143386.1 JX143627.1
Cercospora olivascens strain CBS 253.67 JX143391.1 JX143632.1
Cercospora ricinella strain CBS 132605 JX143405.1 JX143646.1
Cercospora sp. F JZG-2013 strain CPC 12062 DQ185083.1 DQ185071.1
Cercospora vignigena strain CBS 132611 JX143493.1 JX143734.1
Cercospora violae strain CBS 251.67 JX143496.1 JX143737.1
Cercospora zeae-maydis strain CBS 117755 DQ185084.1 DQ185072.1
Cercospora zeae-maydis strain CBS 117756 DQ185085.1 DQ185073.1
Cercospora zeae-maydis strain CBS 117757 DQ185086.1 DQ185074.1
Cercospora zeae-maydis strain CBS 117758 DQ185087.1 DQ185075.1
Cercospora zeae-maydis strain CBS 117759 DQ185088.1 DQ185076.1
Cercospora zeina strain CMW 25445 EU569217.1 EU569225.1
Cercospora zeina strain CMW 25459 EU569215.1 EU569226.1
Cercospora zeina strain CMW 25462 EU569210.1 EU569224.1
Cercospora zeina strain CMW 25467 EU569218.1 EU569227 .1
Cercospora zeina strain CMW 25467 genome MVDWO00000000
Mycosphaerella thailandica strain CBS 116367 AY840476.1 KF901776.1
Mycosphaerella thailandica strain CPC 10548 AY840477.2 AY752157.1
386 IMA FUNGUS
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Fig.1. Cladogram to classify the sequenced Cercospora zeina genome with reference to related Cercospora species. Maximum parsimony
analysis based on translation elongation factor 1-alpha and ITS sequences was performed, with percentage bootstrap (1000) values shown. The
cladogram was rooted using Mycosphaerella thailandica.
Pirovano 2012) using all the sequenced libraries and allowing method in MEGA7 (Kumar et al. 2016), with confidence at
a 25 % error in library insert sizes. Completeness of the nodes gained using bootstrap analysis (Felsenstein 1985).
assembly was evaluated using BUSCO (Simao et al. 2015). Branches corresponding to partitions reproduced in less than
Transcriptome sequencing was performed at BGl (HK) 50 % bootstrap replicates were collapsed. The percentage of
using HiSeq2000 100bp PE sequencing. RNAseq reads were replicate trees in which the associated taxa clustered together
mapped to the C. zeina reference genome using TopHat2 in the bootstrap test (1000 replicates) are shown next to the
(Kim et al. 2013). Manual gene finding of 150 C. zeina genes branches (Felsenstein 1985). The MP tree was obtained using
using Genomeview (Abeel et al. 2012) was guided by BLAST the Tree-Bisection-Regrafting algorithm (Nei & Kumar 2000)
(Altschul et al. 1990) alignments of C. zeae-maydis (JGI) with search level 1 in which the initial trees were obtained
genes to the C. zeina reference genome together with C. by the random addition of sequences (10 replicates). All
zeina transcriptome mapping information for gene and splice positions containing gaps and missing data were eliminated.
site identification. Automated gene prediction was performed Two strains of Mycosphaerella thailandica (CBS 116367 and
using the MAKER (Cantarel et al. 2008) pipeline incorporating CPC 10548) were used to root the cladogram (Fig. 1).
the SNAP (Korf 2004) and AUGUSTUS (Stanke et al. 2006)
ab initio gene predictors. The SNAP training data were the
150 manually curated genes, while the AUGUSTUS training RESULTS AND DISCUSSION
data comprised of high-confidence predicted genes from
MAKER using only SNAP predictions (AED score <0.2). Assembly of the sequenced reads yielded a draft genome
To verify the species identity of the sequenced strain, the 37 Mb in size in 10 027 scaffolds >200 bp with N50 of 161
Translation Elongation Factor 1-alpha and ITS sequences for kb. The average scaffold size was 4 059 bp with the largest
selected Cercospora species (Table 1) were concatenated and contig of 938 kb. BUSCO evaluation using the Ascomycota
aligned with ClustalW (Thompson et al. 1994). The relevant dataset yielded a completeness report of C: 95.4 %: (95.4
sequences were extracted from the genome assembly using % Complete and single-copy BUSCOs, D: 0.0 % duplicated
blastn from the C. zeina strain CMW 25467 data, and are BUSCOs, 2.1 % fragmented BUSCOs, M: 2.5 % missing
listed under the genome assembly accession. The analysis BUSCOs, total 1315 genes evaluated).
workflow was similar to Meisel et al. (2009). The species Following manual gene curation, 10 193 protein-coding
relationships were inferred using the Maximum Parsimony gene-models were predicted. The genome size and number of
VOLUME 8 - NO. 2 387
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genes are similar to other genomes in the order Capnodiales
(Stanke et al. 2006).

