
Changes in urinary metabolic profiles of colorectal cancer 
patients enrolled in a prospective cohort study (ColoCare)

David B. Liesenfeld1, Nina Habermann1, Reka Toth1, Robert W. Owen1, Eva Frei1, Jürgen 
Staffa1, Petra Schrotz-King1, Karel D. Klika2, and Cornelia M. Ulrich1,3

1Division of Preventive Oncology, National Center for Tumor Diseases (NCT), German Cancer 
Research Center (DKFZ), Heidelberg, Germany and German Consortium for Translational 
Cancer Research (DKTK)

2Genomics and Proteomics Core Facility, Molecular Structure Analysis, German Cancer 
Research Center (DKFZ), Heidelberg, Germany

3Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington

Abstract

Introduction—Metabolomics is a valuable tool for biomarker screening of colorectal cancer 

(CRC). In this study, we profiled the urinary metabolomes of patients enrolled in a prospective 

patient cohort (ColoCare). We aimed to describe changes in the metabolome in the longer clinical 

follow-up and describe initial predictors as candidate markers with possibly prognostic 

significance

Methods—In total, 199 urine samples from CRC patients pre-surgery (n=97), 1–8 days post-

surgery (n=12) and then after 6 and 12 months (n=52 and 38, respectively) were analyzed using 

both GC-MS and 1H-NMR. Both datasets were analyzed separately with built in uni- and 

multivariate analyses of Metaboanalyst 2.0. Furthermore, adjusted linear mixed effects regression 

models were constructed.

Results—Many concentrations of the metabolites derived from the gut microbiome were affected 

by CRC surgery, presumably indicating a tumor-induced shift in bacterial species. Associations of 

the microbial metabolites with disease stage indicate an important role of the gut microbiome in 

CRC.

We were able to differentiate the metabolite profiles of CRC patients prior to surgery from those at 

any post-surgery timepoint using a multivariate model containing 20 marker metabolites 

(AUCROC=0.89; 95% CI:0.84–0.95).

Conclusion—To the best of our knowledge, this is one of the first metabolomic studies to follow 

CRC patients in a prospective setting with repeated urine sampling over time. We were able to 

confirm markers initially identified in case-control studies and pin point metabolites which may 

serve as candidates for prognostic biomarkers of CRC.
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1. Introduction

In 2012, colorectal cancer (CRC) was the second most common cancer in Europe, and the 

second most common cause of death from cancer with almost 215,000 deaths each year 

(Ferlay et al. 2013). In the US, CRC was the third most common cancer for both genders 

with more than 50,000 deaths in 2013 (ACS 2013). While improvements in the early 

detection of disease occurrence are crucial, biomarkers for tertiary prevention, to improve 

the prediction of disease recurrence, are urgently needed. To date, treatment and clinical 

follow-up of CRC patients largely follows standardized guidelines. Only a few markers for 

personalized therapies exist, such as KRAS mutation as a predictive biomarker for anti-

EGFR therapy in metastasized patients (Normanno et al. 2013). Moreover, the detection of 

early stage metastasis is limited by the sensitivity of currently available tumor markers, 

CA19-9 and CEA, and imaging technologies such as abdominal sonography, computed 

tomography (CT) and magnetic resonance imaging (MRI) (Bellomi et al. 2005).

Metabolomics, the systematic investigation of metabolites in a given biological system 

(Fiehn 2002), has been more extensively used in cancer research in recent years (Spratlin et 

al. 2009). To date, many mass spectrometry (MS)-based metabolomic studies investigating 

CRC have been published using different hyphenated techniques such as liquid 

chromatography (LC-MS), gas chromatography (GC-MS) and capillary electrophoresis (CE-

MS). Among these methods, GC-MS has the longest history. Extensive electron-impact 

mass spectral databases (NIST, GOLM, WILEY (Hummel et al. 2007)) on biochemicals are 

available, making it a robust method for metabolic profiling (Dunn et al. 2005). Nuclear 

magnetic resonance (NMR)-based techniques are known to have less sensitivity in 

comparison to MS-based methods, but compensate for this disadvantage by being highly 

reproducible and, furthermore, quantitative without the need for individual calibration of 

each detected analyte (Pan et al. 2007).

Metabolomic studies on CRC to date focus either on profiling of tumor tissue (Chan et al. 

2009; Denkert et al. 2008; Mal et al. 2009; Mal et al. 2012) to gain insight into cancer 

biology, or use serum (Farshidfar et al. 2012; Kondo et al. 2011; Leichtle et al. 2012; Ma et 

al. 2010; Nishiumi et al. 2012; Qiu et al. 2009; Ritchie et al. 2010) and/or urine samples 

(Cheng et al. 2012; Ma et al. 2009; Qiu et al. 2010; Wang et al. 2010) with the aim to detect 

novel markers for early disease detection. As previously reviewed by our own group 

(Liesenfeld et al. 2013), most studies have used a simple case-control study design with only 

a few investigations conducting follow-up studies with repeated sampling of biospecimens 

over time (Farshidfar et al. 2012; Ma et al. 2010). Studies with a prospective design have the 

advantage of allowing the assessment of the predictive value of metabolomics with regard to 

patients’ outcomes, such as recurrence rates, metastasis or survival. Additionally, effects of 
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therapy (primarily surgical intervention, but also radio- and chemotherapy) can also be 

monitored and assessed.

