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Abstract

For most immune-mediated diseases, the main determinant of patient well-being is not the 

diagnosis itself, but the course the disease takes over time (prognosis)1–3. This varies substantially 

between patients for reasons that are poorly understood. Familial studies support a genetic 

contribution to prognosis4–6, but little evidence has been found for a proposed association 

between prognosis and the burden of susceptibility variants7–13. To better characterise how 

genetic variation influences disease prognosis, we performed a within-cases genome-wide 

association study in two cohorts of patients with Crohn's disease. We identified four genome-wide 

significant loci, none of which showed any association with disease susceptibility. Conversely, the 

aggregated effect of all 170 disease susceptibility loci was not associated with prognosis. Together, 

these data suggest that the genetic contribution to prognosis in Crohn’s disease is largely 
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independent from the contribution to disease susceptibility, and point to a biology of prognosis 

that could provide new therapeutic opportunities.

Despite the success of genome-wide association studies (GWAS) in immune-mediated 

disease, a genetic contribution to aspects of disease other than susceptibility remains largely 

unstudied. One of the most important aspects from a clinical perspective is prognosis. For 

example in Crohn’s disease (CD), a relapsing-remitting form of inflammatory bowel disease 

(IBD), some patients experience frequent relapses and require treatment with increasingly 

potent immunosuppressants and/or surgery, while others achieve prolonged remission 

without any additional therapy1. Such variability in prognosis occurs in most immune-

mediated diseases2,3 and can make the difference between an excellent long-term outcome 

or progressive disability and death1–3.

What determines prognosis is poorly understood, although a genetic contribution has been 

proposed based on similar patterns of disease behaviour often being observed within 

families4–6. To date, investigation into the genetics of prognosis has largely focused upon 

susceptibility variants7–9, based on the hypothesis that disease development and prognosis 

share a common genetic architecture14. Attempts to prove this hypothesis, however, have 

largely failed to demonstrate replicable associations10–13. For example, while NOD2 
variants were initially associated with increased need for surgery in CD15, this has since 

been attributed to their association with ileal disease10,11,16 (the distribution of CD that is 

more commonly treated with surgery as the procedure carries a lower morbidity). Indeed, a 

sub-phenotype analysis of IBD recently showed that susceptibility variants only explain a 

minority of phenotypic variance (and mainly to disease location) and that after conditioning 

on this there was little/no association with disease behaviour16.

An alternative possibility is that the genetic contribution to prognosis might be distinct from 

that which confers disease susceptibility. Indeed, the idea of a separate biology of prognosis 

would fit with the observation that CD8 T-cell exhaustion correlates with outcome, but not 

diagnosis, in multiple immune-mediated diseases17, and the identification of a SNP in 

FOXO3 that associates with prognosis, but not susceptibility, in several diseases including 

CD18.

To better understand the genetic contribution to prognosis in CD, we performed a within-

cases GWAS in two CD cohorts and meta-analysed the results. To do this, we first identified 

patients at opposite ends of the prognostic spectrum for comparison. This approach enriches 

for alleles influencing prognosis and makes associated variants easier to detect because the 

odds ratios between extreme groups is higher than in the total sample19. Poor prognosis CD 

was defined as frequently-flaring, treatment-refractory disease that required consecutive 

treatment with ≥2 immunomodulators, or ≥2 abdominal surgeries, or a combination of the 

two18. Good prognosis CD was defined as indolent disease that had not required treatment 

with immunomodulators or surgery despite ≥4 years follow up18 (median 12 years). These 

definitions were applied to two cohorts of CD cases: the first from a previous GWAS20 (669 

poor prognosis cases, 389 good prognosis cases) and the second who were genotyped using 

UK Biobank Axiom arrays (1093 poor prognosis cases, 583 good prognosis cases). 

