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Abstract. Large variability in computed tomography (CT) radiomics feature values due to CT imaging param-
eters can have subsequent implications on the prognostic or predictive significance of these features. Here, we
investigated the impact of pitch, dose, and reconstruction kernel on CT radiomic features. Moreover, we intro-
duced correction factors to reduce feature variability introduced by reconstruction kernels. The credence car-
tridge radiomics and American College of Radiology (ACR) phantoms were scanned on five different scanners.
ACR phantom was used for 3-D noise power spectrum (NPS) measurements to quantify correlated noise. The
coefficient of variation (COV) was used as the variability assessment metric. The variability in texture features
due to different kernels was reduced by applying the NPS peak frequency and region of interest (ROI) maximum
intensity as correction factors. Most texture features were dose independent but were strongly kernel dependent,
which is demonstrated by a significant shift in NPS peak frequency among kernels. Percentage improvement in
robustness was calculated for each feature from original and corrected %COV values. Percentage improve-
ments in robustness of 19 features were in the range of 30% to 78% after corrections. We show that NPS
peak frequency and ROI maximum intensity can be used as correction factors to reduce variability in CT texture
feature values due to reconstruction kernels. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1

.011013]
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1 Introduction
Radiomics is a collection of many distinct data processing tech-
niques with the aim of extracting quantitative information from
medical images for subsequent model building.1 These tech-
niques have shown promise as a tool for guiding treatment deci-
sions in oncology.2–4 Studies have highlighted the importance of
texture analysis by connecting cancer phenotypes captured by
computed tomography (CT) and other imaging modalities with
underlying gene expression profiles in several cancer types.5–8

The robustness of radiomic features has been a topic of recent
research.9,10 Variations in image acquisition and reconstruction
parameters using one scanner or between different scanners may
affect the values of the extracted radiomic features. The stand-
ardization of CT parameters and/or radiomics techniques may
be necessary to the successful application of extractable imaging
features as biomarkers for tumor phenotype, diagnosis, progno-
sis, and decision support.11 One way to test the robustness of
these features with varying acquisition and reconstruction
parameters is to evaluate their fundamental characteristics
using texture phantoms.12–14 Texture phantoms are advanta-
geous since they provide a stable geometry and durable physical
characteristics for testing the robustness of radiomic features as
a function of CT parameters.

The impact of reconstruction kernel, radiation dose, and
pitch on CT radiomic features is not well established. A recent
report by Zhao et al.9 recommended phantom studies for the
investigation of pitch, mAs, and reconstruction kernel impact
on features on a multiscanner scale. Recent studies reported
that radiomic features were significantly affected by different
reconstruction kernels.15–17 Another study investigated the effect
of dose reduction and reconstruction method on texture features
and suggested that variability in CT texture features might be
due to acquisition and reconstruction process rather than to
changes in nodules themselves.18 Recently, Solomon et al.19

studied the effects of acquisition settings and reconstruction ker-
nels on radiomic feature values in liver lesions, lung nodules,
and kidney stones and found significant variation due to
these parameters. All of these studies focused on variation in
features but did not address how the inherent CT image
noise due to dose, reconstruction kernel, and other acquisition
and reconstruction parameters might be used to reduce
variability.

The mAs setting (dose), the pitch, and the reconstruction ker-
nel influence the noise texture of a CT image. Image noise is
inversely proportional to the square root of the mAs for filtered
back-projection (FBP)-based reconstructions, while pitch is
directly related to radiation dose. Reconstruction kernels deter-
mine the smoothness or sharpness of CT images. Smoother ker-
nels use low-pass filters to block high-frequency content to have
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better low-contrast resolution and low noise. In contrast, sharper
kernels preserve high-frequency content for better spatial reso-
lution at the expense of more noise in the final CT image.

When the noise value in each voxel is dependent on the noise
values in the neighboring voxels then the noise is said to be cor-
related. Both the dose level and the kernel produce correlated
noise texture through the reconstruction process. Texture fea-
tures might be sensitive to this correlated noise in CT image
because most of these features describe spatial relationships
of voxel intensities within a region of interest (ROI). For
example, features based on gray-level cooccurrence matrices
(GLCM) characterize the texture of an image by counting
how often pairs of voxels with the same gray level in certain
spatial relationship occur within a ROI. Therefore, a fundamen-
tal question is to what extend GLCM features describe under-
lying texture information content of a CT image. This can be
investigated by systemically quantifying the noise texture pro-
duced by different reconstruction kernels and tube current set-
tings using radiomics phantoms.