In this GC-MS- and 1H-NMR-based metabolomics study, we profiled 199 urine samples at 

different study timepoints in a prospective CRC patient cohort, the ColoCare study. We 

aimed to compare urinary metabolomes of CRC patients prior to surgery with those a few 

days and at 6 and 12 months post-surgery, assessing potential effects related to the primary 

therapeutic intervention. Additionally, we aimed to describe changes in the metabolome in 

the longer follow-up and describe initial predictors as candidate markers with possibly 

prognostic significance. To the best of our knowledge, this study is one of the first CRC 

metabolomic approaches embedded in a prospective study design.

2. Materials and methods

2.1 Study population

This study is part of the international prospective cohort study, ColoCare, recruiting newly-

diagnosed CRC patients prior to surgery. ColoCare investigates predictors of cancer 

recurrence, survival, treatment toxicities and health-related quality of life. Within the study, 

extensive follow-up observations over the duration of 5 years are being performed: three 

follow-up timepoints in year one, followed by one each year thereafter, including a 

comprehensive collection of biospecimens and data. The ColoCare study has been approved 

by the ethics committee of the medical faculty at the University of Heidelberg and study 

participants provided their written informed consent. Patients were categorized according to 

the American Joint Committee on Cancer (AJCC) staging system based on histopathologic 

findings. Both patients with colon carcinoma (ICD-18) and patients with rectal or 

rectosigmoidal cancer (ICD-19/20) were included. Urine, generally from morning fasting, 

was collected from patients at baseline, prior to surgery, and in some cases from patients 1–8 

days post-surgery. As part of the ColoCare follow-up regime, additional biosepecimens were 

obtained approximately 6 and 12 months post enrollment at the National Center of Tumor 

Disease, Heidelberg (NCT). Spot urine samples from these respective follow-up visits were 

included (see Table 1 for study population and sample availability). If patients underwent 

adjuvant chemotherapy, follow-up visits were scheduled at least 2 weeks after their last 

chemotherapy cycle had been completed. Urine samples were aliquoted immediately and 

stored at −80 °C until analysis. Self-reported food and fluid intake before sample collection 

was monitored during follow-up visits. Patients who reported alcohol or tobacco use 24 h 

prior to urine collection were excluded from this dataset.

2.2 Chemicals and reagents

HPLC-grade methanol and acetonitrile were purchased from VWR International (Fontenay-

sous-Bois, France). Sodium 3-(trimethylsilyl)-propionate-2,2,3,3-d4 99 % D (TSP) was 

purchased from Euriso-top (Saint-Aubin Cedex, France). 

Bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1 % trimethylchlorosilane was 

purchased from Supelco (Bellefonte, USA). Deuterium oxide (D2O), pyridine, 

methoxyamine.HCl, L-4-chlorophenylalanine, uridine 5′-diphosphoglucuronic acid 

trisodium salt (UGA), saturated alkane mixture (C7–C40) and all analytical reference 
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standards were purchased from Sigma Aldrich (Steinheim, Germany) at the highest purity 

available.

2.3 Sample preparation

For GC-MS analysis, the method for urine sample preparation was adapted from literature 

(Cheng et al. 2012), but without urease treatment because low enzyme specificity resulting 

in distorted metabolite levels have been reported by several research groups (Kind et al. 

2007; Perroud et al. 2006). Pooled quality control (QC) samples and Kovat’s alkane 

mixtures were injected with each analytical batch.

For 1H-NMR, 540 µL urine were spiked with 60 µL K2HPO4/NaH2PO4 buffer in D2O (pH 

6.5, 1.5 M) (Xiao et al. 2009) containing 10 mM TSP to a final D2O concentration of 10 % 

(v/v) for lock and shim purposes and TSP concentration of 1 mM. QC samples were run at 

the beginning and end of each analytical batch.

2.4 GC-MS data acquisition

Analysis was carried out on an Agilent 6890 GC/ 5973 MS single quadrupole system. 

Aliquots of 1 µL were injected onto a HP-5 MS fused silica column (30 m × 0.25 mm; 0.25 

µm film thickness of the 5 % phenyl 95 % dimethylpolysiloxane stationary phase; Agilent 

J&W Scientific) in splitless mode. Chromatographic and mass spectrometric conditions are 

described in the Supplementary Data.

2.5 1H-NMR data acquisition
1H-NMR spectra were acquired using a Bruker Avance II NMR spectrometer equipped with 

a 5-mm, inverse-configuration probe with triple-axis gradient capability at a field strength of 

14.1 T operating at 600.1 MHz for 1H. Spectra were acquired at 25 °C using the 1D NOESY 

with pre-saturation pulse program resident in the spectrometer software. Detailed 1H-NMR 

acquisition parameters can be found in the Supplementary Data.

