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Abstract

Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely 

applied as a tool for biomarker discovery. Owing to innovative developments in informatics and 

analytical technologies, and the integration of orthogonal biological approaches, it is now possible 

to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, 

because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can 

be detected to provide insight into the mechanisms that underlie various physiological conditions 

and aberrant processes, including diseases.

Metabolites are the substrates and products of metabolism that drive essential cellular 

functions, such as energy production and storage, signal transduction and apoptosis. In 

addition to being produced directly by the host organism, metabolites can derive from 

microorganisms, as well as from xenobiotic, dietary and other exogenous sources1.
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The biochemical actions of metabolites are far-reaching. To start, metabolites can regulate 

epigenetic mechanisms and maintain the pluripotency of embryonic stem cells (ES cells)2–6. 

It has also been well established that metabolites such as ATP, acetyl-CoA, NAD+, and S–

adenosyl methionine (SAM) can function as co–substrates, regulating post-translational 

modifications that affect protein activity7,8. In addition, fatty acids and hormones can 

interact with plasma proteins to enable their transport in the bloodstream9,10. Furthermore, 

metabolite–protein interactions can aid in facilitating cellular responses by initiating 

signalling cascades, thus evidencing the role of metabolites in signal transduction11,12.

Indirectly, metabolites affect the environment in which they are produced. Under normal 

conditions, homeostatic controls exist to counteract any adverse biological consequences of 

such effects. For example, acidic metabolites decrease the pH of the microenvironment13,14, 

and high concentrations of these acidic metabolites are found, for instance, in the colon, 

owing to bacterial fermentation of dietary carbohydrates that leads to the production of 

short-chain fatty acids. These are, however, efficiently neutralized by mucosal production of 

bicarbonate. Notably, such homeostatic controls can be compromised with age and during 

disease, leading to functional decline and a failure to return to steady state. In addition, the 

adaptation of aberrant glycolytic cancer cells to the large amounts of lactate and protons that 

they produce occurs through modification of the activity of transporters, exchangers, pumps 

and carbonic anhydrases, which all help to maintain the intracellular pH and enable cells to 

survive the acidic microenvironment15. Thus, as metabolites can have a wide range of 

functions in the cell and organism, there is growing motivation to better ascertain their 

specific functions, as well as to understand their physiological roles. This can be done by 

implementing various metabolomic approaches to identify metabolites and metabolic 

pathways that are associated with particular phenotypes, and then integrating this knowledge 

with functional and mechanistic biological studies.

The main methodologies that are used for metabolite recovery and identification are 

untargeted (global) and targeted mass spectrometry-based metabolomics, which are 

discussed in more detail in BOX 1. Untargeted metabolomics aims to measure the broadest 

range of metabolites present in an extracted sample without a priori knowledge of the 

metabolome. The types of metabolites that are recovered are influenced by the extraction 

and analytical method of choice, but they result in a complex data set that requires 

computational tools to identify and correlate metabolites between samples and to examine 

their interconnectivity in metabolic pathways in relation to the phenotype or aberrant process 

(see BOX 2 and Supplementary information S1 (box)). By contrast, targeted metabolomics 

provides higher sensitivity and selectivity than untargeted metabolomics, but metabolites are 

analysed on the basis of a priori information, whereby methods are developed and optimized 

for the analysis of specific metabolites and metabolic pathways of interest. Targeted analysis 

also constitutes an important part of a metabolomics workflow to validate and expand upon 

results from untargeted analysis16.

Box 1

Mass spectrometry in metabolomics

Mass spectrometry
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Mass spectrometry is an excellent analytical platform for metabolomic analysis, as it 

provides high sensitivity, reproducibility and versatility. It measures the masses of 

molecules and their fragments to determine their identity. This information is gained by 

measuring the mass–to–charge ratio (m/z) of ions that are formed by inducing the loss or 

gain of a charge from a neutral species. The sample, comprising a complex mixture of 

metabolites, can be introduced into the mass spectrometer either directly or preceded by a 

separation approach (using liquid chromatography or gas chromatography). Direct 

injection has been successfully implemented for high-throughput metabolomics. 

However, as thousands of ions can be present in metabolomic experiments, 

chromatographic separation before entering the mass spectrometer minimizes signal 

suppression and allows for greater sensitivity, and — by providing a retention time 

identifier — it can further aid metabolite identification. In addition to m/z and retention 

time information, the identification of an ion is facilitated by fragmentation pattern 

information that is acquired by tandem mass spectrometry83.

Untargeted metabolomics

Untargeted or global metabolomic analysis allows for an assessment of the metabolites 

extracted from a sample and can reveal novel and unanticipated perturbations. Untargeted 

analyses are most effective when implemented in a high-resolution mass spectrometer, to 

facilitate structural characterization of the metabolites. Its primary advantage is that it 

offers an unbiased means to examine the relationship between interconnected metabolites 

from multiple pathways. However, it is not yet possible to obtain all metabolite classes 

simultaneously, as many factors affect metabolite recovery, depending on the functional 

group of the metabolite. In addition, there are a large number of unknown metabolites 

that remain unannotated in metabolite databases35. Thus, depending on the pH, solvent, 

column chemistry and ionization technique used, untargeted metabolomics can provide a 

detailed assessment of the metabolites in a sample, revealing a wide range of metabolite 

classes.