The noise power spectrum (NPS) is an analytical tool for
quantifying the noise texture of a CT image. The frequency fluc-
tuations in an image and other physical factors affecting image
quality such as gain, spatial resolution, and additive noise could
be quantified by the NPS.20 NPS measurements for a CT image
were reported as early as 1978 by Riederer et al.21 Many inves-
tigators used NPS metric as a task-based approach to character-
ize the noise texture and noise magnitude in CT.22–24 For CT
images reconstructed with different kernels, noise increases
strongly for small improvements in sharpness.25 Solomon et al.26

investigated how image noise changes with varying dose modu-
lation across two CT scanners. These authors also used the peak
frequency and root mean square difference for comparing the
noise texture of various kernels across two scanners and sug-
gested that the noise texture from a kernel was related to
the peak frequency of the measured NPS.27 As texture features
in CT radiomics are significantly affected by low-frequency
(smooth kernels) and high-frequency (sharp kernels) noise,15,16

it would be useful to correlate these noise textures (and their
peak frequencies) with the numerical values of texture features.
Such a correlation would help in establishing a mathematical
relationship between features values and correlated noise.
Typically, reconstruction kernels in CT are vendor specific;
thus, it would also be useful to evaluate how feature values cor-
relate with noise texture across vendors. In this study, credence
cartridge radiomic (CCR) texture phantom12 images generated
using different kernels and tube currents for several CT scanners

were used to extract radiomic features. The standard American
College of Radiology (ACR) phantom was imaged under the
same conditions to quantify the correlated noise texture from
NPS measurements.

The purpose of this study was to characterize how correlated
noise texture due to different kernels influences the variability of
texture features. We designed experiments to evaluate texture
features as a function of kernel strength, radiation dose, and
pitch. Noise textures generated by different kernel and mAs set-
tings were quantified using the NPS for several CT scanners. We
identified features that showed a trend with kernel strength and
reduced the variability in the numerical values of these features
by applying correcting factors based on the NPS peak frequency
and ROI maximum intensity.

2 Methods

2.1 Acquisition and Reconstruction

The CCR phantom12 and the standard ACR CT accreditation
phantom were scanned on five different scanners from three dif-
ferent manufacturers: General Electric (GE), Siemens, and
Philips Healthcare. The CCR phantom was used for extracting
radiomic features and the ACR phantom was used to quantify
noise texture for different reconstruction kernels. For consis-
tency, the same acquisition and reconstruction parameters were
used for both feature extraction and noise quantification. The
variation of reconstruction kernels available on the five CT scan-
ners was employed to obtain smoothest to sharpest phantom
images. The term “kernel strength” throughout this paper rep-
resents a kernel scale from very smooth to very sharp images.
Details of the kernels used as well as other CT parameters for
each scanner are listed in Table 1.

To see the effect of radiation dose and pitch variation on fea-
tures, CCR phantom scans were acquired for different mAs and
pitch settings as shown in Tables 2 and 3. The dose modulation
or automatic exposure control options available on the CT con-
trol panel were not used for this study. ACR phantom scans were
also acquired for different radiation dose settings for NPS mea-
surements, and the same acquisition parameters were used for
extracting radiomic features as listed in Table 2.

2.2 Feature Extraction and Intrascanner Variability
Assessment

An advanced imaging software package (Mirada RTx 1.6,
Mirada Medical, Oxford, United Kingdom) was used for

Table 1 CT scanners, acquisition, and reconstruction parameters for varying reconstruction kernels.

CT scanner kVp mAs
Recon.

FOV (mm)
Scan
type

Slice thickness,
recon. interval

Detector configuration
(mm) Reconstruction kernel (variable)

GE Discovery STE 120 65 250 Helical 1.25 mm, adjacent Det. coverage = 40 Soft, standard, detail, lung, and edge

Philips Brilliance 64 120 65 250 Helical 1.5 mm, adjacent 64 × 0.625 Smooth (A), standard (B), sharp(C),
lung enhanced (L), and Y -sharp (YA)

Siemens Definition AS 120 65 250 Helical 1.5 mm, adjacent 64 × 0.6 I26f-2, I30f-2, I40f-2,I44f-2, I50f-2, and
I70f-2

Siemens Sensation 64 120 65 250 Helical 1.5 mm, adjacent 64 × 0.6 B10f, B20f, B31f, B50f, B60f, and B70f

Siemens Sensation 40 120 65 250 Helical 1.5 mm, adjacent 40 × 0.6 B10f, B20f, B31f, B50f, B60f, and B70f
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importing, exporting, and contouring purposes. An automatic
contouring tool in Mirada RTx was used to contour three-dimen-
sional (3-D) ROIs. A spherical ROI of 4.2 cm3 was contoured
on the central region of the shredded rubber cartridge of the
CCR phantom12 and used for all mAs, pitch, and kernel settings
for all scanners. The rubber cartridge was chosen because it was
reported to have HU value characteristics similar to the nonsmall
cell lung cancer tumors.12 Eighty-eight features14 including
shape (11), intensity histogram (16), GLCM (26), GLRLM
(11), GLSZM (11), NGTDM (05), and fractal dimensions
(8) were extracted using an in-house program. Intensity volume
histograms were used to calculate the first-order features.
GLCM-based second-order features were initially developed
by Haralick et al.28,29 Volumetric interpretations of GLCM fea-
tures were proposed by Kurani et al.30 GLCM features describe
spatial relationships of voxel intensities within an ROI; they
characterize the specific texture of an image by counting how
often pairs of voxels with the same gray level in certain spatial
relationship occur in an ROI.31 GLRLM features were imple-
mented in our program according to the definitions provided
by Galloway,32 Dasarathy and Holder,33 and Chu et al.34 Texture
features based on NGTDM and GLSZMwere first developed by
Amadasun and King35 and Thibault et al.,36 respectively. Fractal
dimensions features were calculated as described in Sarkar and
Chaudhuri37 and Jin and Ong.38 The intensities of image voxels
were discretized using 64 equispaced gray levels for calculating
all texture features. The absolute value of percent coefficient of
variation ½%COV ¼ jðS:D∕meanÞ � 100j� was used as a metric
to assess the intrascanner variability for each feature due to
pitch, reconstruction kernel, and radiation dose. All features
were classified into three groups based on %COV: very
small (%COV < 10), small (10 ≤ %COV ≤ 20), and large
(%COV > 20) range of variation.