Authors: N. Olivier, Y.-C. Lin, Y. Van de Peer, F. Joubert,
B.G. Crampton, V. Swart, B. Bluhm, and D.K. Berger
*Contact: Dave.Berger@fabi.up.ac.za

IMA Genome-F 8B

Draft genome sequence of
Fusarium pininemorale

INTRODUCTION

The Fusarium fujikuroi species complex (FFSC) represents
an assemblage of diverse fungal species. The so-called
“American” clade of the FFSC contains known emerging
pathogens of many cultivated crops and trees including pine
(F. circinatum; Hepting & Roth 1946), maize (F. temperatum,
Desjardins et al. 2000), and mango (F. parvisorum; Liew
et al. 2016). Fusarium pininemorale, a recently recognized
member of this clade, was isolated from diseased pine trees
in plantations of Colombia (Herron et al. 2015). Even though
this species shares numerous morphological and biological
traits with other FFSC pine pathogens, F. pininemorale itself
was not found to cause significant disease symptoms on pine
as is the case for F. circinatum (Herron et al. 2015).

Overall, little is known regarding the biology and genetics
of this species, even less so for the genetic and determinants
of host range in the broader “American” clade. The exact ge-
netic basis and genomic processes underlying pathogenicity
also remains elusive. The aim of this study was to determine
the full genome sequence for F. pininemorale, which will al-
low further studies to investigate genomic aspects of not only
pathogenicity but also of its biology and evolution.

SEQUENCED STRAIN

Colombia: Angela Maria (Santa Rosa), Risaralda
75°360.2100° W 4°490.1800" N, Isolated from Pinus
tecunumanii, 2012, (CBS 137240 = CMW 25243; FCC 5383
— cultures; Herron et al. 2015).

NUCLEOTIDE ACCESSION NUMBER

The Fusarium pininemorale whole genomic sequence data
has been deposited at DDBJ/EMBL/GenBank under the
accession NFZR00000000. The version described in this
paper is version NFZR00000000.

METHODS

The Fusarium pininemorale isolate was grown on %2 PDA for
7 d and DNAwas extracted as described previously (Méller et

al. 1992). A pair-end library (350 bp average insert size) and
a mate-pair library (5 kb average insert size) were prepared
and sequenced using lllumina HiSeq platforms at Macrogen
(Seoul, Korea). All sequences had an average read length
of 58 bp. Poor quality reads, terminal nucleotides, as well
as duplicate reads were removed using CLC Genomics
Workbench v. 8.0.1 (CLCBio, Aarhus). De novo genome
assembly was performed using ABySS v. 1.3.7 (Simpson et
al. 2009), further scaffolding was performed using SSPACE
v.2.0 (Boetzeretal. 2011) and gapped genomic regions were
closed using GapFiller v. 1.11 (Boetzer & Pirovano 2012).
Genome completeness was assessed using the software
BUSCO (Benchmarking Universal Single-Copy Orthologs)
v2 with the Sordariomycete dataset (Siméo et al. 2015).
Chromosome-sized scaffolds were compared using LASTZ
alignments (Harris 2007) against genomes of F. circinatum
(Wingdfield et al. 2012) and F. temperatum (Wingdfield et
al. 2015a). Lastly, gene prediction was performed using
AUGUSTUS 2.5.5 (Hoff & Stanke 2013) based on gene
models for F. graminearum (http://bioinf.uni-greifswald.de/
augustus), together with mRNA sequence data from the F.
circinatum genome (Windfield et al. 2012).