Targeted metabolomics

Targeted metabolomic analyses measure the concentrations of a predefined set of 

metabolites. A standard curve for a concentration range of the metabolite of interest is 

prepared, so that accurate quantification can be gained. This type of analysis can be used 

to obtain exact concentrations of metabolites identified by untargeted metabolomics, 

providing analytical validation.

Imaging metabolomics

It is also possible to reveal the localization of selected metabolites within a tissue sample 

using imaging mass spectrometry techniques, such as matrix-assisted laser desorption 

ionization (MALDI)84, nanostructure-imaging mass spectrometry (NIMS)70,85, 

desorption electrospray ionization mass spectrometry (DESI)86 and secondary ion mass 

spectrometry (SIMS)87, among others. NIMS and DESI are especially suited to the 

analysis of small molecules.
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Box 2

Computational tools in metabolomics

Metabolomic analyses, and untargeted metabolomics in particular, result in the 

generation of complex data sets; therefore, computational tools are crucial to process and 

interpret these results. The problems associated with big data processing, statistical 

analyses, metabolite identification and biological interpretation are not trivial, but there 

are now some novel tools available that accelerate and automate the computational 

workflows, providing user-friendly tools for both novice and expert bioinformaticians 

(for further details, refer to Supplementary information S1 (box)).

Data processing and statistical analysis

After data upload, mass spectral peaks are picked, realigned and annotated. The data is 

deconvoluted using computational tools to remove instrumental and chemical noise, thus 

providing only the biologically relevant information.

The types of statistical analyses that can be implemented for metabolomics data are vast, 

and choosing the correct test can be challenging. Online tools such as XCMS Online42, 

DeviumWeb MetaboAnalyst43 and many others give researchers the ability to carry out a 

wealth of tests. Some of the most recent advances are tools that provide false discovery 

rate measurements to ensure that the data have statistical power. Other concepts that are 

especially useful for finding biologically relevant metabolites are multi-group and meta-

analyses, which can reveal shared metabolic changes across multiple experiments88.

Metabolite identification and databases

Initial putative metabolite identifications can be made on the basis of the accurate mass–

to–charge ratio (m/z) of the mass spectral ion. This is aided by the use of comprehensive 

metabolite databases such as METLIN89, HMDB90, MassBank91 and GMD26,92. Tandem 

mass spectrometry experiments can then be carried out on the isolated ion, followed by 

matching with an authentic standard, in order to obtain characteristic fragments and 

retention time information to distinguish the ion from structural isomers. In silico 
prediction tools provide further insight into metabolite identification when a particular 

m/z or tandem mass spectrometry fragmentation pattern does not provide a match24,93. A 

recent innovation in ion mobility mass spectrometry, the rotationally averaged cross-

collisional section (CCS), provides another level of metabolite identification, and 

databases containing CCS information are currently in the early stages of development94. 

Despite all of these innovations, some metabolite features cannot be assigned to a 

molecular structure. It is therefore important that they are published (databases for these 

have already been set up on METLIN) to aid in their future identification and correlation 

to phenotypes.

Biological interpretation

Network modelling and pathway-mapping tools can help us to understand the parts that 

metabolites play in relation to each other and in biological aberrations. Thereafter, 

metabolites can be placed into context with upstream genes and proteins to lead 

mechanistic investigations47. As well as the established and comprehensive metabolic 
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network resources Kegg95, Recon1 (REF. 34) and Biocyc96, there are several recently 

developed programs that use novel methods to find pathway connectivity, as well as 

aiding in metabolite identification. These include mummichog46 and metabolite set 

enrichment analysis (MSEA)97. In addition, stable isotope metabolomics56,57 and omics-

scale big data integration can reveal interconnectivity between metabolites and their 

relationships with genes and proteins (see also main text).

The types of samples that can be analysed using metabolomics are wide-ranging and include 

tissues, cells and biofluids. Tissue analysis, in particular, is perhaps the most powerful 

approach for studying localized and specific responses to stimuli and pathogenesis, yielding 

explicit biochemical information about the mechanisms of disease. Traditionally, tissue 

analysis involves extraction of the complete tissue material into a liquid form, from which 

the metabolite changes are averaged across the different cell types and regions of the 

analysed organ. In addition to this total tissue analysis, subregional, cellular and even 

subcellular metabolite profiles can provide further insight into structure-to–function 

relationships; this is particularly valuable in the case of heterogeneous tissues such as brain 

and cancers17. Simultaneous sampling of arterial blood (entering the organ) and venous 

blood (draining the organ), followed by paired analysis, can also have value in the 

investigation of tissue metabolic activity16. This paired arteriovenous approach provides 

information about the metabolite uptake and release patterns across the tissue of interest and 

therefore gives insight into tissue metabostasis. The power of this paired analysis allows for 

the measurement of metabolite arteriovenous differences or ratios and offers a compelling 

compromise with sampling effort, compared to the traditional approach of venous blood 

analysis.