2.6 Data pre-processing

GC-MS raw files were converted to netCDF format and processed with MZMine 2.0 

(Pluskal et al. 2010) (see Supplementary Data for parameters). Chromatographic peaks were 

annotated based on four different levels following literature recommendations (Sumner et al. 

2007). Level 1: authentic reference standard available, level 2: electron impact (EI) spectral 

match (>75 %) and Kovat’s retention indices (RI) match (±20) to the NIST 2011 database, 

level 3: (EI) spectral match (>75 %) to multiple components of a chemical class (i.e. sugars), 

level 4: unknown metabolite. A data matrix was constructed using the peak area of the base 

peak of each metabolite divided by the peak area of the internal standard (L-4-

chlorophenylalanine). Artefact peaks resulting from the derivatization process and 

interferences due to urea were removed from the dataset. Urea interferences have been noted 

before in urinary GC-MS studies, leading to effects such as ion suppression, peak distortion 

and/or column overload (Kind et al. 2007). We excluded metabolites with >30 % coefficient 

of variance (CV) in QC samples from the final data analysis (Dunn et al. 2011).
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For 1H-NMR, a targeted profiling approach using spectral fitting was applied. Bruker NMR 

files were imported into Chenomx NMR suite software (Chenomx, Edmonton, Canada), 

spline baseline and automatic shim correction were performed prior to manual fitting of 

spectra against the built in library version 7.7.

2.7 Data analysis

Data analysis was conducted using the Metaboanalyst 2.0 toolbox program (Xia et al. 2012) 

separately for GC-MS and 1H-NMR data. GC-MS data was normalized by sum, log-

transformed and auto-scaled prior to analysis, whereas urinary concentrations determined by 
1H-NMR were normalized to creatinine (µmol/mmol creatinine), log transformed and auto-

scaled. If >40 % missing values were present for a given metabolite, the metabolite was not 

used for data analysis. For model building we tested and compared three different methods 

for missing value imputation (minimum, mean and median). Non-parametric univariate 

analyses (Wilcoxon–Mann–Whitney tests) were used for the comparison of two groups and 

one-way ANOVA for multiple group comparison. Furthermore, partial least squares 

discriminant analysis (PLS-DA) models were constructed with Metaboanalyst. Finally, to 

account for possible confounding variables, linear mixed effects regression models, not yet 

implemented in Metaboanalyst, were built into the statistical software R 3.0.1 (www.r-

project.org) adjusting raw p-values for sex, disease stage, BMI, adjuvant and neoadjuvant 

chemo- and radiotherapy, NSAID use, smoking and fasting status. The linear mixed effects 

models were built with the "mer" function of the package lme4 (Bates et al. 2013) using 

patient ID as random-effect term, while the p-values for the fixed-effects terms were 

calculated using an approximate F-test based on the Kenward–Roger approach as 

implemented in the package pbkrtest (Højsgaard 2013). As a last step, adjusted p-values (p-

adjust) were corrected for multiple testing using the Benjamini–Hochberg procedure (FDR) 

(Benjamini et al. 1995).

Binary class discrimination abilities (i.e. comparing pre- vs. post-surgery patients) were 

assessed with ROCCET toolbox to construct receiver operator characteristic curves (ROC) 

(Xia et al. 2013).

2.8 Pathway visualization

To visualize the overall effect of therapeutic intervention on CRC patients’ metabolomes, we 

used the approach of chemical similarity (PubChem ID) and biochemical pathway mapping 

(KEGG ID) with the MetaMapp tool and Cytoscape as previously described (Barupal et al. 

2012). In the case of compound classes (i.e. level 3 annotations), we mapped metabolites to 

their closest annotated chemical entity (i.e. gluconic acid for sugar acids, sucrose for 

disaccharides). Unknowns and glucuronides were mapped as a separate group. 3.

3. Results

From the GC-MS data, a total of 198 metabolites were annotated after removal of all 

artifacts arising from derivatization. More than 85 % (169 metabolites) passed the initial QC 

criteria of <30 % CV in the QC samples. The median % CV in QC samples across all 198 

metabolites was 12.3 % indicating a robust analytical method. For metabolites that showed 
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multiple peaks during derivatization, i.e. from isomers or partial silylation of amino groups, 

only the most abundant peak was used for analysis.

A total of 161 metabolites were annotated by 1H-NMR spectral fitting. The reproducibility 

was generally higher than for GC-MS (median % CV: 7.3%; see also Supplementary Figure 

4). Without chromatographic separation prior to 1H-NMR analysis, the fitting of signals in 

crowded regions of the spectra (e.g. 3–5 ppm) is problematic due to spectral overlap. We 

therefore validated both methodologies against each other by applying a conservative 

approach: metabolites with a Spearman rank correlation coefficient <0.5 over the whole 

dataset (GC-MS peak area vs. 1H-NMR concentrations) were subject to manual inspection 

and deleted from either the 1H-NMR or GC-MS dataset (see Supplementary Table S1 for the 

exclusion criteria). The remaining cleaned datasets, containing 168 metabolites for GC-MS 

and 152 metabolites for 1H-NMR, produced very consistent results throughout the analyses 

(vide infra).