Altogether, 19.2% of cases had good prognosis CD and 32.2% had poor prognosis CD. 
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Patients with an intermediate phenotype were excluded (n=2,794; 48.6%). At genome-wide 

significance (P < 5 x 10-8) the combined dataset had ≥80% power to detect variants (minor 

allele frequency [MAF] >20%) with odds ratios ≥1.33.

Standard quality control checks for SNPs and samples were performed prior to imputation 

against the UK10K reference panel21 (Online Methods). Following imputation quality 

control (Online Methods, Supplementary Table 1) we tested 7.0 million and 7.5 million 

SNPs for association in cohorts 1 and 2 respectively, and meta-analysed the results. Cluster 

plots for associated SNPs were inspected to confirm the genotyping and, if imputed, were 

genotyped to confirm the imputation (Online Methods, Supplementary Table 1). The 

genomic control inflation factor (λGC) was 1.023 in the combined analysis (Supplementary 

Fig. 1).

Four loci passed genome-wide significance. These association signals were located in 

FOXO3, XACT, a region upstream of IGFBP1, and the MHC region (Table 1, Fig. 1A, 

Supplementary Table 2). The associated FOXO3 haplotype, which was previously identified 

in a candidate gene study using the same definitions18, regulates FOXO3 expression and 

controls a TGFβ1-dependent pathway that limits inflammatory responses in monocytes18. 

By genotyping or imputing 115 of 118 SNPs at this locus we mapped the peak association 

signal to an intronic region that contains enhancer marks (H3K4me1, H3K27ac, p300 

binding) and transcription factor binding sites, consistent with the reported eQTL18 (Fig. 

1B, Supplementary Fig. 2).

The second association signal was located within XACT (Fig. 1C), a gene which encodes a 

long non-coding RNA that is only expressed from the active X chromosome22, and which 

resides over 630Kb from the nearest protein-coding gene. This association was detectable in 

both males and females (Supplementary Table 2). Although XACT has been studied in 

pluripotent stem cells22, its function in differentiated cells is unknown. Given the 

association with CD prognosis, however, it was striking that across multiple human tissues, 

XACT was most highly expressed within the intestine (Supplementary Fig. 3).

The third association signal was located immediately upstream of IGFBP1 in a region that 

also contains IGFBP3 (Fig. 1D). The associated SNP at this locus (rs75764599:G>A, g.

45899250G>A, hg19) was conspicuous for its lack of linkage disequilibrium (LD) with local 

SNPs, and had to be directly genotyped in cohort 1. Indeed, although long-range LD enabled 

imputation in cohort 2 (INFO score 0.82), we genotyped the SNP in this cohort as well to 

confirm the association (Supplementary Table 1). This relative lack of LD is sometimes 

observed at low frequency SNPs, and implies that rs75764599:G>A is likely to be the causal 

variant. IGFBP-1 and IGFBP-3 belong to a family of proteins that bind to and prolong the 

half-lives of insulin-like growth factors I and II; proteins involved in processes including 

immunity and longevity23. The IGFBP1 locus has also been associated with anti-

citrullinated peptide antibodies in rheumatoid arthritis (RA)24. In RA, these antibodies 

predict a poor prognosis24, suggesting that this region might influence prognosis in CD and 

RA through a common pathway, as was shown for FOXO318.
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The final association signal was located in the MHC and stretched from HLA-B to the HLA-
DR genes (Fig. 1E). Despite the breadth of this signal, conditioning on the lead SNP 

revealed only one associated haplotype (Fig. 2A). To assess whether specific HLA alleles 

were responsible for this genetic association, we imputed classical 4-digit HLA alleles and 

detected associations at multiple class I and class II genes. Notably, all of the associated 

alleles belonged to a single multigene haplotype, “ancestral MHC 8.1“ (AH8.1; Fig. 2B). 