During the past few years, substantial progress has been made in metabolomic analysis by 

improving instrument performance, experimental design and sample preparation, ultimately 

facilitating broader analytical capabilities. Moreover, the surge in new chemoinformatic 

(computational approaches for handling chemical information) and bioinformatic 

(computational approaches for handling biological information) tools has provided extensive 

support for data acquisition, analysis and integration. This has greatly enhanced our ability 

to identify metabolites in various samples and allowed us to correlate these metabolites with 

particular phenotypes, thus establishing useful biomarkers that are indicative of particular 

physiological states or aberrations. The ultimate challenge now is to move beyond simply 

identifying metabolites and using them as biomarkers, and to start establishing the direct 

physiological roles of metabolites and their involvement in metabolic networks, as well as 

determining how changes in their levels are implicated in different phenotypic outcomes. 

This Innovation article focuses on how this most relevant hurdle for metabolomics can be 

overcome. We describe how advances in technologies that are used in metabolite 

identification and analysis, experimental design and pathway mapping are helping us to gain 

more meaningful data, revealing important nodes for further investigation. We also discuss 

how this information, when combined with traditional biological methods, can enable us to 

ascertain molecular mechanisms and begin to infer biological causality.
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Current challenges in metabolomics

During the past few years, metabolomics has evolved considerably to overcome challenges 

that initially confounded analysis18. A major challenge still exists for the identification of 

metabolites and validation of metabolites in human populations. However, the most 

important challenge is to develop workflows for assigning biological meaning to metabolites 

and to move towards finding mechanisms of disease.

Metabolite identification and validation

The initial focus of metabolomics has been on biomarker discovery, with the aim of 

identifying metabolites that are correlated with various diseases and environmental 

exposures. This has, for example, led to the identification of plasma trimethylamine N–oxide 

(TMAO) and urinary taurine as markers of cardiovascular disease (CVD)19 and ionizing 

radiation exposure20–22, respectively. In order to correlate metabolites with a phenotype, the 

two biggest hurdles faced are metabolite identification and biomarker validation. In any 

given untargeted metabolomics experiment, only a subset of all metabolite features present 

can be positively identified. This has been facilitated by novel in silico tools23–25 (see below, 

as well as BOX 2 and Supplementary information S1 (box)), the expansion and development 

of metabolite databases26 (see BOX 2 and Supplementary information S1 (box)) and the 

synthesis of previously unattainable standard compounds that can confirm the identification 

of the metabolite (these standards are either novel compounds or were previously not 

available in an isotope-labelled form)27.

Biomarker validation can be challenging, owing to difficulties in measuring subtle 

differences in metabolite concentrations between control and aberrant conditions, and 

because of the lack of follow–up with targeted metabolomic experiments (BOX 1). These 

follow–up experiments should be carried out in an additional cohort of biological samples 

for validation of the metabolite changes with the phenotype. Moreover, one of the largest 

challenges to biomarker validation is overcoming inter-individual metabolite variation, 

which arises owing to differences in genetic factors and environmental exposures. All of 

these influences result in significantly different metabolic responses in population studies1, 

making it extremely difficult to pinpoint metabolites that are correlated with a particular 

condition and, ultimately, to provide clinical biomarkers. This is the case especially when 

examining a multifaceted disease such as cancer. There are a number of methods that can be 

applied before and after analysis to overcome some of the biological variation associated 

with human studies. Establishing appropriate experimental design and statistical power for 

the study, and using patient questionnaires with subsequent population stratification, as well 

as regression modelling, can allow for the extraction of important metabolites28. These types 

of approaches can remove confounding samples from the analysis and help to streamline the 

data to identify metabolites that are correlated with the biological stimulus and not another 

influence. In addition, using appropriate metabolite normalization strategies, such as 

analysing metabolite ratios or normalizing to creatinine in urine studies, may help. 

Developing databases to collect data on the normal fluctuations in metabolite concentration 

ranges that occur in response to factors such as diet29, age, gender, circadian rhythm and 

exercise, which are frequent causes of sample-to-sample variability, would also be useful. 
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Indeed, some databases that contain information on specific metabolite concentration ranges 

in human biofluids and in dietary components — the Human Metabolome Database 

(HMDB)30 and FooDB, respectively — have already been developed.

Functional analysis of metabolites

Perhaps the largest challenge that metabolomic researchers face in any study is relating the 

identified metabolites to their biological roles, which is a necessary step for moving beyond 

biomarkers and towards mechanisms. Biomarkers obtained from human population studies 

can provide a starting point for finding links between diseases and metabolic pathways31, 

and further mechanistic work can be carried out using in vitro and animal-based studies, as 

previously shown32. Furthermore, patient-derived primary cell lines and xenografts can 

provide more reliable models for finding relatable data, as such samples make it possible to 

control for genetic and environmental influences.

However, to evaluate the biological roles of one or several metabolites (a metabolic 

signature), one first has to determine their functions in metabolic pathways and their 

interconnectivity, and, more broadly, determine which metabolic pathways are perturbed by 

the aberrant condition33. Only such a multi-level analysis can provide a comprehensive 

understanding of the systemic biological changes that are associated with particular 

metabolites and potentially direct further mechanistic studies. Determining the interactions 

of metabolites in metabolic pathways is particularly challenging. Metabolic pathway maps 

currently include ~2,000 metabolites; however, similar to metabolite databases, they are 

somewhat incomplete, as some metabolites have not yet been characterized34,35. Novel 

molecules are regularly being discovered, adding to the pool of known metabolites22,36. 