3.1 Patient urine metabolomes change after surgery

A primary aim of this study was to monitor patient urine metabolomes on a prospective 

basis. We therefore compared two groups:

a. patients pre-surgery, still bearing a tumor, and

b. patients after therapeutic surgery (n = 12 at 1–8 days post-surgery; n = 52 at 6 

months follow-up, n = 38 at 12 months follow-up)

Significantly altered metabolites between the groups are listed in Table 2. Corresponding 

fold-change plots for GC-MS and 1H-NMR can be found in Fig. 1. Altogether, 39 

metabolites detected by GC-MS remained significant after adjustment for covariables and 

multiple testing (FDR <0.05), whereas only 2-aminobutyrate was found to be significant in 

our 1H-NMR analysis. Many unknown metabolites (level 3 or 4 identification) were of high 

significance in the GC-MS dataset, however, they were absent from the 1H-NMR data due to 

its use as a targeted profiling technique in our study.

Many significant metabolites, not present in human biochemical pathways, were presumably 

of microbial origin, for example 2,3-butanediol, maleamate, hydroquinone, guajacol, 

pyrogallol and the hippuric acid derivatives 2-, 3- and 4-hydroxyhippurate. All of them were 

diminished in pre-surgery CRC patients’ urine compared to post-surgery urine (fold change 

<1, Fig. 1a). In contrast, two microbial metabolites, p-cresol and its glucuronide (p-cresol-β-

O-glucuronide), were found to be excreted in higher concentrations in patients pre-surgery 

(p-adjusted < 0.05 < FDR).

Several amino acids, phenylalanine, threonine, tyrosine, lysine, tryptophan, asparagine and 

glycine, were detected at significantly lower concentration in the urine of patients pre-

surgery compared to post-surgical timepoints by both GC-MS and 1H-NMR analysis. 

Alanine, histidine, hydroxyproline, glutamine, leucine, isoleucine and lysine had highly 

significant raw p-values, but became non-significant after adjusting for covariates. Some 

metabolites of valine (3-hydroxyisobutyrate and γ-glutamyl-valine) were present in higher 

concentrations pre-surgery. Additionally, concentrations of some tryptophan catabolites, e.g. 
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3-indoxylsulfate, xanthurenate and indole-3-acetate, were found to be altered. We also 

observed significant decreased excretions of myo-inositol, 5-methylhydantoine, oxalate and 

tartrate in pre-surgery patients’ urine.

Several metabolites were significant after adjustment for covariates, but did not sustain 

multiple testing (p-adjusted < 0.05 < FDR): the oncometabolite 2-hydroxyglutarate was 

elevated in pre-surgery patients’ urine, whereas pyrrole-2-carboxylic acid, a metabolite of 

collagen and a product of the D-hydroxyproline isomer (Yamanishi et al. 1972), was found at 

higher levels in urine of patients after surgical intervention. A metabolite similar to 

cadaverine (putatively a polyamine derivative) and xanthine were elevated in pre-surgery 

patients’ urine at borderline significance.

We observed a combined modulating effect of adjuvant chemo- and radiotherapy on the 

described changes in metabolite levels when pre- and post-surgery individuals were 

compared (see Supplementary Table S3). The differences between pre- and post-surgical 

samples were more pronounced among patients undergoing additional adjuvant 

chemotherapy. However, the same direction of change in metabolite levels was already 

observed in patients who only underwent surgery with no adjuvant treatment. In contrast, 

neoadjuvant treatment, prior to surgery, did not have a distinct effect on patients’ 

metabolomes.

Overall effects of the therapeutic intervention were visualized with MetaMapp and 

cytoscape where groups of altered metabolites were clustered together according to their 

chemical similarity (see Fig. 2).

3.2 Distinguishing early and late stage disease

To investigate whether metabolites in the urine could discriminate CRC patients by disease 

stage, patients prior to surgery were compared based on staging of their excised tumors 

according to the AJCC staging system. CRC patients were grouped as follows:

• stage 0 (carcinoma in situ) and stage I (localized) as "early"

• stage II (locally advanced) and stage III (locally advanced with lymphnodes 

affected) as "intermediate"

• stage IV (metastasized) as "late".

A PLS-DA score plot of pre-surgery CRC patients by stage is illustrated in Supplementary 

Fig. S3. Additionally, discriminating metabolites were selected using one-way ANOVA. 