2.3 Three-Dimensional Noise Power Spectrum

Two consecutive scans of the ACR phantom at each of kernel
and mAs setting were used for the quantification of noise tex-
ture. 3-D NPS was measured20 using the equation

EQ-TARGET;temp:intralink-;e001;326;380

NPS3−Dðfx; fy;fzÞ

¼ ΔxΔyΔz
NxNyNz

hDFT3−DjI1stðx; y; zÞ − I2ndðx; y; zÞj2i; (1)

where fx, fy, and fz are the spatial frequencies (mm−1) in the x-,
y-, and z-directions, respectively. Likewise Δx, Δy, and Δz are
the pixels sizes (mm) and Nx, Ny, and Nz are the number of
pixels in the corresponding directions in the ROI. DFT3D

denotes the 3-D Fourier transform, and h: : : : : : i is the ensemble
mean of all ROIs. I1st ðx; y; zÞ and I2nd ðx; y; zÞ are the voxel
values (HU) of an ROI at position ðx; y; zÞ for the first and sec-
ond scans. Subtraction of the first scan from the second would
produce a detrended dataset in which the voxel values have zero
mean and only image noise is present.

The 3-D NPS was measured using images from the third
module of ACR phantom following the previously described
methodology and freely available MATLAB code by Friedman
et al.39 In our case, a voxel size of 0.49 × 0.49 × 1.5 mm3 and an
ROI size of 128 × 128 × 22 pixel3 were used for the Siemens and
Philips scanners, whereas a voxel size of 0.49×0.49×1.25mm3

and an ROI size of 128 × 128 × 26 pixel3 were used for the GE
scanners. Since voxel size variation has been shown to signifi-
cantly impact numerical values of some radiomic features,14 the
same voxel size was used for both CCR and ACR phantoms
in this study. Peak frequency values for different kernels were
calculated by fitting a mathematical function to each NPS curve

Table 2 CT Scanners, acquisition, and reconstruction parameters used for varying radiation dose (mAs).

CT scanner kVp Kernel
Recon.

FOV (mm)
Scan
type

Slice thickness,
reconstruction interval

Detector
configuration (mm)

Radiation dose (mAs)
(variable)

GE Discovery STE 120 Standard 250 Helical 1.25 mm, adjacent Det. coverage= 40 50, 100, 200, 300, 400

Philips Brilliance 64 120 Standard (B) 250 Helical 1.5 mm, adjacent 64 × 0.625 50, 100, 200, 300, 400

Siemens Definition AS 120 I31f-2 250 Helical 1.5 mm, adjacent 64 × 0.6 50, 100, 200, 300, 400

Siemens Sensation 64 120 B31f 250 Helical 1.5 mm, adjacent 64 × 0.6 50, 100, 200, 300, 400

Table 3 CT Scanners, acquisition, and reconstruction parameters used for varying pitches.

CT scanner kVp mAs
Recon.

FOV (mm)
Scan
type

Recon.
kernel

Slice thickness,
recon. interval

Detector
configuration

(mm) Pitch (variable)

Philips Brilliance 64 120 65 250 Helical Standard
(B)

1.5 mm, adjacent 64 × 0.625 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3

Siemens Definition AS 120 65 250 Helical I31f-2 1.5 mm, adjacent 64 × 0.6 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4

Siemens Sensation 64 120 65 250 Helical B31f 1.5 mm, adjacent 64 × 0.6 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4
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and finding the peak frequency value corresponding to maxi-
mum NPS magnitude.

2.4 Noise Power Spectrum Peak Frequency and
Maximum Intensity Corrections

Nineteen texture features based on GLCM, GLRLM, and
NGTDM were computed using modified feature definitions
that incorporate the peak frequency (fpeak) and maximum inten-
sity (Imax) as correction factors. That is,

EQ-TARGET;temp:intralink-;e002;63;645Fcðv; Ng; KÞ ¼ Fðv; Ng; KÞ � fmpeakðKÞ; (2)

EQ-TARGET;temp:intralink-;e003;63;602Fcðv; Ng; KÞ ¼ Fðv; Ng; KÞ � InmaxðKÞ; (3)

where m and n are the exponents, m ¼ 1∕2, −1∕2, −1, or −2,
and n ¼ 1, −1, −2, or −4 depending on the feature. The symbol
Fc ðv;G; KÞ is the corrected feature value, and F ðv;G;KÞ is the
original feature value. A constant number of gray level,
Ng ¼ 64, was used. Voxel size “v” was constant for Philips
and Siemens scanners. However, a normalization factor with
respect to voxel size was applied for images from the GE scan-
ner. The only variable was the kernel strength “K” that varied
from smoothest to sharpest for all CT scanners. The symbol,
ImaxðKÞ, is the maximum voxel intensity within the rubber
spherical ROI at kernel strength K. The NPS peak frequency
and ROI maximum intensity correction factors were further
tested for a larger spherical rubber cartridge ROI of 14.2 cm3.