Multi-layered approaches that integrate metabolomic and other ‘omics’ data (see below) 

acquired from the same samples provide an opportunity to investigate the system-wide 

changes in a disease and to delve further into metabolic pathway interactions and the 

mechanisms of disease development and progression37,38. In addition, novel experimental 

approaches, such as stable isotope-assisted analysis (see below), can trace metabolite 

utilization in pathways in a temporal manner.

Recent technical advancements

Developments in innovative informatics strategies have been a major driver in overcoming 

some of the challenges presented with metabolomic analysis33. Advances in data processing, 

statistical analysis and metabolite characterization have enabled the identification of more 

metabolites that are associated with a particular phenotype than was ever previously 

achievable. Moving towards mechanistic investigations, novel metabolic pathway analysis 

tools that assess the interconnectivity of these metabolites can provide important insights, 

particularly when paired with advanced metabolomic techniques such as stable isotope 

tracing and integration with other orthogonal data sets, ultimately providing systems-level 

analyses (FIG. 1).
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Informatics

The development of computational and chemoinformatic tools for metabolomics can 

effectively support experimental data upload, processing, statistical analyses and metabolite 

identification, and, when used in conjunction with bioinformatic tools, can place metabolites 

into biological context (see BOX 2 and Supplementary information S1 (box)). Metabolomic 

data sets obtained by mass spectrometry (BOX 1) contain information on thousands of ions 

that are generated in the mass spectrometer from each sample, in which the ions represent 

the precursor intact metabolite or its fragments, adducts or isotopes. Computational tools are 

thus essential for reducing the redundancy in these complex data sets and facilitating 

identification of the most relevant metabolites.

For researchers in the field of metabolomics, computational resources are growing at a rapid 

rate, and many of these have been discussed in detail elsewhere33,39. However, metabolomic 

analysis remains a time-consuming process, and metabolite identification is still a limiting 

factor. Therefore, computational workflows that significantly speed up the process of data 

upload and data mining, with novel methods for automated or in silico metabolite 

identification and biological interpretation, are needed. Such automated computational 

workflows — allowing data streaming from the instrument to the software, automated 

qualitative and quantitative metabolite characterization, calculation of fold change and 

statistical significance, and, importantly, metabolite pathway analysis — have recently been 

developed (for more detail, see Supplementary information S1 (box)).

As metabolomics is highly interdisciplinary, and not all laboratories have personnel that are 

specialized in all areas of the experimental workflow, it is often the case that some of these 

computational tools are out of reach for those not specialized in informatic approaches or 

new to the metabolomics field. Fortunately, this is beginning to change, with several 

resources provided through the US National Institutes of Health (NIH) Common Fund 

Metabolomics Program. This programme funds six regional comprehensive metabolomic 

resource cores, a data repository and a coordination centre, to enable hands–on and online 

training in a range of areas, including data processing and interpretation. Another initiative, 

the Coordination of Standards in Metabolomics (COSMOS), is also helping to promote the 

standardization of metabolomics, by providing both experimental and data sharing, thus 

aiding new researchers in the field40 (see Supplementary information S1 (box)). There are 

several tools, including the workflows mentioned, that are user-friendly but have advanced 

parameters for expert users, thus providing a resource for all levels of expertise41,42. Some 

of these are available as part of the mass spectrometry vendor software, whereas other tools 

are provided as open-access software that can be utilized from data upload through to the 

metabolite pathway analysis42,43. These tools have already been successfully used to 

correlate single or multiple validated metabolites to a biological aberration. For example, 

MZmine 2 was used to show the interaction between dietary lipids and gut microbiota for 

regulating cholesterol metabolism44, and metabolomic analysis using both XCMS Online 

and MetaboAnalyst revealed metabolic dysregulation in ischaemic retinopathy45.

As discussed above, to move from using metabolites as predictive biomarkers to leading 

mechanistic investigations, the metabolites need to be put into their biological context by 

identifying their roles in metabolic pathways, their interconnectivity with other metabolites, 
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and their relationships to upstream genes and proteins. Informatics approaches can greatly 

facilitate these analyses and can help to reveal broad potential metabolite activity across 

multiple metabolites and pathways46, and can also provide big data integration across 

different-omics technologies (see below)47 such as the systems biology approach recently 

developed on XCMS Online. As an example, a recent study took advantage of various 

bioinformatics tools to analyse genetic influences on metabolites in human blood. For this, a 

network of genetic–metabolic interactions was generated, first using Gaussian graphical 

models to connect biochemically related metabolites and then connecting metabolites with 

genetic loci from a genome-wide association study38. Novel concepts such as these have 

maximized the ability to extract important biological information from metabolites.

Stable isotope-assisted metabolomics

One of the most promising ways to ascertain the roles of metabolites in metabolic pathways 

is to track their utilization with stable isotope tracers. These experiments make use of 

commercially available metabolites labelled with stable isotopes such as carbon (13C), 

nitrogen (15N) or deuterium (2H). The design of stable isotope-assisted experiments is based 

on a priori information for a particular metabolite or metabolic pathway of interest; these 

studies can thus be led by information obtained from untargeted metabolomic analysis (BOX 

1).