Indeed, the strength of each allelic association correlated with how specific that allele was to 

AH8.1 (Supplementary Fig. 4). To clarify the contribution of AH8.1 to the genetic signal, 

we performed cross-conditioning to assess the residual associations when the SNP analysis 

was conditioned on the lead AH8.1 allele (HLA-B*08:01) and vice versa. In both directions, 

cross-conditioning abrogated any association, demonstrating that inheritance of AH8.1 was 

the major contributor to the genetic signal (Fig. 2C, Supplementary Table 3). Carriers of this 

haplotype are known to exhibit impaired responses to vaccination25 and defects in T-cell 

activation26,27, consistent with HLA-specific differences in antigen presentation. The 

increased frequency of this haplotype in good prognosis CD is therefore consistent with the 

notion that differential T-cell activation influences prognosis in immune-mediated disease17. 

Interestingly, no association was observed at HLA-DRB1*01:03, the HLA allele that has by 

far the strongest association with CD susceptibility of any HLA allele or SNP28 (Fig. 2B, 

Supplementary Table 3). Similarly, the prognosis-associated MHC SNPs did not overlap 

with known disease susceptibility SNPs (Supplementary Fig. 5).

We next investigated whether these associations were dependent on the criteria used to 

define prognosis. We found that the results could not be attributed to differences in disease 

location (Supplementary Table 4) or follow-up (Supplementary Table 5) and that 3 of the 4 

associations remained genome-wide significant if another definition of poor prognosis was 

used; abdominal surgery within 2 years of diagnosis29 (Supplementary Table 6). These 

associations are therefore likely to be involved in the biology that determines prognosis in 

CD, as was shown for FOXO318. To further explore this underlying biology, we examined 

whether genes tagged by an extended list of prognosis-associated SNPs (meta P < 10-5) were 

enriched within specific biological pathways (Online Methods). Strong enrichment was 

observed for pathways that regulate innate and adaptive immune responses, and responses to 

micro-organisms (Fig. 3A). Similar results were obtained if SNPs within the extended MHC 

were removed (Supplementary Table 7). To identify the cell-types involved, we examined 

for tissue-specific enrichment using an expression atlas of primary human cells30. Strong 

enrichment was observed in macrophages, followed by weaker signals in monocytes and 

dendritic cells (Fig. 3B, Supplementary Table 8). These mononuclear phagocytes play 

important roles in innate immunity and can initiate adaptive immune responses. Monocytes 

are also the cell-type in which the FOXO3 variant was biologically relevant18. Finally, we 

performed a protein-protein interaction analysis and found that many genes at associated loci 

interact either directly or indirectly, suggesting that there may be underlying cellular 

pathways that are important in disease prognosis (Supplementary Fig. 6).

Interestingly, the 4 prognosis-associated haplotypes have not been associated with CD 

susceptibility in any GWAS, including a recent meta-analysis31 (Supplementary Table 9). 

Accordingly, if they were to influence disease susceptibility, their effect size is likely to be 

negligible. Conversely, after stratifying for disease location – to control for associations of 
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some loci (e.g. NOD2) with distributions of CD that could affect assessments of clinical 

outcome10,11,16 – none of the 170 susceptibility variants31,32 were associated with 

prognosis, even if more relaxed statistical thresholds were used (Online Methods, 

Supplementary Table 10). There was also no correlation between the power to detect effects 

at these SNPs and the observed P values, consistent with the hypothesis that susceptibility 

variants are not individually associated with prognosis (Supplementary Fig. 7). Similarly, 

genome-wide LD score regression confirmed that there was no significant overlap between 

the genetic bases of susceptibility and prognosis in CD when disease location was taken into 

account (Genetic Correlation = -0.51, Standard Error = 0.33, P = 0.121).

To determine whether susceptibility variants might collectively influence prognosis, we 

calculated genetic risk scores for each patient, but again no significant differences were 

observed between the good and poor prognosis subgroups (Fig. 4). This result did not 

change if an extended list of CD-associated SNPs was used33, based on susceptibility 

variants with meta P < 10-4 (Supplementary Fig. 8). Together, these data suggest that 

susceptibility alleles do not meaningfully contribute to prognosis in CD, although a weak 

effect cannot be excluded due to the power of this analysis. If such an effect were to occur, 

however, it would be trivial compared to the effects of non-susceptibility loci that are 

associated with prognosis.