The ranges ofm and n in Eqs. (2) and (3) were determined by
plotting radiomic feature values as a function of kernel strength
and then analyzing the mathematical trends that each feature fol-
lows. In a similar way, feature values were also plotted as a func-
tion of peak frequencies and maximum intensities obtained from
the ROI to determine their behavior. Using the extracted feature
values from rubber ROI and peak frequencies from noise power
spectra measurements at respective kernels, a corresponding
correction factor was identified for each feature. For example,
a correction factor for GLCM-contrast (Table 5) can be obtained
by pluggingm ¼ −1∕2 in Eq. (2). Similarly, the corrections fac-
tors for all 19 texture features can be obtained by plugging dif-
ferent values of m and n in Eqs. (2) and (3).

2.5 Percent Improvement in Feature Robustness

The absolute value of the percent decrease in feature variability
(or percentage improvement in feature robustness) for each tex-
ture feature was calculated using the equation

EQ-TARGET;temp:intralink-;e004;63;227Percentage improvement ¼
����
%COVorig: −%COVcorr:

%COVorig:

���� � 100;
(4)

where %COVorig: is the original percent COV calculated for
each feature from all CT datasets acquired with different kernels
for all scanners. Likewise, %COVcorr: is the corrected percent
COV computed after applying NPS peak frequency and ROI
maximum intensity corrections using Eqs. (2) and (3).

3 Results

3.1 Intrascanner Variability Assessment

The intrascanner variability for 88 radiomic features due to vary-
ing reconstruction kernel, mAs, and pitch variation is shown in
Fig. 1. For varying kernels, 30% of the total features had large
variability (COV > 20%) for all scanners as shown in Fig. 1(a).
The highest variability was found for GE Discovery STE scan-
ner for which almost half of the features had %COV > 20%.
A different variability trend was observed for features as a func-
tion of radiation dose and pitch. For both radiation dose and
pitch, 80% to 90% of features were reproducible (COV < 10%)
for all scanners as shown in Figs. 1(b) and 1(c), respectively.
Most GLSZM features and NGTDM-Busyness were found to
have large variation (COV > 20%) with pitch and mAs settings.

Fig. 1 Intrascanner variability in radiomics features due to different
CT parameters. 30% to 50% of total features had large variability
(%COV > 20) for (a) varying kernels; however, (b) for radiation
dose and (c) pitch, only 10% to 15%, respectively, of features had
variability >20%.
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Figure 2 shows the GLCM-based energy and contrast fea-
tures as a function of pitch, dose, and kernels for the Siemens
Sensation 64 scanner. The variable index (1 to 5) on the x-axis
represents values of pitch, dose, and strength of the kernel.
Numerical values for both features were found to be independent

of variation in pitch and radiation dose. However, these two fea-
tures were highly dependent on reconstruction kernels. This is
likely due to differences in noise texture in CT images produced
by different kernels. In contrast, variation in dose and pitch did
not affect noise texture.

Fig. 2 (a) Contrast and (b) energy from GLCM as a function of kernel strength, pitch, and dose for
Siemens Sensation 64 CT scanner. Kernels are indicated by solid circles and vary from smooth
(1) to very sharp (5), namely, B20f, B31f, B50f, B60f, and B70f. Pitch is depicted by open circles varying
from 0.6 to 1.4 in steps of 0.2, and mAs is depicted by solid triangles with values of 50, 100, 200, 300, and
400. Numerical values for both GLCM features are linearly correlated with kernel strength but are almost
independent of pitch and dose.

Fig. 3 Measured 3-D NPS as a function of spatial frequency for various mAs settings for four CT scan-
ners. (a) GE Discovery STE, (b) Philips Brilliance 64, (c) Siemens Definition AS, and (d) Siemens
Sensation 64. Most texture features were robust across varying dose levels as well as across different
CT scanners as indicated by the small variation in peak frequencies.
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3.2 Noise Power Spectrum

Figure 3 shows 3-D NPS as a function of spatial frequency at
various “mAs” for four different CT scanners. As expected,
noise magnitude decreases as radiation dose increases from
50 to 400 mAs for all scanners. The shape of the NPS curve
was almost independent of radiation dose variation, that is,
the peak frequency was nearly the same for all “mAs” settings.
The peak frequency shifted slightly across different CT scan-
ners, ranging from 0.15 to 0.3 mm−1, with the lowest and high-
est values for Definition AS and Discovery STE, respectively.
The important point here is that Siemens Definition AS scanner
uses SAFIRE (sinogram affirmed iterative reconstruction),
while all other scanners use FBP for image reconstruction.