The results from targeted and/or untargeted metabolomic analysis do not provide 

information on intracellular metabolic rates and relative pathway activities, and, for 

example, increased levels of one metabolite can be caused by increased activity of 

metabolite-producing enzymes or decreased activity of metabolite-consuming enzymes49. 

Following up with stable isotope-labelling experiments provides additional information on 

how a particular compound (nutrient or substrate) is metabolized with respect to a particular 

phenotype and can help to identify the pathways that contribute the most to substrate 

utilization. Thus, stable isotope-assisted tracing of a labelled substrate can reveal its 

metabolic fate.

There are several ways to carry out a stable isotope-assisted experiment. In metabolic steady 

state experiments, the measured metabolite pools (or levels) are equilibrated, and fluxes (or 

conversion rates) are roughly constant35. In addition, the labelling enrichment becomes 

stable over time (from a labelled nutrient into a given metabolite) to reach the isotopic 

steady state. The interpretation of isotope-enriched data in such conditions can provide 

information on relative pathway activity, such as the relationship between metabolites, and it 

also allows quantification of nutrient contributions to the production of different 

metabolites49. By contrast, in kinetic (or dynamic) flux experiments, the system has yet to 

reach steady state, and flux refers to the in vivo velocities of the individual metabolic 

reactions35. Thus, kinetic flux analysis provides dynamic labelling patterns, which allow 

quantification of metabolite flux when combined with intracellular metabolite 

concentrations48,49. As a notable example, kinetic flux revealed mechanisms for NADPH 

metabolism, including the contribution of the 10–formyl-tetrahydrofolate pathway to 

NADPH production50. Steady state flux analyses have also contributed to revealing 
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important substrate utilization, with a recent clinical example uncovering selective activation 

of pyruvate carboxylase over glutaminase 1 in early-stage non-small-cell lung cancer51.

Stable isotope-assisted metabolomics can be used to calculate flux within a specific set of 

related pathways — or, on a larger scale, it can encompass multiple metabolites, labelled 

precursors and pathways. However, such analyses are computationally highly complex for 

dynamic experiments, leading to a decrease in accuracy35. In order to overcome this, 

algorithms have recently been developed that combine both stable isotope analysis and 

untargeted metabolomics52–55. This technology, called global isotope metabolomics, 

provides comprehensive differential labelling between two biological conditions, offering 

further understanding of metabolism at a systems level. Even though untargeted stable 

isotope metabolomics is a relatively new tool, its value has already been demonstrated in 

several studies56,57. It also provides yet another example of the power of informatics in 

metabolomic analyses.

Orthogonal approaches for mechanistic studies

Owing to the fact that transcript and protein levels have only a modest correlation with each 

other, and that metabolites can be further modified by enzymatic processes and can originate 

from and be modified by various internal and external stimuli, it is necessary to introduce 

metabolomic analysis approaches that provide big data integration across different-omics 

(genomics, epigenomics, proteomics and transcriptomics) in order to comprehensively 

determine the consequences of all metabolites on biology (FIG. 2). Such integrative 

approaches can help to determine the relationships between gene and protein expression and 

metabolite concentrations, and the balance between production and consumption of 

metabolites58. As an example, by combining metabolomics with metagenomics and 

metatranscriptomics data, it was possible to elucidate the origins and roles of bacteria-

derived metabolites59,60. A recent study also revealed that gut bacteria transplanted from 

thin or obese people recapitulated the respective phenotypes in gnotobiotic mice, with 

changes to microbial genes and concomitant downstream metabolites60. In addition, it was 

possible to demonstrate that individuals from rural African and African American 

populations that exchanged diets underwent large changes in their metagenome and 

metabolome, and this altered their cancer risk61.

Leading on from multi-layered omics approaches, there are a number of additional 

orthogonal techniques that can be used to further investigate the biological relationships 

between metabolites, proteins and genes (FIG. 2). At the gene level, RNA interference 

(RNAi) or CRISPR–Cas systems can be used to modulate gene expression, and this can help 

to determine how genes directly affect enzyme activity and metabolite production. Similarly, 

at the protein level, structural analogues of essential metabolites — so-called antimetabolites 

— can be used to inhibit a specific metabolic process and attenuate metabolite production or 

transportation from the cell62, thereby allowing investigation of the function and importance 

of specific metabolites63. Other approaches that can be used are those that directly change 

the host metabolome, for instance, through modulating the exposure of the organism to 

certain stimuli. For example, manipulating the microbiome using germ-free models, 

antibiotics or immunomodulators (which can change the host response to the resident 
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microbiota) can reveal how bacteria and their metabolites affect the host and their 

metabolism and can allow us to link these changes to susceptibility to certain diseases60. As 

an example, it has been shown recently that the microbiome is important for the efficacy of 

immunotherapeutics used in cancer therapy, and that only in individuals harbouring certain 

bacterial species can these compounds lead to efficient stimulation of cancer-fighting T 

cells64,65. Of note, T cells are known to have distinct energy requirements depending on 

their activation status, with naive T cells utilizing oxidative phosphorylation for ATP 

generation, and effector (activated) T cells consuming glucose by aerobic glycolysis and 

glutaminolysis to support cell growth, in a similar manner to cancer cells66,67. Altogether, 

targeted manipulation of the local cellular environment to affect cellular energy status, in 

concert with modulation of the microbiome, opens up interesting possibilities to influence 

the survival of both effector T cells and cancer cells68.