Collectively, these data establish that the main genetic contribution to prognosis comes from 

loci that are distinct from those that drive disease susceptibility, and demonstrate that disease 

initiation is not only temporally distinct from active symptomatic disease, but also appears to 

be governed by separate genetics. This provides a starting point for better understanding the 

biology that determines prognosis in CD, and could lead to new and potentially improved 

opportunities for therapeutic intervention. This also has implications for “personalised 

medicine”, although any genetic classifier would need to work in unselected CD cases (in 

whom the odds ratios at prognosis-associated variants will be smaller than were observed 

here). More generally, this work illustrates the value of re-analysing existing GWAS data 

using carefully selected subphenotypes. Indeed, providing sufficiently detailed clinical data 

are available, this approach should be broadly applicable, and could yield important new 

insights into multiple diseases.

Online Methods

Study subjects

Following ethical approval by Cambridge MREC (reference: 03/5/12) and Mater Health 

Services, Christchurch Hospital, two cohorts of unrelated CD cases of Northern European 

descent were considered (cohort 1: n = 1,748, cohort 2: n = 3,999). These cases were 

enrolled by the UK IBD Genetics Consortium (n = 5,521) and the University of Otago, New 

Zealand (n = 226) and all provided written informed consent. All cases were treated using a 

“step-up” treatment strategy in which immunosuppression is incrementally escalated, but 

only in response to persistently flaring disease. Subgroups of patients with a poor prognosis 

or a good prognosis were identified using phenotype data. Poor prognosis CD was defined as 

disease that had required ≥ 2 immunomodulators or ≥ 2 abdominal surgeries or a 

combination of these (e.g. 1 immunomodulator and 1 intestinal resection). Following quality 
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control, 1762 cases met this definition (cohort 1: n = 669, cohort 2: n = 1,093). Good 

prognosis CD was defined as disease of > 4 years duration that had not required 

immunomodulators or intestinal resections (median 12 years). Following quality control, 

972 cases met this definition (cohort 1: n = 389, cohort 2: n = 583). Patients who did not 

meet either criteria, or where additional immunomodulators or surgery had only been 

required because of drug intolerance or complications of earlier surgery respectively, were 

excluded.

Genotyping

Samples in cohort 1 were genotyped as part of an earlier GWAS20. For this cohort, 

normalised intensity data were downloaded from the European Genome-Phenome Archive 

(EGA). Samples in cohort 2 were genotyped using the UK Axiom Biobank array 

(Affymetrix). 27 SNPs (including rs75764599G>A; IGFBP1 locus) demonstrated modest 

evidence of association in cohort 2 (P < 5 x 10-5) but could not be imputed in cohort 1. 

These markers were directly genotyped in cohort 1 using TaqMan SNP genotyping assays. 

Imputed low frequency SNPs (MAF 1-5%) that showed evidence of association were also 

directly genotyped to confirm the imputation.

Data processing

1 Cohort 1—Marker Quality Control: Markers that failed quality control (QC) checks in 

the original GWAS study20 were excluded. Genotypes were called from the normalised 

intensity data using CHIAMO. SNPs with overall missingness > 0.05 or differential 

missingness > 0.02 were excluded. Because there were no healthy controls in this study (in 

whom deviation from Hardy–Weinberg equilibrium [HWE] is usually assessed34) only 

SNPs with marked deviation from HWE were excluded (P < 10-10).