Sixteen metabolites in both GC-MS and 1H-NMR datasets were found to significantly 

discriminate CRC stages (p-values <0.05), but only two of them remained significant after 

adjusting for multiple testing, a dipeptide of hydroxyproline (Hyp-Hyp) and p-cresol-β-O-

glucuronide.

p-Cresol and its glucuronide were present at higher concentrations both in pre-surgery 

patients compared to post-surgery counterparts and in later stages of the disease (Fig. 1a and 

Table 3). p-Cresol-β-O-glucuronide was determined to be a level 2 metabolite but showed a 

very high correlation with p-cresol (data not shown). A peak at 375 m/z in the electron-
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impact spectrum indicated the presence of a glucuronide group for the latter compound 

(Thevis et al. 2001). We therefore chose to synthesize the glucuronide enzymatically 

(Supplementary Material) to unequivocally identify this phase II metabolite of p-cresol as 

the β-O-glucuronide.

We observed that Hyp-Hyp was increased in intermediate- and late-stage pre-surgery 

patients when compared to early-stage patients. Though it was increased in pre-surgery 

patients, the increase was not considered significant. We also found hippurate to be excreted 

in higher concentrations in intermediate- and late-stage patients compared to early-stage 

patients and detected the same trend by GC-MS and 1H-NMR analysis. Urea levels were 

diminished in late-stage patients compared to early- or intermediate-stage patients. Glycerol, 

galactarate and butyrate levels were increased only in late stage CRCs, whereas the opposite 

trend was seen for carnitine. Moreover, we detected 3 unknowns, 2 glucuronides and one 

sugar alcohol that enabled discrimination between the different stages in our GC-MS 

dataset.

Generally, early-stage patients were easier to distinguish from more advanced stages of the 

disease, whereas intermediate stages were only poorly differentiated from either of these 

groups (see Supplementary Fig. S3).

3.3 Colon vs. rectal cancer patients

Among pre-surgery CRC patients enrolled in our study, 54 had rectal cancer and 43 had 

colon cancer. Seven metabolites were significantly different after adjusting for all covariates 

and multiple testing if colon and rectal cancer patients prior to surgery were compared. 

Results are shown in Supplementary Table S2. Hippurate and 3-(3-hydroxyphenyl)-3-

hydroxypropionate were excreted in higher concentrations in colon cancer patients, whereas 

the opposite was true for cis-aconitic acid, pyroglutamate, 4-hydroxy-3-methoxy-mandelate 

and two unidentified metabolites. For many of the previously mentioned gut microbiota-

associated metabolites, e.g. 3- and 4-hydroxyhippurate, guajacol, p-cresol and p-cresol-β-O-

glucuronide, they were excreted in higher concentrations from colon cancer patients, 

although the differences were not statistically significant after multiple testing. Interestingly, 

Hyp-Hyp and p-cresol, which were present in higher concentrations in late-stage patients 

were elevated in colon carcinoma patients compared to rectal cancer patients (p-adjusted = 

0.056). We furthermore compared pre-surgery patients who received neoadjuvant therapy (n 

= 36) against pre-surgery patients without any therapy prior to surgery (n = 50). No 

metabolites differed significantly after adjusting for multiple testing.

3.4 Metabolite markers for CRC

We chose to build two binary classification models for the differentiation of tumor bearing 

individuals (pre-surgery CRC patients) from patients after therapeutic intervention:

Model 1 – Manual metabolite selection—We manually selected those metabolites that 

were significant after adjusting for covariates (p-adjusted), with fewer than 10% missing 

values, where a direct effect of surgery was seen in patients 1–8 days post-surgery (labeled 

as "post") and maintained over a period of up to one year (6 month and 12 month follow-up). 
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Box plots of 20 metabolites fulfilling these requirements are illustrated in Fig. 2. We 

selected 4 amino acids (tyrosine, threonine, tryptophan and glycine), 10 metabolites with 

high confidence in identification (level 1 or 2) and 6 unidentified, but highly significant 

species (see Supplementary Table S4 for list of selected metabolites; all p-adjust < 0.10). 

These 20 metabolites were used to construct a multivariate model (based on partial least 

squares-discriminat analysis) with the ROCCET toolbox (Xia et al. 2013).

Model 2 – Automatic metabolite selection—A second model was constructed by 

selecting the ten best differentiating metabolites from both GC-MS and 1H-NMR based on 

their univariate ROC. Metabolite selection was performed with fasted individuals only (n = 

108) to avoid marker selection due to differences in fasting state. This second model, based 

on these 20 automatically selected metabolites, was constructed using the same ROCCET 

parameters as in Model 1.

Both metabolite sets were used to discriminate pre- from post-surgery individuals in the full 

dataset and a subset of fasted individuals. The results are illustrated in Fig. 3 with 

metabolites and univariate AUCs provided in the Supplementary Data.

We were able to differentiate pre- from post-surgery patients with high accuracy in both 

models. The method for imputation of missing values only had a marginal effect on the 

overall model performance (see Supplementary Data). The automatically selected set of 

metabolites performed slightly better than the manually selected set (cf. Fig. 3a vs. 3b). 

Overall, only small differences in the model performance were observed between a full 

dataset and a dataset consisting of fasted patients (AUCs in the range of 0.85–0.92), 

indicating that both metabolite sets were independent of a patients’ fasting state.