Novel biological insights

Advances in metabolomic analysis have allowed us to gain a novel understanding of 

metabolism for various states, processes and diseases, and a few of the most recent studies 

exemplifying the novel biological insights that can be gained with the use of metabolomics 

are discussed below. These studies collectively show how information at the metabolite 

level, particularly when combined with other techniques, can lead to successful association 

of metabolites with phenotypical causality, thus bringing us closer to a mechanistic 

understanding of metabolism.

Role of bacterial biofilms in cancer

A recent study carried out on a patient population investigated in more detail a previously 

validated biomarker for colon cancer, N1, N12–diacetylspermine (DAS)69. In this study, a 

multidisciplinary approach was used that combined four different metabolomic tools with 

traditional biochemical techniques. First, it revealed that only DAS, and not its precursors, 

was correlated with biofilm presence as well as with colon cancer, and that DAS is probably 

a metabolic end-product of polyamine metabolism. The metabolomic approaches used 

included untargeted analysis (BOX 1) to compare normal tissues to the tumour tissues, both 

of which were either associated with or devoid of biofilms. This was followed by a targeted 

validation step (BOX 1) to confirm the fold change in metabolites and expand the analysis to 

other metabolites in related pathways. Nanostructure-imaging mass spectrometry (NIMS)70 

(BOX 1) revealed the in situ localization of DAS in the mucosal layer of the colon where the 

biofilms resided. Global isotope metabolomics was further used to investigate the metabolic 

fate of a stable isotope of DAS in colon cancer cell lines, confirming that it is indeed an end-

product of metabolism and is not involved in any other metabolic pathways.

In order to determine the source of the metabolite (the patient versus the biofilm), patients 

were treated with antibiotics to remove the biofilms (this was confirmed by fluorescent in 
situ hybridization (FISH) analysis), and their samples were analysed for the presence of 

DAS. In these tissues, DAS concentrations were similar to those previously measured in 

biofilm-negative patients, showing that the elevated DAS levels seen in biofilm-positive 

patients originated from the biofilms. In line with this, immunohistochemical analysis of 
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patient samples did not show any change in protein levels of enzymes involved in DAS 

production. As DAS is a metabolite of polyamine precursors, and polyamines have been 

associated with various cellular responses including increased cellular proliferation, the 

propensity of colon cells to overproliferate in the presence of biofilms was investigated and 

confirmed by immunohistochemistry. In addition, immunofluorescence revealed the 

presence of pro-inflammatory cytokines in biofilm-covered tissues. This inflammatory state 

was observed in normal-looking tissues that were associated with biofilms, suggesting that 

such tissues might be in a pro-carcinogenic state and that biofilm formation indeed promotes 

colon tumorigenesis71. In sum, this example shows how a combination of several 

metabolomic approaches with orthogonal biological techniques can be used for the initial 

metabolite discovery, leading to the elucidation of the potential role of biofilms in colon 

carcinogenesis (FIG. 3). According to this study, colonic bacteria utilize polyamines to build 

biofilms (producing DAS), and this biofilm formation induces pro-inflammatory and pro-

carcinogenic effects in the host tissues, increasing the risk of tumour formation. 

Interestingly, some metabolomic studies have associated DAS with other cancers, including 

cancers of the lung72, breast73, blood74 and bladder75, as well as identifying it as a dietary 

metabolite76. Thus, further studies assessing the roles of diet and bacteria in cancers are of 

the utmost importance.

Metabolic regulation of cell pluripotency

At the epigenetic level, metabolites have been shown to regulate pluripotency in human ES 

cells, with a recent study revealing a metabolic switch during the transition between human 

naive and primed ES cells2. It has been found that this switch is regulated by nicotinamide 

N–methyltransferase (NNMT), which controls SAM levels that are required for histone 

methylation. Analysis of oxygen consumption rates revealed that primed human ES cells 

have a lower mitochondrial respiration capacity than naive human ES cells, and 

transcriptomic analysis confirmed a downregulation of mitochondrial electron transport 

chain genes in the primed state. The transition from naive to primed human ES cells also 

involved reduced WNT signalling and increased hypoxia-inducible factor 1α (HIF1α) 

stabilization (shown by proteomic analysis). Untargeted and targeted metabolomics based on 

gas chromatography and liquid chromatography mass spectrometry (GC–MS and LC–MS) 

(BOX 1) revealed concomitant changes in metabolic pathways, including glycolysis, fatty 

acid β-oxidation and lipid biosynthesis. Transcriptomic and genomic analyses showed that 

the genes involved in these pathways were also changed. The use of WNT inhibitors and the 

generation of HIF1α-knockout cells by CRISPR–Cas gene editing further demonstrated that 

WNT activity is required for the naive state, and that HIF1α is required for human ES cell 

transition to the primed state. Furthermore, the loss of NNMT in naive human ES cells was 

associated with an increase in repressive histone marks (histone 3 Lys27 trimethylation; 

H3K27me3) in developmental and metabolic genes that regulate the metabolic switch in 

naive to primed cells. Collectively, this comprehensive analysis showed that both NNMT 

and the metabolic state regulate ES cell development.