Sample Quality Control: Samples that failed QC criteria in the original study20 were 

excluded. The reported gender of each case was checked against the genotype-inferred 

gender using Plink35. Samples with gender mismatch were excluded. Samples with a 

genotype missingness rate > 0.05 or heterozygosity rate greater than two standard deviations 

from the mean were also excluded34. To identify related samples, 119,811 LD-independent 

SNPs were selected and pairwise identity-by-descent was estimated using Plink35 (pi-hat 

threshold 0.1875). For any related samples, one case was randomly selected and kept and the 

other(s) were excluded.

Geographical outliers. A pruned version of the dataset, containing 56,919 LD-independent 

SNPs was merged with the 1000 Genomes Project dataset36. Principal Component Analysis 

(PCA) was used to identify and exclude geographical outliers.

In total, 62 samples in cohort 1 failed QC.

2 Cohort 2—In addition to standard pre-GWA QC measures, additional quality controls 

specific to the Axiom genotyping array were recommended by the manufacturers 

(Affymetrix). These were performed prior to standard QC.
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Axiom-specific sample QC. Genotyping arrays were batched by processing date, and 

analysed separately as per the manufacturer’s instructions. The Dish Quality Control (DQC) 

metric (the recommended quality metric for Axiom genotyping arrays) was computed for 

each sample. Samples with DQC < 0.82 were excluded, as per the manufacturer's 

recommendations. Samples with a preliminary call rate ≤ 97% at a set of 20,000 validated 

autosomal markers were also excluded. Plates with an average preliminary call rate of 

passing samples < 98.5% were excluded, as per the manufacturer's recommendations.

Axiom-specific marker QC: Genotypes were called separately for each batch using the apt-
probeset-genotype utility with default parameters. QC metrics for each marker were 

computed using the Ps_Metrics function in SNPolisher in R and used to classify markers 

based on the quality of signal. Markers classified in categories PolyHighRes, NoMinorHom 
and MonoHighRes were selected for further analysis. 500 probe-sets from each selected 

category were randomly selected and inspected to confirm the classification.

Standard sample and marker quality control. In addition to the Axiom-specific QC measures, 

standard pre-GWA QC steps were applied as described for cohort 1.

In total, 71 samples in cohort 2 failed QC.

Genotype imputation

Genotype imputation was performed using IMPUTE237 after estimating haplotypes with 

SHAPEIT238 and the UK10K reference panel21. Default SHAPEIT2 parameters were 

modified (-states 500 -burn 10 -prune 10 -main 50) to improve accuracy by increasing the 

number of conditioning states39. Samples from each cohort were pre-phased and imputed in 

a single batch, to avoid batch effects attributable to the imputation process. To make the 

computation feasible, the dataset was divided into ~3000 overlapping 1Mb regions. 

IMPUTE2 was used with the option -buffer 2000 to leverage on a genomic window of 5Mb 

(1Mb analysed region plus 2 Mb buffer regions on either side). Results were controlled and 

reassembled in R. Phasing and imputation of the X Chromosome was performed using the -
chrX flag and the gender of each sample was provided. Imputed variants with MAF < 1% 

and/or INFO score < 0.8 where excluded. To estimate imputation accuracy, imputed 

genotype calls at 99,124 SNPs were compared with direct genotyping data in 880 cases 

(Illumina Immunochip32). Mean concordance was 99.3% (Supplementary Table 1).

Power calculations

Power calculations were performed using the GPC function in the GeneticsDesign package 

in R. The prevalence of poor prognosis CD was calculated using the total number of poor 

prognosis cases (prior to QC) as a proportion of all of the cases considered (1,848/5,747).