The iterative reconstruction algorithm typically provides the
same image quality as FBP at lower radiation doses. The shape
of NPS was consistent with that of expected FBP reconstruction
as depicted by three orthogonal planes of NPS measured from
the third module of the ACR phantom.39

Noise power spectra as a function of spatial frequency for
different kernels for all scanners are shown in Fig. 4. Note
that the peak frequency gradually shifts to higher values as
the kernel strength becomes sharper. The calculated peak fre-
quency values for all kernels are listed in Table 4. For smoother
kernels, there was a slight shift in peak frequency as kernel
strength varies from B10s to B31s for the Sensation 64 scanner
or from soft to standard for the GE scanner as shown in Fig. 5(a).
However, peak frequency increases abruptly for sharper kernels

Fig. 4 Measured NPS as a function of spatial frequency for five CT scanners. (a) Siemens Sensation 64,
(b) Siemens Sensation 40, (c) Siemens Definition AS, (d) Philips Brilliance 64, and (e) GE Discovery
STE. For each scanner, the peak frequency slightly shifted to the right as kernel strength changed
from smooth to sharp reconstruction. The large shift in the peak frequency was found for the Edge kernel
of the GE Discovery scanner (a PET/CT scanner).
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as shown in Fig. 5(b). In particular, the peak frequency value for
GE Edge kernel was almost four times higher than that for the
Soft kernel. This shift of the NPS curve to higher frequencies
with kernel strength is due to the correlated noise texture in
the CT image. Texture features based on GLCM are sensitive
to this correlated noise introduced through the reconstruction
process but are independent of correlated noise introduced
through the acquisition process (i.e., mAs settings).

3.3 Peak Frequency and Maximum Intensity
Corrections

The correction factors based on peak frequency and maximum
intensity for 19 features from different texture feature groups are
shown in Tables 5 and 6. After a thorough investigation into
NPS peak frequencies and maximum voxel intensities from
the rubber cartridge ROI for all kernels, we found that the square
root of the peak frequency was related to the maximum voxel
intensity as shown in Fig. 6. Two features, GLCM-inverse

variance and GLCM coarseness, were previously found to be
voxel size-dependent.14 Therefore, a correction factor with
respect to voxel size along with peak frequency or ROI maxi-
mum intensity was also applied to these two features. The peak
frequency and maximum intensity corrections [Eqs. (2) and (3)]
were applied to all of the features that had COV > 10% with
varying kernels (Fig. 1). However, the features that showed per-
cent improvement>30%were listed in Table 5 and 6. NGTDM-
busyness and most GLSZM features, namely, large area empha-
sis, low intensity emphasis, low intensity small area emphasis,
low intensity large area emphasis, and high intensity low area
emphasis, did not improve after corrections.

Two texture features, GLCM-energy and GLCM-contrast, as
a function of kernel strength for different scanners are shown in
Fig. 7. Without peak frequency corrections, both features were
highly correlated with kernel strength, but, after applying peak
frequency corrections, both features values were more reproduc-
ible with kernel strength. Similar to NPS peak frequency,
maximum voxel intensity within an ROI was independent of

Table 4 Peak frequencies for different reconstruction kernels from NPS measurements for all CT scanners.

CT scanners Peak frequency, f peak (mm−1)

Siemens Definition AS I26s-2 I30s-2 I40s-2 I44s-2 I50s-2 I70s-2

0.15 0.15 0.20 0.33 0.50 0.55

Siemens Sensation 64 B10s B20s B31s B50s B60s B70s

0.15 0.20 0.25 0.55 0.63 0.65

Siemens Sensation 40 B10s B20s B31s B50s B60s B70s

0.15 0.20 0.23 0.55 0.60 0.73

GE Discovery STE Soft Standard Detail Lung Edge —

0.23 0.25 0.30 0.55 1.05

Philips Brilliance 64 Smooth (A) Standard (B) Sharp (C) Lung enh. (L) Y sharp (YA) —

0.20 0.23 0.25 0.43 0.55

Fig. 5 Measured 3-D NPS as a function of spatial frequency for (a) smoother kernels and (b) sharper
kernels for three CT scanners. For low kernel strengths, only a slight shift in peak frequency was
observed while, for high kernel strengths, the shift in peak frequency was significant, especially for
GE edge kernel. Likewise, variability in CT texture features was found to be less pronounced for soft
kernels than for sharper kernels. [Note the different scales along vertical axis in panels (a) and (b)].
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Table 5 GLCM feature definitions, NPS peak frequency, and maximum intensity corrections.

Feature Original feature formula, F ðv;Ng; K Þ Corr. feature formula Corr. feature formula

Energy
PNg

i¼1

PNg
j¼1 pði ; jÞ2 F ðv; Ng; K Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv;Ng; K Þ � Imax:ðK Þ

Contrast
PNg−1

n¼0 n2fPNg
i¼1

PNg
i¼1 pði ; jÞg; ji − j j ¼ n F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv; Ng; K Þ∕Imax:ðK Þ

Local homogeneity
PNg

i¼1

PNg
j¼1

pði ;jÞ
1þði−jÞ2 F ðv; Ng; K Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv;Ng; K Þ � Imax:ðK Þ

Difference entropy −
PNg−1

i¼0 Px−y ðiÞlog2fpx−y ðiÞg F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f peakðK Þp

F ðv; Ng; K Þ∕Imax:ðK Þ

Sum variance
P2Ng

i¼2 ½i þPNg
i

PNg
J pði ; jÞ logpði ; jÞ�2 logfpxþy ðiÞg F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv; Ng; K Þ∕Imax:ðK Þ

Inverse variance
PNg

i¼1

PNg
j¼1

pði ;jÞ
ji−j j2, i ≠ j F ðv; Ng; K Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv; Ng; K Þ∕Imax:ðK Þ