Novel therapy for cardiovascular disease

Another example shows how using metabolomics, together with other techniques, can lead 

to the establishment of a new therapeutic approach — in this case, for decreasing the risk of 
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CVD. Initially, using untargeted metabolomics and then targeted metabolomics for 

validation and quantification (BOX 1), an association between an increased risk of CVD and 

plasma concentrations of choline, betaine and TMAO was established19,77,78. This was 

further replicated in apolipoprotein E−/− mice, a mouse model that is highly susceptible to 

the formation of atherosclerotic plaques — the primary cause of CVD — that were fed high-

choline and high-TMAO diets, showing a significant correlation between plasma TMAO and 

the formation of atherosclerotic plaques. Functional experiments revealed that 

trimethylamine (TMA)-containing nutrients such as choline, phosphatidylcholine and 

carnitine are dietary precursors for TMAO, and that liver flavin monooxygenases (FMOs; 

primarily FMO3) are responsible for converting TMA to TMAO. Analysis of antibiotic-

treated mice, together with the observation that the risk of CVD was transmissible upon 

microbial transfer, led to the conclusion that the microbiome generates TMA. As inhibition 

of FMO3 can produce side-effects and thus does not provide a sustainable therapy, the next 

step was to search for an inhibitor of microbial TMA production and investigate its potential 

as a therapeutic for CVD. Using a structural analogue to choline, 3,3–dimethyl-1–butanol 

(DMB), found in extra-virgin olive oil, it was possible to inhibit microbial TMA lyases, 

which are responsible for TMA formation. In vivo experiments showed that TMAO levels 

were indeed reduced in mice fed with high-choline or high-carnitine diets when these mice 

were simultaneously treated with DMB. Treatment with DMB also prevented atherosclerotic 

lesion development in apolipoprotein E−/− mice on a choline-enhanced diet79. Altogether, 

this work led to the proposal of a novel therapy for CVD, which bypasses the issues that 

arise when using inhibitors targeted to a patient’s own proteins — an approach potentially 

resulting in various side-effects for the patient. Instead, this study showed that harmful 

metabolites can be inhibited at their earliest production, by ‘drugging’ the gut microbiome, 

which in the case of CVD is the source of the metabolite contributing to the disease.

Metabolite-driven regulation of β–cells

An important metabolite, 3–carboxy-4–methyl-5–propyl-2–furanpropanoic acid (CMPF), 

was recently identified in the plasma of humans with gestational diabetes, as well as in those 

with impaired glucose tolerance and type 2 diabetes80. CMPF was identified by untargeted 

and targeted metabolomic analysis (BOX 1), with further validation by enzyme-linked 

immunosorbent assay (ELISA).

Mice treated with CMPF at doses comparable to levels found in human individuals with 

diabetes developed glucose intolerance and impaired insulin secretion after an oral glucose-

tolerance test. This was monitored using targeted mass spectrometry and ELISA to measure 

plasma and tissue CMPF concentrations, and also by glucose-stimulated insulin secretion 

(GSIS) tests. Mechanistically, CMPF was shown to impair mitochondrial function, decrease 

glucose-induced ATP synthesis and induce oxidative stress, as assessed by measuring 

mitochondrial membrane potential and with fluorescence- and bioluminescence-based 

assays, as well as gene expression analysis. Inhibitors of organic anion transporters (OAT), 

which are responsible for the clearance of CMPF, blocked the transportation of CMPF into 

β–cells of the pancreas and prevented β–cell dysfunction. In line with this, treatment of 

pancreatic islets isolated from OAT3-knockout mouse models with CMPF had no effect on 

insulin content or GSIS. Altogether, the metabolite CMPF, identified by metabolomic 
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analysis, provides a mechanistic link between β–cell dysfunction and diabetes and has been 

shown to function through impairing mitochondrial function and inhibiting insulin 

biosynthesis.

Mechanism of ischaemia–reperfusion injury

Steady state flux analysis was recently used to help to identify the mechanisms of 

ischaemia–reperfusion injury, which is a type of tissue damage resulting from oxidative 

stress and generation of reactive oxygen species (ROS) following the return of circulation to 

tissue regions previously deprived of oxygen. It was revealed that succinate, which is a 

metabolite of the tricarboxylic acid (TCA) cycle, is the driver of ROS generation, which can 

lead to heart attack and stroke following ischaemia–reperfusion injury81. The authors also 

used a combination of untargeted and targeted metabolomics (BOX 1) to reveal an elevation 

of succinate levels across several organs in a mouse model of ischaemia. Mechanistic studies 

involving in silico modelling, mitochondrial membrane potential measurements, ratiometric 

assessment and fluorescence assays revealed that in ischaemia, succinate dehydrogenase 

(SDH) functions in reverse, accumulating succinate from fumarate. Upon reperfusion, 

succinate is oxidized and drives electrons back through the mitochondrial complex I, thus 

generating ROS. Together, these findings indicated that SDH could be a target for the 

prevention of ROS accumulation following reperfusion of ischaemic tissue. Accordingly, 

antimetabolite inhibitors of SDH prevented succinate accumulation, inhibiting electron flow 

through complex I and subsequent ROS production, and thereby providing protection from 

ischaemia–reperfusion injury.