Statistical analysis

Association tests and meta-analysis—A frequentist association test between 

genotypes and the binary phenotype was performed using SNPTEST under an additive 

genetic model. Ten principal components were included as covariates in the logistic 

regression model in order to control for population stratification, although genomic inflation 
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was acceptable even before this correction was applied (unadjusted λGC <1.05). The λGC in 

the combined analysis following principal component correction was 1.023 (1.012 and 1.022 

for cohorts 1 and 2 respectively; Supplementary Fig. 1). Genotype uncertainty, generated by 

the calling algorithm or by imputation, was factored into the association test using the -
method score option in SNPTEST. For markers on the X chromosome, the association test 

was performed assuming a standard model of complete X inactivation, an equal effect size in 

men and women, and providing gender information for each sample. In this model, male 

genotypes were encoded as 0 / 1 and females as 0 / ½ / 1. Meta-analysis was performed 

using a fixed-effects model and default parameters in META40. Cluster plots for associated 

SNPs were visually inspected to verify genotype calls and, if imputed, were directly 

genotyped to confirm the result (TaqMan SNP Genotyping Assay, Supplementary Table 1). 

Cross-conditioning analysis of the MHC region was performed in SNPTEST using the 

combined dataset and including the lead HLA allele (HLA-B*08:01) as a covariate. Cross-

conditioning analysis of HLA allelic associations was performed using logistic regression in 

the combined dataset and including genotype at the lead SNP (rs9279411) as a covariate 

(Supplementary Table 3).

Zero-inflated Poisson regression analysis—To determine whether the results were 

influenced by differences in the length of follow up in the poor prognosis CD subgroup, a 

zero-inflated Poisson regression model was fitted to the count data of total treatment 

escalations per patient (immunomodulators and surgery) using the zeroinfl function in pscl 

in R41. This was confirmed to be the most appropriate model for the data using Vuong's 

closeness test (data not shown). Poisson regression was then performed and disease duration 

was included within the regression terms to assess if prognosis-associated SNPs were 

associated with treatment escalation rate independent of disease duration (Supplementary 

Table 5).

Disease-associated SNP analysis—170 CD susceptibility loci were identified from a 

recent large meta-analysis31 (Supplementary Table 10). Because several of these SNPs have 

been associated with specific anatomical distributions of CD, which can confound 

assessments of disease course if there are differences in disease location between the 

prognostic subgroups7,10,11,16, we stratified this analysis for disease location in addition to 

the top 10 principal components. Disease location data was available for 88.2% of samples 

(n = 2,413; 779 good prognosis cases, 1,634 poor prognosis cases). Samples for whom 

disease location data were not available were excluded. To improve the power to detect 

smaller effects, a candidate gene analysis was performed including only the 170 

susceptibility variants, and correcting for multiple testing using the Bonferroni method or 

false discovery rate (FDR q < 0.25). This analysis was predicted to have ≥ 80% power to 

detect variants (MAF > 20%) with odds ratios ≥ 1.25, and should have been adequately 

powered to identify effects that were previously reported in unstratified analyses42. For this 

analysis, approximate Bayes factors were also calculated using the method described in ref 

43. The prior variance was based on there being an equivalent effect size as was observed in 

a recent susceptibility meta-analysis31.
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HLA allelic association analysis—The MHC region on chromosome 6 

(chr6:25092012-35092011) was extracted from the post-QC dataset and used to impute 199 

classical HLA alleles using HLA*IMP:0244. Alleles imputed with confidence > 80% were 

retained for association testing. Imputed HLA alleles for both cohorts were combined into a 

single dataset and univariate logistic regression was performed without covariates. Nominal 

P values were calculated from the Wald statistic45. The statistical significance threshold was 

adjusted using a Bonferroni correction for multiple testing. Reference allele frequency and 

haplotype data was obtained from the National Bone Marrow Donor Program https://

bioinformatics.bethematchclinical.org/hla-resources/haplotype-frequencies (Six-Locus High 

Resolution HLA A∼C∼B∼DRB3/4/5∼DRB1∼DQB1 Frequencies).

RNA Expression Analysis—Raw RNA sequencing data (fastq files) were downloaded 

from publically available repositories: GSE4532646 (GEO) and E-MTAB-513 

(ArrayExpress). Reads were aligned to the UCSC Refseq genes (hg19) using Star47 and 

quantified, normalised and analysed using Cufflinks v2.2.148 (Seven Bridges Genomics 

platform, https://www.sbgenomics.com/).