Inverse variance P
PNg

i¼1

PNg
j¼1

pði ;jÞ
ði−jÞ2 F ðv; Ng; K Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv;Ng; K Þ � Imax:ðK Þ

Cluster tendency
PNg

i¼1

PNg
j¼1 ½i þ j − μx − μy �2pði ; jÞ F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv; Ng; K Þ∕Imax:ðK Þ

Cluster prominence
PNg

i¼1

PNg
j¼1 ½i þ j − μx − μy �4pði ; jÞ F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv; Ng; K Þ∕Imax:ðK Þ

Dissimilarity
PNg

i¼1

PNg
J¼1 ji − j jpði ; jÞ F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv; Ng; K Þ∕Imax:ðK Þ

Correlation
PNg

i¼1

PNg
j¼1

ði jÞpði ;jÞ−μx μy
σx σy

F ðv;Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f peakðK Þp

F ðv; Ng; K Þ∕Imax:ðK Þ

Information correlation 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e½−2.0ðHXY 2−HXY Þ�2

p
F ðv; Ng; K Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f peakðK Þp
F ðv;Ng; K Þ � Imax:ðK Þ

HXY ¼ −
PNg

i¼1

PNg
j¼1 pði ; jÞ logfpði ; jÞg

HXY1 ¼ −
PNg

i¼1

PNg
j¼1 pði ; jÞ logfpx ðiÞpy ðjÞg

HXY2 ¼ −
PNg

i¼1

PNg
j¼1 px ðiÞpy ðjÞ logfpx ðiÞpy ðjÞg

Note: p ði ; jÞ is the cooccurrence matrix.Ng is the number of discrete gray levels. px is the i ’th entry obtained by summing the rows of pði ; jÞ, and py
is the j ’th entry obtained by summing the columns of pði ; jÞ. μ, μx , and μy are the mean of pði ; jÞ, PX and Py , respectively. σx and σy are the standard
deviation of Px and Py , respectively.

Table 6 GLRLM, GLSZM, and NGTDM feature definitions and NPS peak frequency and maximum intensity corrections.

Features Original feature formula F ðv; Ng; K Þ Corr. feature formula Corr. feature formula

GLRLM features

Low gray-level run emphasis 1
n

PM
i¼1

PNg
J¼1

Rði ;jÞ
i2 F ðv; Ng; K Þ∕f peakðK Þ F ðv;Ng; K Þ∕I2maxðK Þ

Short run low gray-level emphasis 1
n

PM
i¼1

PNg
J¼1

Rði ;jÞ
i2 j2 F ðv; Ng; K Þ∕f peakðK Þ F ðv;Ng; K Þ∕I2maxðK Þ

Long run low gray-level emphasis 1
n

PM
i¼1

PNg
J¼1

Rði ;jÞj2
i2 F ðv; Ng; K Þ∕f peakðK Þ F ðv; Ng; K Þ∕I2maxðK Þ

GLSZM Features

Small-area emphasis 1
Ω
Pm

i¼1

Pn
j¼1

zði ;jÞ
j2

F ðv;Ng; K Þ∕½f peakðK Þ�2 F ðv;Ng; K Þ∕I4maxðK Þ

High-intensity small-area emphasis 1
Ω
Pm

i¼1

Pn
j¼1 i

2, j2, zði ; jÞ F ðv;Ng; K Þ∕½f peakðK Þ�2 F ðv;Ng; K Þ∕I4maxðK Þ

Size-zone variability 1
Ω
Pm

i¼1

hPn
j¼1

zði ;jÞ
i2

i
2

F ðv; Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f peakðK Þp

F ðv;Ng; K Þ∕Imax:ðK Þ

NGTDM feature

Coarseness
�
εþPNh

i¼0 piMðiÞ�−1 F ðv; Ng; K Þ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f peakðK Þp

F ðv;Ng; K Þ∕Imax:ðK Þ

GLRLM:Rði ; jÞ is the ði ; jÞ’th entry in the given run-length matrix, andNg is the number of discrete gray levels in the image.M is the longest run, and
n is the total number of runs.
GLSZM: In size zone matrix zði ; jÞ rows i indicate gray levels and columns indicating zone sizes. Ng is the number of gray levels, and the largest
zone size is indicated by m. Ω is the total number of unique connected zones.
NGTDM: Pi is the probability of occurrence of voxel of intensity I, and MðiÞ is the NGTDM value of intensity i . Nh is the highest gray-level value
present in the ROI.
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Fig. 6 Relationship between NPS peak frequency (orange bars) and maximum voxel intensity (blue
bars) as a function of kernel strength for four CT scanners (a) Sensation 64, (b) Definition AS,
(c) GE Discovery STE, and (d) Brilliance 64. Peak frequency and maximum intensity are linearly related
with each other for the GE Discovery STE scanner. The change in both frequency and intensity was less
pronounced with kernel strength for the Philips 64 scanner, which explains why more features were
robust for this scanner. Peak frequency changed more abruptly for the Siemens scanners especially
for sharper kernels.

Fig. 7 Texture feature values computed from original and corrected definitions as a function of kernel
strength and different scanners. Corrected feature values are shown by the box plot. Middle, lower, and
upper lines in the box indicate median, first quartile, and third quartile, respectively. Without correction,
both (a) GLCM-contrast and (b) GLCM-energy showed dependence on kernel strength but, after NPS
peak frequency corrections, both features were much less dependent on kernel strength.