4. Discussion

Our results show that urine metabolomes of CRC patients prior to surgery can be 

distinguished from those of patients after surgery. This indicates that patients’ metabolomes 

are primarily affected by the disease or disease-associated removal of the tumor and 

substantial parts of the intestine, although an exacerbating effect of adjuvant chemotherapy 

was also observed. Furthermore, we were able to identify several metabolites associated 

with particular disease stages as candidates for prognostic markers. Generally, we observed 

many metabolites with unknown identity (level 3 or 4) to be highly and significantly altered. 

Unfortunately, due to a targeted 1H-NMR profiling approach and a low mass accuracy in 

single-quadrupole MS, we were not able to fully identify these unknowns; a process that 

remains one of the main challenges of metabolomics studies (Sumner et al. 2007).

Most studies published thus far have employed simple case-control designs, comparing CRC 

patients with healthy individuals (Liesenfeld et al. 2013). Many of the metabolites, which 

were discovered as potential biomarkers in these studies, were also significant in our 

prospective study.
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4.1 Differences by stage: degradation products of collagen as candidates for prognostic 
biomarkers for CRC

We were able to identify several urinary metabolites that distinguished early- from late-stage 

CRC patients. We identified Hyp-Hyp at higher levels in late-stage cancer patients’ urine. 

The metabolite was also significantly altered in the urine of hepatocellular cancer patients 

(Wu et al. 2009). Hydroxyproline (Hyp) itself, a major component of collagen, showed no 

difference in excretion levels by stage. It has long been known that cancer cells need to 

degrade extracellular matrix components in order to disseminate through connective tissue 

(Deryugina et al. 2006). Dipeptides of hydroxyproline might be derived from the process of 

disseminating tumor cells, degrading collagen during the process of early metastasis, 

although the definitive origin of the metabolite remains to be determined. Interestingly, CRC 

patients prior to surgical intervention and post-surgery patients did not show a significant 

difference in their urinary excretion of Hyp-Hyp. However, colon cancer patients excreted 

higher levels of Hyp-Hyp compared to rectal cancer patients–an observation that cannot be 

explained by neoadjuvant therapy. Future mechanistic studies are needed to determine 

whether or not dipeptides of Hyp are formed during early metastasis and if the marker has a 

prognostic value for CRC patients. Other metabolites differentiating early- from 

intermediate- or late-stage CRC patients are discussed below.

4.2 Post-surgery urine metabolome changes indicative of the importance of the gut 
microbiome

We found many small aromatic components, such as guajacol, three derivatives of 

hydroxyhippuric acids, pyrogallol and hydroquinone lower in CRC patients prior to surgery 

compared to post-surgery timepoints. In contrast, p-cresol and its glucuronide tended to be 

present at higher concentrations in pre-surgical patients. Moreover, p-cresol and its 

glucuronide were of value for discerning the different stages of the disease (Table 3). All of 

the above metabolites can be classified as being mainly derived from the gut microbiota, due 

to their absence of human biochemical pathways. Some of these metabolites have previously 

been found to discriminate healthy controls from CRC patients. Qui et al. and Cheng et al. 

both reported altered p-cresol levels in the urine of CRC patients compared to healthy 

controls, but with an opposing direction (Cheng et al. 2012; Qiu et al. 2010). We not only 

measured elevated concentrations of p-cresol and its glucuronide in the late stages of CRC, 

but, moreover, surgical intervention markedly reduced the levels in patients after surgery by 

approximately 50 %. Interestingly, Zhang et al. found the glucuronide of p-cresol, identified 

using characteristic precursor ions and neutral loss fragments in LC-MS/MS, to be up-

regulated in rats with 2,4,6 trinitrobenzene induced colitis. p-Cresol and its glucuronide 

might therefore reflect an inflammatory response of the gut microbiota (Zhang et al. 2012).

Our study and the results of several other authors (Cheng et al. 2012; Qiu et al. 2010; Zhu et 

al. 2013) indicate that metabolites derived from the gut microbiome show marked 

differences either over the course of the illness or in case-control designs pointing towards 

an important role of the gut microbiota in the pathogenesis of CRC (Cheng et al. 2012; Qiu 

et al. 2010) (Zhu et al. 2013). The origin of small aromatic compounds is mainly from 

microbial metabolism of aromatic amino acids, though eukaryotic pathways may also 

contribute. Qui et al. discussed their findings of altered p-cresol metabolites in the context of 
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perturbed populations of Clostridium sp. (Qiu et al. 2010). Studies led by Bone et al. showed 

that p-cresol species arise primarily from tyrosine conversion of anaerobic bacteria in the left 

colon (Bone et al. 1976). The tumor promoting activities of p-cresol and related compounds 

have been known for decades (Boutwell et al. 1959). In addition to p-cresol, we observed 3-

(3-hydroxyphenyl)-3-hydroxypropionate, a metabolite that has been associated with 

members of Clostridiae (Shaw 2010), to be elevated in colon cancer patients’ urine 

compared to rectal cancer patients’ urine. Moreover, urinary butyrate levels were increased 

in late-stage CRC patients prior to surgery. Butyrate shows growth promoting effects in 

normal colon cells but also tumor inhibitory effects (hence it is known as the "butyrate 

paradox") (Vanhoutvin et al. 2009). Its effects on secondary prevention of CRC by its 

induction of glutathione S-transferases might, though, be a double edged sword, by 

enhancing detoxification in both normal and cancer cells (Scharlau et al. 2009).