Pathway Analysis

(i) SNPsea: Pathways and cell-types that are likely to be affected by prognosis-

associated loci were identified used SNPsea49. In separate analyses we assessed 

the enrichment of an LD-pruned list of 34 prognosis-associated SNPs (r2 < 0.6, 

meta P < 10-5) in 1751 Gene Ontology pathways and 155 primary human cell-

types and conditions (comprising 745 individual samples)30. Empirical P values 

were calculated by permutation using null SNP sets (matched for the number of 

linked genes) from a list of LD-pruned SNPs (subset of SNPs from the 1000 

Genomes Project). Reference data including the null SNP sets, NCBI gene 

intervals, Gene Ontology pathways, and SNP linkage intervals were provided in 

SNPsea software.

(ii) DAPPLE (Disease Association Protein-Protein Link Evaluator): Physical 

interactions between proteins encoded by genes at prognosis-associated loci 

were assessed using DAPPLE50, based on a list of SNPs with meta P < 10-4.

Genetic risk scores—Weighted Genetic Risk Scores were calculated using the 

PredictABEL package51 using SNPs and their corresponding beta coefficients as reported in 

Liu et al. 2015 (for the 170 CD GWAS hits; Fig. 4) or Wei et al. 2013 (who generated a 573 

SNP classifier from 10,799 SNPs with P < 1 x 10-4 in a cohort of ~17,000 CD cases and 

~22,000 controls; Supplementary Fig. 8). Unweighted susceptibility allele counts were 

calculated by summing the number of risk alleles without including a beta coefficient. 

Statistical significance was assessed using an unpaired two-tailed Student's t test. Data were 

stratified for disease location and the results were combined using META40.

LD score regression

LD score regression52 was performed using LD Hub53, a centralised database of summary-

level GWAS results that provides a web interface for LD score regression. For this analysis 
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the MHC region was removed – as recommended by LD Hub (because its complex genetic 

architecture is not adequately captured by simple LD). Genetic correlation was then 

calculated between the prognosis meta-analysis results (stratified for disease location) and 

the summary statistics from the largest CD susceptibility meta-analysis to date31.

Data availability

Genotyping data that support the findings of this study have been deposited in the European 

Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/home) with the following 

accession codes: EGAD00000000005 [cohort 1] and EGAS00001002147 [cohort 2]). 

Summary statistics can also be downloaded from ftp://ftp.sanger.ac.uk/pub/project/humgen/

summary_statistics/human/2016-10-12/CD_prognosis_GWA_results.csv.zip.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Within-cases GWAS identifies four loci that are associated with prognosis in CD.
(a) Plot of genome-wide association results. –log10 (P values) from the Wald statistic 

(logistic regression model) are plotted against chromosomal position for the combined 

association analysis (n = 1,762 poor prognosis CD, 972 good prognosis CD). Each point 

represents a SNP. Dotted red line indicates genome-wide significance threshold. The four 

new loci identified in this study are indicated. (b – e) Characteristics of the associated 

genomic regions. Upper panel, chromosomal position; middle panel, – log10 (P values) for 

individual SNPs at each locus (left y axis), rate of recombination indicated by red line (right 
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y axis); lower panel, gene position within the locus (in Panel e only selected genes from 

class I and II regions are shown for clarity). SNPs are coloured according to LD with the 

most associated variant.
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Figure 2. Association signal at the MHC is linked to the ancestral 8.1 haplotype
(a) The residual MHC association after conditioning on the lead SNP (rs9279411). (b) 
Allelic associations at class I and II HLA genes. For each allele, odds ratios (OR), 95% 

confidence intervals, and P values are shown. The significance threshold was corrected for 

the number of independent tests (P < 2.5 x 10-4). Alleles that are components of the 

ancestral MHC AH8.1 haplotype are shaded blue (full AH8.1 annotation: HLA A*01:01, 