RESULTS AND DISCUSSION

The draft nuclear genome of Fusarium pininemorale had an
estimated genome size of 47 778 776 bp. The N50 value was
1 358 616 bp and the GC content was 46.0 %. The assembly
consisted of 200 contigs which ranged between 200 bp to
6 144 005 bp in size. The average scaffold size was determined
to be 310 252 bp in length of which 13 contigs were larger
than 1 000 000 bp. The assembled genome was predicted
to encode for 14 640 open reading frames (ORFs) with an
average gene length of 1472 bp, and an overall gene density
of 306 ORFs/MB was observed. BUSCO suggested that the
assembly was 99 % complete (i.e., complete BUSCOs =99 %;
complete and single-copy BUSCOs = 98.2 %; complete and
duplicated BUSCOs = 0.8 %; fragmented BUSCOs = 0.6 %;
missing BUSCOs = 0.4 %; number of BUSCOs searched =
3725). The taxonomic identity of the genome was confirmed
using a phylogenetic analysis using authenticated sequences
(Fig. 2).

The GC content and number of identified ORFs is
comparable to that of other FFSC genomes (Ma et al. 2010,
Wingfield et al. 2012, Wiemann et al. 2013, Wingfield et al.
2015a, 2015b, Niehaus et al. 2016). However, the genome
assembly of F. pininemorale is notably larger than those of
other species in the “American” clade for which genome
sequences are available. In comparison, the genome
sizes of F. circinatum and F. temperatum is 4 534 176 bp
and 2 319 967 bp smaller than that of F. pininemorale,
respectively.  Nevertheless, sequence comparisons
based on chromosome-sized scaffolds suggests that F.
pininemorale harbours 12 chromosomes similar to that of
species in the FFSC. The putative 12" chromosome of F.
pininemorale is 968 722 bp size and spans two scaffolds
in the current assembly. Also, the reciprocal chromosome
translocation (involving parts of chromosomes 8 and 11)
confirmed previously in F. circinatum and F. temperatum (De
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Fig. 2. Maximum likelihood (ML) tree based on partial gene sequences of B-tubulin and translation elongation factor 1-a. Sequence alignments
were assembled with MAFFT version 7 (Katoh & Standley 2013). The program jModelTest v 2.1.7 (Guindon & Gascuel 2003, Darribo et al. 2012)
was used to determine the best-fit substitution model (GTR+I+G substitution model) with gamma correction (Tavaré 1986). The ML phylogenetic
analysis was performed using PhyML v 3.1 (Guindon & Gascuel 2010). Values at branch nodes are the bootstrapping confidence values with
those = 85 % shown. Indicated in bold are sequences from the Fusarium genomes of F. pininemorale and those of F. nygamai, F. temperatum
and F. circinatum strain GL1327 which have been previously published in IMA fungus (Wingdfield et al. 2012, 2015a, 2015b).
Vos et al. 2014, Wingfield et al. 2015a) is also present in F. IMA Genome-F 8C
pininemorale. Clearly, the addition of the F. pininemorale
genome assembly would facilitate detailed studies of Draft genome sequence Of
genome evolution, host adaption and pathogenicity in the . . .
“American” clade as well as the broader FFSC. Hawksworthlomyces IlganOrUS
Authors: S. Van Wyk, L. De Vos, T.A. Duong, G. Fourie, INTRODUCTION
N.A van der Merwe, B.D. Windfield, and E.T. Steenkamp’
*Contact: Stephanie.vanwyk@fabi.up.ac.za Hawksworthiomyces lignivorus (Ascomycota: Ophiostoma-
tales) was first described from decaying Eucalyptus utility
poles in South Africa (De Meyer et al. 2008). It was initially
described in the genus Sporothrix which, under the dual
nomenclature system, accommodated mycelial asexual
morphs of Ophiostomatales (De Beer & Wingfield 2013,
VOLUME 8 - NO. 2 389
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De Hoog 1993). However, DNA sequences of multiple
genes and more inclusive phylogenies showed that that
this species was distinct from all other species residing in
Sporothrix as redefined by De Beer et al. (2016a), and from
other genera in Ophiostomatales (De Beer & Wingfield
2013). De Beer et al. (2016b) therefore described the new
genus Hawksworthiomyces, to accommodate H. lignivorus
together with four other newly described species, H. crousii,
H. hibbettii, H. sequentia, and H. taylorii.