Journal of Medical Imaging 011013-9 Jan–Mar 2018 • Vol. 5(1)

Shafiq-ul-Hassan et al.: Accounting for reconstruction kernel-induced variability in CT. . .



radiation dose but dependent on kernel strength. GLCM-differ-
ence entropy and NGTDM-coarseness after maximum intensity
corrections were nearly independent of kernel strength as shown
in Fig. 8.

The calculated %COV values for original and frequency
corrected features and the corresponding percent improvements
for 19 texture features are shown in Fig. 9. The largest
improvement, 64% according to Eq. 2 (m ¼ −1∕2), was for

Fig. 8 Texture features values computed from original and corrected feature definitions as a function of
kernel strength and different scanners. Corrected feature values are shown by box plots. Middle, lower,
and upper lines of the boxes indicate median, first quartile, and third quartile, respectively. Without cor-
rection, both (a) GLCM-difference entropy and (b) NGTDM-coarseness showed dependence on kernel
strength, but, after correction by maximum voxel intensity, the features are much less dependent of ker-
nel strength.

Fig. 9 Peak frequency corrections for 19 texture features. Panels (a) and (b) show the absolute value of
%COV for all reconstruction kernels before (blue bars) and after (light blue bars) peak frequency cor-
rections. Panels (c) and (d) show corresponding percent improvement [Eq. (4)] in each feature as a result
of the corrections. GLCM-contrast showed the highest improvement, whereas GLCM-cluster prominence
showed the least improvement in reproducibility after corrections. [Note the different scales along vertical
axis in panels (a) and (b)].
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GLCM-contrast. Most of the GLCM features had COV > 20%

before correction; however, after correction, %COV values were
within 20% range [Fig. 9(a)]. Initial %COV values for some
GLSZM and GLRLM features [Fig. 9(b)] were relatively high
%COV > 100 as compared with GLCM features, but, after
applying correction factors, variability range was within 45%.
GLCM-cluster prominence and NGTDM-coarseness were the
least improved as improvement percentage was about 30%
for these features.

Figure 10 shows the percentage improvement in 19 texture
features as a result of maximum intensity corrections. The larg-
est improvement was for GLCM-difference entropy with a per-
centage improvement of 78%. The second most improved
feature was NGTDM-coarseness with a percentage improve-
ment of 72%. After corrections, both GLCM-difference entropy
and NGTDM-coarseness became robust with kernel strength as
both had %COV values <10%. The least improvement as a
result of intensity corrections was found in size zone variability
(SZV) from the GLSZM group. Similar results were obtained
for the 19 texture features extracted from the bigger sized
ROI’s of volume 14.2 cm3 following NPS peak frequency
and ROI maximum intensity corrections.

4 Discussion
Extraction and analysis of imaging features from medical
images to be used as imaging biomarkers is currently an active
area of research. However, before features can be used for medi-
cal applications, they must be found to be robust to common
conditions and variables such as acquisition and reconstruction
parameters. For example, some radiomic features such as inten-
sity-energy, GLRLM-GLNU, GLRLM-RLNU, and NGTDM-
coarseness were suggested as potential imaging biomarkers in
recent radiomics research;3,40–42 however, these features were
recently found to be dependent on voxel size.14 Therefore, it
is important to evaluate feature robustness for common imaging
parameters and devise methods to reduce or eliminate feature
variability. In this study, we investigated the variability of 88
radiomic features due to changes in radiation dose (mAs),
pitch, and reconstruction kernel across different CT scanners
from three manufacturers. In particular, we evaluated the vari-
ability in texture features due to reconstruction kernels and dose
using NPS measurements. In our analysis, we derived correction
factors for 19 texture features to reduce their variability with
respect to kernel strength, one of the most frequently varied
parameters in computed tomography.

Fig. 10 Maximum intensity corrections for 19 texture features. Panels (a) and (b) show the absolute
value of %COV for all reconstructions kernels before (blue bars) and after (light blue bars) maximum
intensity corrections. Panels (c) and (d) show corresponding percent improvement in each feature
as a result of corrections. Difference entropy from GLCM and coarseness from NGTDM showed high-
est percent improvement of 78% and 72%, respectively. SZV from GLSZM showed least improve-
ment in reproducibility after corrections. (Note the different scales along vertical axis in panels a
and b).
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The intrascanner variability in CT features due to pitch and
dose was significantly less as compared to variability due to
reconstruction kernels. Except for most of the GLSZM features
and the NGTDM-busyness feature, 80% to 90% of the features
studied were robust to pitch and mAs variations (Fig. 1).
However, 30% to 50% of the features had variability >20%
(%COV > 20) for changes in kernel strength depending on
the particular CT scanner used (Fig. 1). We found that some
texture features were almost independent of dose and pitch var-
iations; however, they were strongly dependent on
reconstruction kernel (Fig. 2) for all CT scanners. The depend-
ence on kernel strength suggests that features were strongly
affected by the image reconstruction process (kernels) and
less by the image acquisition process (radiation dose and
pitch). Both reconstruction kernels and tube current produced
correlated noise texture in CT images; however, the spatial fre-
quency distribution in CT images was significantly more
affected by the choice of the reconstruction kernel.