Our findings suggest that surgical removal of the tumor and parts of the intestine may affect 

microbial metabolites and possibly the microbiota itself, with adjuvant chemotherapy 

exacerbating this effect. The microbial activity in the gut may lead to the production of 

toxins (Heavey et al. 2004), mutagens (Carman et al. 1988) or the production of reactive 

oxygen intermediates as previous demonstrated (Owen et al. 2000). On the other hand, the 

tumor microenvironment can also influence and select bacterial communities, for example 

by providing a niche for certain bacterial species (Marchesi et al. 2011). Therapeutical 

intervention and/or removal of parts of the intestine might therefore change the bacterial 

population, which in turn leads to an altered metabolism in the gut.

Interestingly, our results support the hypothesis that the gut microbiota play a more 

important role for colon cancer than for rectal or rectosigmoidal cancer patients. Most of the 

microbiome associated metabolites were found to be altered in colon carcinoma patients, 

irrespective of prior neoadjuvant treatment (see Supplementary Table S2), which is in line 

with the findings that these compounds arise directly in the colon (Bone et al. 1976).

Many of these bacterial metabolites are absorbed by the intestine and further metabolized by 

the host and/or excreted in the urine. The identified glucuronide of p-cresol is an example of 

these detoxification mechanisms. Many of the partially identified metabolites (i.e. labeled 

with the level 3 tag "glucuronide") might serve as exposure markers for such exogenous or 

endogenous substances. However, future studies will have to establish how the composition 

of the microbiome (assessed, for example, by genotyping analyses) is associated with the 

metabolites excreted in urine. Moreover, it remains to be determined whether a decreased 

absorption area after removal of parts of the intestine, or a change in the composition of the 

microbiome itself, might account for the different excretion rates of microbial metabolites.

4.3 Long-known hallmarks of cancer monitored by the metabolomic profile of CRC 
patients’ urine

4.3.1 Amino acid metabolism and protein synthesis—Although the concentrations 

of some amino acids were primarily affected by co-variables such as fasting status, many 

other amino acids, such as phenylalanine, threonine, tyrosine, lysine, tryptophan, asparagine 

and glycine for example, were excreted at lower concentrations in pre-surgery CRC patients’ 

urine. Alterations in the amino acid profiles of cancer patients have been described multiple 

Liesenfeld et al. Page 11

Metabolomics. Author manuscript; available in PMC 2017 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



times (Leichtle et al. 2012; Maeda et al. 2010; Miyagi et al. 2011). Miyagi et al. compared 

targeted plasma amino acid profiles of various cancer entities against controls and also 

reported decreased levels for most amino acids in CRC, except for isoleucine, proline and 

glycine (Miyagi et al. 2011).

Decreased levels of 2-oxobutyrate in combination with an increase in 2-aminobutyrate might 

favor the hypothesis of increased amino acid catabolism of threonine (Paxton et al. 1986; 

Steele 1982). On the other hand, lower urinary excretion might also reflect an increased 

uptake of amino acids by the tumor for protein biosynthesis, accompanied by cellular 

turnover and tumor growth. Interestingly, we observed lower urinary urea levels among late-

stage patients. Urinary urea, as the prime end product of amino acid catabolism, is an 

indicator of nitrogen excretion. The utilization of nitrogen is of special interest for the cancer 

cachexia syndrome, which accompanies about half of cancer patients (Kern et al. 1988). 

Lower levels of urinary urea in late-stage cancers might indicate less nitrogen flux into 

catabolic reactions, and a likely higher amino acid flux into protein biosynthesis. This is in 

line with the theory that tumors act as "nitrogen sinks" on a systemic level (Kern et al. 

1988). This theory is further supported by animal studies led by Beck and Tisdale who 

observed an initial increase in urinary urea excretion after transplantation of colon 

adenocarinomas in mice, but a decrease below the baseline level at late stages of tumor 

growth (Beck et al. 1989).

Additionally, phenylalanine and tyrosine, precursors for catecholamine biosynthesis, were 

significantly altered in post-surgery patients. These aromatic amino acids serve as precursors 

for aromatic microbial products, such as p-cresol, as indicated by our chemical similarity 

network (see Fig. 2). Furthermore, urinary dopamine, a downstream metabolite of tyrosine, 

was found to be diminished in patients still bearing a tumor. Dopamine may have anti-

angiogenic effects, inhibiting vascular endothelial growth factor (VEGF) in vitro 
(Chakroborty et al. 2009). Moreover, it reduced tumor growth in tumor bearing mice by 

blocking the effects of daily restraint stress (immobilization) (Moreno-Smith et al. 2013).