Species of Hawksworthiomyces differ from all other
ophiostomatoid fungi in their biology and ecology. Most
species residing in the numerous genera of Ophiostomatales
are associates of bark or ambrosia beetles that inhabit the
cambium and sapwood of trees (De Beer & Wingfield 2013).
Many species of Sporothrix are exceptions to this norm and
are found in soil and Protea infructescences (De Beer et al.
2016a, Roets et al. 2013). All species of Hawksworthiomyces
have either been isolated from decaying wood or
environments associated with degrading plant materials
(De Beer et al. 2016b). An inoculation study conducted by
De Beer et al. (2006) also suggested that H. lignivorus is
capable of degrading lignocellulose components of wood.
This is different to other species in Ophiostomatales that
specifically degrade resinous compounds in wood (Farrell et
al. 1993) and that do not display any marked lignocellulose
degradation (Seifert 1993).

In this study, we generated the draft genome sequence
for H. lignivorus, which will provide basal data required to
explore its unique biology and ecology. As the type species of
Hawksworthiomyces, the genome sequence of H. lignivorus
will be useful for future phylogenomic studies aimed at a
better understanding the evolutionary history of this genus
and other genera in Ophiostomatales.

SEQUENCED STRAIN

South Africa: Western Cape: Stellenbosch: isolated from
Eucalyptus pole at soil level, Oct. 2003, E.M. de Meyer (CMW
18600 = CBS 119148 = MUCL 55926 — living culture, PREM
59284 — dried culture).

NUCLEOTIDE SEQUENCE ACCESSION
NUMBER

The genomic sequence of Hawsworthiomyces lignivorus
(CMW 18600, CBS 119148) has been deposited at DDBJ/
EMBL/GenBank under accession no. NTMAO0000000. The
version described in this paper is version NTMA01000000.

MATERIALS AND METHODS

The ex-holotype culture of Hawsworthiomyces lignivorus
(CMW 18600 = CBS 119148) was obtained from the culture
collection of the Forestry and Agricultural Biotechnology
Institute, University of Pretoria (CMW). Genomic DNA was
extracted using the method described by Duong et al. (2013).
Two pair-end libraries of approximately 350 bp and 530 bp

were prepared and sequenced using the lllumina HiSeq
2000 platform with 100 bp read length. Reads obtained were
subjected to quality and adapters trimming using Trimmomatic
v. 0.36 (Bolger et al. 2014). De-novo genome assembly was
performed using SPAdes v. 3.9.0 (Bankevich et al. 2012).
The scaffolds obtained from SPAdes were subjected to
further scaffolding with SSPACE-Standard v. 3.0 (Boetzer et
al. 2011). Assembly gaps were filled with GapFiller v. 1.10
(Boetzer & Pirovano 2012). The quality and completeness
of the assembly was validated with Benchmarking Universal
Single Copy Orthologs (BUSCO v. 2.0.1) program using the
Soradiomyceta odb9 dataset (Siméo et al. 2015). The number
of protein coding genes was determined using AUGUSTUS
v3.2.2 (Stanke et al. 2006).

RESULTS AND DISCUSSION

Sequencing of the Hawksworthiomyces lignivorus DNA
libraries yielded 14 203733 paired-end reads with average
read length of around 100 bp. Trimming recovered 12 704
558 pair-end reads and 1 362 623 single reads. De-novo
genome assembly with SPAdes resulted in an assembly of
43.81 Mb in size, distributed in 280 scaffolds larger than 500
bp. The number of scaffolds was further reduced to 214 after
scaffolding with SSPACE and filling gaps with GapFiller. The
currentgenome assembly of H. lignivorus has a total sequence
length of 43 822 585 bases, with an N50 value of 383 563
and an average GC content of 51.27 %. Hawsworthiomyces
lignivorus had the largest genome size when compared to
all species of Ophiostomatales for which whole genome
data are available; the smallest genome reported was
that of Ceratocystiopsis minuta (21.3 Mb) (Wingfield et al.
2016a), and the second largest to H. lignivorus was that of of
Sporothrix pallida (37.8 Mb) (D’Alessandro et al. 2016).