Regulation of cancer cell metabolism

In addition to the previous example, metabolic flux analysis was recently used to investigate 

the role of mitochondrial enzyme serine hydroxymethyltransferase (SHMT2) in human 

glioblastoma cells. Specifically, the roles of SHMT2 in central carbon metabolism and in 

regulating pyruvate kinase M2 (PKM2) activity were investigated and were further linked to 

glioma cell survival82. In these experiments, SHMT2-knockdown cells were treated with 

uniformly labelled 13C-glucose and showed increased flux from pyruvate to lactate, citrate 

and alanine, with a concomitant increase in PKM2 activity and oxygen consumption rate. In 

addition, overexpression of RNAi-resistant SHMT2 cDNA reverted these effects, confirming 

that SHMT2 negatively affects PKM2. Thus, the stable isotope analysis showed that SHMT2 

expression changes the metabolism of cancer cells and limits carbon flux into the TCA cycle 

via suppression of PKM2. This has been further shown to improve the survival of cells in 

ischaemic tumour regions. In addition, the study showed that the survival of cancer cells 

with high SHMT2 expression can be impaired if glycine decarboxylase is inhibited, as this 

causes accumulation of glycine, which then contributes to the production of toxic 

metabolites. Altogether, this series of experiments provided novel insights into cancer cell 

metabolism and demonstrated how metabolic changes can affect cell properties and 

responses — in this case, cell survival.
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Future perspectives

Metabolomics is an exciting and evolving research area, with numerous success stories 

demonstrating that its power extends from biomarker discovery to understanding the 

mechanisms that underlie phenotypes. This step towards mechanistic understanding has 

been made possible by advances in analytical technologies and informatics, and the 

combination of these tools has generated novel insights into chemical physiology. It has also 

been made possible as metabolomics has become more widely used in combination with 

orthogonal technologies, such as genomics, proteomics, structural biology and imaging, as 

well as with various techniques that allow us to modify gene expression, enzymatic activity, 

cell signalling or whole metabolic pathways, including the contribution of the naturally 

occurring microbiota. Thus, the future prospects of metabolomics lie not only in the unique 

information it provides, but in its integration into systems biology.
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Figure 1. From metabolites to pathways and mechanisms
The workflow outlines a holistic approach that begins with high-throughput untargeted 

metabolite profiling. Analysis of biofluids, cells or tissues reveals quantitative metabolite 

changes (as a result of a stimulus) that can be validated further. Metabolites can be mapped 

and analysed within metabolic pathways to relate the metabolites to each other, and within 

interconnected biological pathways, providing potential targets for further mechanistic 

studies. The combination of metabolomic, orthogonal biological analysis and isotope–

assisted deciphering of pathways allows the mechanism of the aberrant phenotype to be 

ascertained.
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Figure 2. Controlling and influencing metabolism: perspectives from metabolomics
Using various orthogonal techniques, targets identified with metabolomics can be further 

verified and investigated in more detail. For instance, other ‘omics’ approaches, including 

(epi)genomics, transcriptomics and proteomics, can reveal further mechanistic insights into 

phenotypical changes associated with the metabolite. Various orthogonal techniques also 

allow targeting of metabolic pathways and can be used to influence metabolite levels and to 

interfere with metabolic pathways. These approaches can be directed at the gene level and 

aimed at silencing gene expression, with techniques like CRISPR–Cas-mediated knock outs 

or RNA interference (RNAi). Alternatively, metabolic pathways can be influenced at at the 

protein level with the use of antimetabolites. Manipulating sources of exposure to different 

stimuli can also influence the metabolome, providing further mechanistic insights. For 

instance, using antibiotics or germ-free models with species-specific inoculation reveals the 

direct effect of the microbiome on metabolite production. Similarly, immunomodulators can 

be used to change the efficacy of the host immune system to respond to both the resident 

microbiota and pathogens, and their metabolic products. This collectively opens up 

possibilities for better understanding and, eventually, controlling metabolism.
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Figure 3. Novel biological insights
Diacetylspermine (DAS) has a role in biofilm-associated colon cancer. Various metabolomic 

and orthogonal biological techniques contributed to the association of DAS with bacterial 

biofilms and their role in the pathology of cancer. Fluorescence in situ hybridization (FISH) 

analysis and 16S rRNA sequencing identified the presence of bacterial species and biofilms 

on colon tissues. Untargeted and targeted metabolomics identified and validated the 

association of polyamine metabolites with colon cancer tissues. Stratification by biofilm 

status showed that DAS was upregulated primarily in biofilm-associated tissues, which was 

confirmed by mass spectrometry imaging. Network modelling using the KEGG and BioCyc 

databases, and pathway analysis using untargeted stable-isotope assisted metabolomics, 

showed that DAS is an end-product of polyamine metabolism. For further analysis, 

orthogonal techniques were used. Immunohistochemistry and immunofluorescence revealed 

increased cellular proliferation and pro-inflammatory cytokines in biofilm-associated 

tissues. The combination of these techniques led to the conclusion that bacterial biofilms 

induce a pro-carcinogenic state in the colon epithelium.
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