C*07:01, B*08:01, DRB1*03:01, DRB3*01:01, DQA1*05:01, DQB1*02:01). HLA 

DRB1*0103 (the strongest IBD susceptibility allele, ref 28) is included for comparison 
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(shaded grey). (c) The residual MHC association after cross-conditioning on the lead HLA 

allele (HLA-B*08:01). In panels a and c the -log10(P) of SNPs are plotted against 

chromosomal position. Only selected genes from class I and II regions are shown for clarity.
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Figure 3. Pathway analysis implicates regulation of immune responses and mononuclear 
phagocytes in CD prognosis
(a) Horizontal bar plot of –log10 (P values) for the top 40 most enriched pathways in an 

analysis of 29 LD-pruned prognosis-associated SNPs (meta P < 1 x 10-5) across 1,751 

pathways annotated by Gene Ontology. (b) Bar plot of –log10 (P values) for 155 specific 

cell-types and conditions. Significant enrichment was observed in “monocyte-derived 

macrophages stimulated by M-CSF” and “monocyte-derived macrophages stimulated by M-

CSF and interferon-gamma”. Other non-immune cell-types included neural, skin, lung, liver, 

stem cells, smooth muscle, stromal cells, bone marrow progenitors, endothelial and 

epithelial cells. Dotted lines represent Bonferroni-corrected significance thresholds. 

Analyses performed using SNPsea.
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Figure 4. Distribution of CD susceptibility alleles does not differ between the prognostic 
subgroups
(a) “Box and Whiskers” plot of weighted Genetic Risk Scores between good prognosis and 

poor prognosis CD subgroups. Box represents median and interquartile range. Whiskers 

represent maximum and minimum values. Weights were based on beta coefficients 

calculated from odds ratios reported in Liu et al. (2015) for 170 CD susceptibility SNPs. n = 

2,413 (b) Distribution of unweighted susceptibility allele counts between good prognosis 

and poor prognosis CD subgroups. Purple histogram bars represent the poor prognosis CD 

subgroup, yellow histogram bars represent the good prognosis CD subgroup. Statistical 

significance was assessed using unpaired two-tailed Student's t-test and was stratified for 

disease location.
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Table 1
Association results for Crohn's disease prognosis loci

Chr Position
(Mb)

SNP Risk allele RAF
(ind.)

OR 95% CI P
cohort 1

P
cohort 2

P
combined

Candidate gene 
or region

X 112.9 rs5929166 A 0.03 0.33 0.23-0.48 1.12 x 10-5 5.01 x 10-5 4.56 x 10-9 XACT

6 31.7 rs9279411 -a 0.15 0.60 0.50-0.71 1.35 x 10-5 7.22 x 10-5 5.46 x 10-9 MHC

6 109.0 rs147856773 GTGb 0.12 0.57 0.47-0.70 7.76 x 10-4 4.29 x 10-6 1.31 x 10-8 FOXO3

7 45.9 rs75764599 A 0.01 3.02 2.04-4.49 1.73 x 10-3c 6.25 x 10-6 4.32 x 10-8 IGFBP1/IGFBP3

Crohn's disease prognosis SNPs that met genome-wide significance (P <5 × 10-8) in the combined analysis and nominal significance (P <0.05) in 
both individual cohorts.

The odds ratio is presented with respect to the minor allele and the risk of poor prognosis CD. Allele frequency data is presented for the good 
prognosis CD cohort.

a
AG deletion

b
Insertion

c
rs75764599 could not be imputed in cohort 1 because of low linkage disequilibrium at this locus, and was therefore directly genotyped using a 

TaqMan SNP genotyping assay.

Chr, Chromosome; RAF, Risk Allele Frequency; ind., Indolent (good prognosis) CD; OR, odds ratio; 95% CI, 95% confidence interval for OR.
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