The assembly had a BUSCO completeness score of
95.7 %. Out of the 3725 BUSCO groups searched, 3556
were complete single-copy BUSCOs, nine were complete
duplicated BUSCOs, 64 were fragmented BUSCOs, and
96 were missing BUSCOs. AUGUSTUS predicted a total of
11 216 protein-coding genes encoded by H. lignivorus genome.
The taxonomic identity of the genome was confirmed using a
phylogenetic analysis using authenticated sequences (Fig. 3).

Authors: H.-J. Lim, B.D. Wingfield, M.J. Wingdfield, Z.W.

De Beer, and T.A. Duong’
*Contact: Tuan.Duong@fabi.up.ac.za

IMA Genome-F 8D
Draft genome assembly for
Huntiella decipiens

INTRODUCTION

The family Ceratocystidaceae as defined by De Beer et al.
(2014) includes economically important plant pathogens, as
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Fig. 3. Identity verification of Ophiostomataceae isolates sequenced in this study and in all previous IMA Genome Announcements (IMA
Genome-F: 3-7; Van der Nest et al. 2014a, Windfield et al. 2015a, 2016a, 2015b, 2016b). Gene regions (LSU, BT) used for verification were
extracted from assembled genomes. Other reference isolates and their corresponding sequences were obtained from published papers (De
Beer et al. 2016, Linnakoski et al. 2012, Yin et al. 2015, Zipfel et al. 2006). The phylogeny was constructed using RAXML with the GTRGAMMA
substitution model. Bootstrap values greater than 75 are indicated at the nodes.
well as agents of blue stain in timber, many of which result value of timber (Van Wyk et al. 2006, Kirisits et al. 2013).
in substantial economic losses (Roux et al. 2000, Baker et These fungi are associated with insects, particularly sap-
al. 2003, Barnes et al. 2003, Van Wyk et al. 2007, Heath et feeding beetles (Nitidulidae) that are thought to primarily aid
al. 2009). De Beer et al. (2014), Fig. 4, revised this fungal in their spread and distribution (Kirisits 2004). An unusual
family based on morphological, phylogenetic and ecological example of a Huntiella species is H. bhutanensis that lives
evidence and it now includes numerous clearly circumscribed in association with the bark beetle Ips schmutzenhoferi
genera such as Ceratocystis, Endoconidiophora, and (Scolytidae) (Van Wyk et al. 2004, Kirisitset et al. 2013). In
Huntiella. general, however, little is known regarding the biology or
Huntiella species previously formed part of the ecology of Huntiella species. For example, H. decipiens,
Ceratocystis moniliformis complex (De Beer et al. 2014). that forms the basis of the present study, is known only from
Species of Huntiella are generally weak pathogens or one region in the Limpopo Province of South Africa, where
saprobes, although some cause sapstain which reduces the it was isolated from wounds on plantation-grown Eucalyptus
VOLUME 8 - NO. 2 391
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Fig. 4. Identity verification of Ceratocystidaceae isolates sequenced in this study, and in all previous IMA Genome Announcements (IMA
Genome-F: 1-7; Van der Nest et al. 2014a, 2014b, Wilken et al. 2013, Wingfield et al. 2015a, 2016a, 2015b, 2016b). Gene regions (60S,
LSU, MCM?7) used for verification were extracted from assembled genomes. Other reference isolates and their corresponding sequences were
obtained from De Beer et al. (2014). The phylogeny was constructed using RAXML with the GTRGAMMA substitution model. Bootstrap values

greater than 75 are indicated at the nodes.

species and from a Staphilinid (Staphylinidae) beetle found
on freshly cut E. saligna stumps (Nkuekam et al. 2012).

The aim of this study was to produce a good quality draft
genome assembly for H. decipiens. The genomes of several
members of Ceratocystidaceae are already available in the

public domain (Belbahri 2015, Van der Nest et al. 20143,
2014b, Wilken et al. 2013, Wingdfield et al. 2015a, 2015b,
2016) and the genome sequence for H. decipiens will provide
valuable opportunities for comparative genomic studies on
this important group of fungi.
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SEQUENCED STRAIN

South Africa: Soutpansberg, isol. Staphilinid spp. infesting
Eucalyptis saligna, Dec. 2008, K. Nkuekam (CMW 30855,
CBS 129736 — cultures; PREM 60560 — dried culture).