The peak frequency of the NPS was nearly independent of
radiation dose variation and slightly dependent on scanner varia-
tion (Fig. 3). This is in agreement with an earlier report by Li
et al.22 In contrast, the choice of reconstruction kernel shifted
peak frequencies significantly (Fig. 4). The shift in peak fre-
quency was less pronounced for softer kernels and more pro-
nounced for sharper kernels (Fig. 5). These results were in
agreement with earlier study for sharper kernels for GE and
Siemens scanners by Solomon et al.27 NPS analysis for a
Philips scanner for different dose and kernel settings was
reported for the first time in this work as far as we know.
Tube current variation did not change the spatial frequency dis-
tribution or correlated noise texture. However, the purpose of
most reconstruction kernels is to render images with a certain
level of smoothness or sharpness; consequently, kernels change
the spatial frequency characteristics of the final CT images.
Sharper kernels preserve higher spatial frequencies producing
more high contrast resolution and consequently render more
noise to the images. In contrast, smoother kernels use low-
pass filters to block high frequencies to provide better low-con-
trast resolution and lower noise. This is why we have used the
peak spatial frequency as a metric to quantify the level of noise
introduced by kernels.

The variability in texture features was greatly affected by
reconstruction kernels as shown in Fig. 7 for GLCM-contrast
and GLCM-energy. Since these features measure a texture char-
acteristic, they were significantly affected by the correlated
noise introduced during the reconstruction process as demon-
strated by the shift in peak spatial frequency of NPS measure-
ments. Importantly, in addition to measuring useful information,
texture features also quantify the noise texture of CT images. In
other studies, some texture features were also found to be
affected by the addition of uncorrelated Gaussian noise as
reported by Oliver et al.43 for PET/CT images of lung cancer.
In addition, Bagher-Ebadian et al.44 reported that radiomic fea-
tures were impacted by high-pass filtering but were robust to
low-power Gaussian noise. These findings agree with ours
and lead us to investigate the use of the peak frequency as
a correction factor, so texture features can be made more robust
with kernel choice. Indeed, our corrected texture features
became more reproducible as a function of kernel strength as
shown by the box plot in Fig. 7 for GLCM-energy and
GLCM-contrast. Kernel strength was also correlated with the
maximum voxel intensity of the ROI. As kernel strength varied

from smoother to sharper, the maximum image intensity value
within the ROI varied accordingly. As with NPS peak frequency,
it was found to be almost independent of dose.

The characterization of the robustness of texture features for
different kernels is important for advancing the emerging field
of CT radiomics. This characterization resulted in the identifi-
cation of correction factors that may be useful in clinical appli-
cations, for example, in the analysis of images coming from
different institutions using different scanners and acquisition
and image reconstruction protocols. We formulated correction
factors for 19 features with respect to peak frequency and
maximum intensity as listed in Table 5 and 6. These factors
improved the features by reducing the variations introduced by
reconstruction kernels. The highest improvement was observed
in GLCM-contrast and GLCM-energy for frequency-based cor-
rection. GLCM-contrast and GLCM-energy also reflect inherent
CT noise, which was accounted for by the application of the
correction factors based on NPS peak frequency. The highest
improvement was found for GLCM-difference entropy and
NGTDM-coarseness after maximum intensity corrections. We
posit that the peak frequency from NPS measurements reflects
the noise texture introduced by different kernels, while the maxi-
mum intensity reflects the change in image intensity values pro-
duced by different kernels.

The identification of correction factors for features that
showed variability with imaging parameters will help reduce
such variability. For example, NGTDM-coarseness and GLCM-
inverse variance were found to be dependent on kernel strength
in this study and dependent on voxel size in our previous
report.14 Therefore, two correction factors can be applied to
these features. Nevertheless, it must be kept in mind that robust-
ness of a feature to acquisition and reconstruction parameters
does not necessarily mean that the feature will be a useful im-
aging biomarker.

A limitation of this study was that radiomic features were
extracted from the centrally located ROIs of a cartridge of
the CCR phantom. However, noise in CT images might be ROI
location dependent within the bore of a scanner. It is well known
that noise texture in the center of the CT scanner might be differ-
ent than noise in the periphery. This can be evaluated by meas-
uring NPS from central and peripheral ROIs and comparing
feature values. This is actually an ongoing investigation; we
plan to report in the future.

5 Conclusions
The principal conclusion from this work is that second-order
texture features are strongly affected by a CT image’s underly-
ing noise texture produced by the reconstruction kernel used in
image formation. We showed that by measuring the NPS of
a scanner in a standard phantom for a given set of acquisition
and reconstruction parameters, the noise texture can be charac-
terized by the peak spatial frequency of the NPS. Likewise, we
also showed that the maximum intensity inside an ROI is related
to the noise level of the image. Furthermore, both of these
parameters, namely, the NPS peak frequency and the ROI’s
maximum intensity, can be used as correction factors to reduce
the variability in texture features due to the noise introduced by
reconstruction kernels. These findings reinforced previous calls
for efforts toward standardization of radiomics processes11,12

and warrant more studies on what exactly radiomics features
measure and how they are impacted by physical and clinical
variables.
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