NUCLEOTIDE SEQUENCE ACCESSION
NUMBER

The Huntiella decipiens isolate CMW 30855 Whole Genome
Shotgun project has been deposited in GenBank under
accession no. NETU0O0000000.

MATERIALS AND METHODS

Genomic DNA was isolated from H. decipiens isolate
CMW 30855 (Barnes et al. 2001) and sequenced using
the Genomics Analyzer lIx, lllumina platform from the UC
Davis Genome Centre (University of California, Davis, A).
For this purpose, paired-end libraries of 350- p and 600 bp
insert sizes were prepared and sequenced following the
Illumina protocol. The CLC Genomics Workbench v. 8.0.1
(CLCBio, Aarhus) was employed to quality trim reads and de-
novo assemble a draft genome sequence using the default
parameters. Thereafter, the assemblies were scaffolded
using SSPACE v. 2.0 (Boetzer et al. 2011). GapFiller v.
2.2.1 (Boetzer & Pirovano 2012) was used to fill the gaps
created during the scaffolding. The number of putative open
reading frames (ORFs) was predicted with the web-based
de novo gene prediction software AUGUSTUS using the
Fusarium graminearum gene models (Stanke et al. 2008).
The “create detailed mapping report” command of the CLC
Genomics Workbench was used to produce statistics for the
draft sequence. The Benchmarking Universal Single-Copy
Orthologs (BUSCO v. 1.22) tool was used to assess the
genome completeness (Siméo et al. 2015) using the fungal
data set.

RESULTS AND DISCUSSION

The estimated size of the assembled Huntiella decipiens draft
genome was 26.7 Mb, with 638 scaffolds larger than 500
bases. AUGUSTUS analysis predicted 7254 ORFs, which
corresponds to an average gene density of 271.7 ORFs/
Mb. The assembly contained 1 403 Complete Single-Copy
BUSCOs, 90 Complete Duplicated BUSCOs, 11 Fragmented
BUSCOs and 24 missing BUSCOs. The taxonomic identity
of the genome was confirmed using a phylogenetic analysis
using authenticated sequences (Fig. 4).

Relative to other species in Ceratocystidaceae, H.
decipiens has a similar size genome than those of H.
bhutanensis (26.7 Mb, 7261 ORFs) (Wingdfield et al. 2016)
and H. moniliformis (25.4 Mb, 6832 ORFs) (Van der Nest
et al. 2014b). Compared to other species in the family,
however, these three Huntiella genomes appeared to
be smaller, encoding fewer genes. For example, the H.

/—/

decipiens genome is smaller than those of H. omanensis
(31.5 Mb, 8395 ORFs), Ceratocystis manginecans (31.7
Mb, 7494 ORFs), C. fimbriata (29.4 Mb, 7 266 ORFs), E.
laricicola (33.3 Mb, 6 897 ORFs), and D. virescens (33.7
Mb, 6953 ORFs) (Van der Nest et al. 2014a, 2014b, Wilken
et al. 2013, Wingdfield et al. 2015, 2016). Whether these
differences in genome size are linked to the different life-
styles of these fungi requires further research, which will be
the subject of future studies.

Authors: N. Soal, M.A. van der Nest’, P.M. Wilken, E.T.
Steenkamp, C. Tatham, K. Naidoo, M.J. Windfield,
and B.D. Wingfield
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IMA Genome-F 8E

Draft genome sequence of
Ophiostoma ips

INTRODUCTION

Ophiostoma ips is an ascomycete fungus of the O. ips
species complex (Ophiostomatales, Ascomycota) (De Beer &
Wingfield 2013). The fungus was first described as the causal
agent of blue stain on Pinus lumber in the USA (Rumbold
1931). Ophiostoma ips is commonly associated with conifer-
infesting bark beetles in the genera Ips, Orthotomicus, and
Hylurgus, which are native to the Northern Hemisphere.
Outside of its native range, O. ips has been reported in
various countries of the Southern Hemisphere including
Australia, Chile, New Zealand, and South Africa, where it
has been accidentally introduced with its bark beetle vectors
(Wingdfield & Marasas 1980, Zhou et al. 2001, 2004). A
population genetic study using microsatellite markers (Zhou
et al. 2007) revealed a high level of admixture between O. ips
populations, suggesting frequent movement of this species
between countries and continents. Although there have been
some studies suggesting weak pathogenicity on conifers
(Lieutier et al. 1989, Zhou et al. 2002), like most other
Ophiostoma spp. and their relatives (Six & Wingfield 2011),
O. ips is generally considered not to be a primary pathogen
and its relevance is usually as a consequence of the reduced
value of the wood due to sap stain (Seifert 1993).

We generated the genome sequence for O. ips, which
adds to a growing number of genomes available from species
of Ophiostomatales. Together, these genomes will serve as
a valuable resource, enabling future comparative genomics
studies seeking to gain insight into the biology, ecology and
evolution of species in Ophiostomatales.

SEQUENCED STRAIN

USA: Louisiana: isol. Pinus taeda, 2004, X. Zhou (CMW
19371 = CBS 138721 — culture).
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NUCLEOTIDE SEQUENCE ACCESSION
NUMBER

The genomic sequence of Ophiostoma ips (CMW 19371
CBS 138721) has been deposited at DDBJ/EMBL/GenBank
under the accession NTMBO0000000O. The version described
in this paper is version NTMB01000000.

METHODS

An isolate of Ophiostoma ips (CMW 19371 = CBS 138721)
was obtained from the culture collection (CMW) of the
Forestry and Agricultural Biotechnology Institute, University
of Pretoria. DNA was extracted from a single conidium culture
following a method described previously (Duong et al. 2013).
Two pair-end libraries (350 bp and 550 bp medium insert
sizes) were prepared and sequenced using the lllumina Hiseq
2500 platform. The program Trimmomatic v. 0.36 (Bolger
et al. 2014) was used for quality and adapters trimming of
pair-end reads. The genome was assembled from trimmed
reads using Spades v. 3.10 (Bankevich et al. 2012) and
was further placed into scaffolds using SSPACE Standard
v. 3.0 (Boetzer et al. 2011). Gaps were filled or reduced
with GapFiller v. 1.10 (Boetzer & Pirovano 2012). Several
runs of genome assembly were conducted using different
parameters. Assemblies obtained from these runs were
subjected to quality and completeness assessment using the
program BUSCO v. 2.0 (Simao et al. 2015) using the dataset
for Sordariomycetes. The best assembly based on the best
BUSCO statistics in term of completeness, was selected
and presented in this study. The program AUGUSTUS v.
3.2.2 (Stanke et al. 2006) was used to estimate the number
of protein coding genes encoded by the genome using the
species model for Neurospora crassa.

RESULTS AND DISCUSSION

The genome of Ophiostoma ips was assembled into 351
scaffolds. The genome is 25.99 Mb and the assembly has
an N50 of 140.6 Kb. The average coverage across the whole
genome was 80 times. The assembled O. ips genome has
an average GC content of 56 %. The genome of O. jps has
smaller genome size and higher GC genome content when
compared to that of other Ophiostoma species such as O.
ulmi (31.5 Mb, GC = 50.02 %; Khoshraftar et al. 2013), O.
novo-ulmi (31.8 Mb, GC = 50.01 %; Forgetta et al. 2013)
and O. piceae (32.8 Mb, GC = 52.8 %; Haridas et al. 2013).
The taxonomic identity of the genome was confirmed using
a phylogenetic analysis using authenticated sequences
(Fig. 3). Assessment of the assembly using BUSCO with
the Sodariomycetes dataset resulted in a completeness of
96.8 % (C:3606 [S:3603, D:3], F:42, M:77, n:3725), indicating
that the assembly should cover most of the organism’s gene
space. AUGUSTUS prediction using species model for
Neurospora crassa resulted in 7607 protein coding genes,
which is slightly lower than that of O. ulmi (8639 genes;
Khoshraftar et al. 2013), O. novo-ulmi (8640 genes; Comeau
etal. 2015), and O. piceae (8884 genes; Haridas et al. 2013).

The draft genome sequence from O. jps presented in this
study will be a valuable addition to a number of genomes
already available for species in Ophiostomatales. These will
enable further studies to better understand this interesting
group of fungi.

Authors: T.A. Duong’, M.J. Wingdfield, Z.W. De Beer,
and B.D. Wingfield
*Contact: Tuan.Duong@fabi.up.ac.za
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