In addition, four members of tryptophan metabolism were affected by the surgical 

intervention: tryptophan itself (0.82-fold) as well as xanthurenate (0.79-fold) and indole-3-

acetate (0.80-fold) were diminished in pre-surgery compared to post-surgery patients, 

whereas 3-indoxylsulfate levels were increased 1.46-fold (Fig. 1). Cheng et al. also reported 

diminished levels of tryptophan metabolism (5-hydroxy-Trp, indoleacetate, indole and 

others) in CRC patients compared to healthy individuals (Cheng et al. 2012). Tryptophan is 

the precursor of several neurotransmitters and hormones such as serotonin and melatonin, 

but also of kynurenine and its downstream catabolites. Recently, kynurenine was described 

as an endogenous ligand of the arylhydrocarbon receptor, promoting a tumor progressive 

mechanism (Opitz et al. 2011). We did not detect kynurenine in our urinary samples but 

noted a catabolite, xanthurenate, to be lowered in CRC patients prior to surgery compared to 

post-surgery patients. Moreover Cheng et al. reported diminished levels of another 

catabolites of kynurenine (kynurenate) in the urine of CRC patients compared to urine of 

healthy controls (Cheng et al. 2012).
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4.3.2 Oncometabolites—We observed moderately higher (1.27-fold, FDR = 0.068) 

urinary excretion of the oncometabolite 2-hydroxyglutarate in patients at pre- compared to 

post-surgery. Oncometabolic activities of 2-hydroxyglutarate have recently been discovered 

(Losman et al. 2013): 2-hydroxyglutarate can promote epigenetically driven carcinogenesis 

by directly inhibiting histone lysine demethylases (Højsgaard 2013) and 5-methylcytosine 

hydroxylases (Pollard et al. 2005). The metabolite itself has been described as being derived 

from the neomorphic activity of mutated isocitrate dehydrogenase (IDH). While IDH 

mutations are most common in glioblastomas and acute myelogenous leukemia (Bates et al. 

2013), they were initially discovered in metastatic colon cancer (Rakheja et al. 2013).

myo-Inositol was diminished by 0.43 and 0.68-fold, respectively, according to GC-MS and 
1H-NMR analysis in pre-surgery CRC patients compared to post-surgery. myo-Inositol and 

its derivatives have previously been associated with different cancer-types/biological 

matrices and varying direction of change (Aa et al. 2012; Perroud et al. 2006; Thysell et al. 

2010). Denkert et al. reported lower levels of an inositol stereoisomer in colon cancer tissue 

compared to normal colon mucosa (Denkert et al. 2008), in concordance with the observed 

lower urinary myo-inositol levels in pre-surgery, tumor bearing patients in our study. 

Another group compared CRC patients at different stages and observed that inositol was less 

abundant in tissues of CRC liver metastasis (Farshidfar et al. 2012). Inositol might therefore 

play a role in cellular signaling, via its link to the phosphoinositol-3-kinase PI3K pathway, 

impacting CRC pathogenesis.

Interestingly, 1.74-fold higher levels (borderline significance; p-adjusted 0.07) of a 

metabolite similar to cadaverine was also observed in pre-surgery CRC patients. We 

hypothesize the metabolite to be a polyamine derivative, but further investigations will have 

to confirm the exact chemical identity of the metabolite. Increased levels of polyamines have 

been reported in the plasma and urine of cancer patients (Liu et al. 2013).

5. Concluding remarks

To the best of our knowledge, this study is one of the first reporting urine metabolomic data 

with repeated sampling from a prospective CRC patient cohort. While most studies 

published so far have compared CRC patients to healthy controls, we were able to monitor 

patient metabolomes over time. Moreover, we used two complimentary methods, GC-MS 

and 1H-NMR, enabling us to independently validate our findings. A main limitation of our 

study was the low sensitivity of NMR and single-quadrupole MS as well as the low unit 

mass accuracy for the latter technique. Subsequently, we were unable to identify a number of 

metabolites of high significance by not being able to conduct more sophisticated library 

searches or sum formula calculations.

Surgical intervention had an impact on several metabolites derived from the gut microbiota. 

Moreover, amino acids and downstream metabolites of aromatic amino acids were altered. 

Nevertheless, we were able to formulate a discrimination model consisting of thirteen 

marker metabolites to differentiate pre- from post-surgery CRC patients with good accuracy. 

Additionally, we observed a dipeptide of hydroxyproline, together with p-cresol and its 

glucuronide, to be present in higher concentrations in the urine of late stage CRC patients. 
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To further evaluate whether these candidate metabolites are of prognostic value for patients’ 

clinical outcome, a validation study with continued follow-up over a longer time period will 

be needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
a) Fold-change plot comparing pre- vs. post-surgery CRC patients; fold changes >1 indicate 

higher urinary concentrations pre-surgery, fold changes <1 indicate lower urinary 

concentrations pre-surgery. a) Metabolites present in GC-MS dataset. b) Metabolites present 

in NMR dataset. C) Metabolites present in both GC-MS and NMR datasets.
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Fig. 2. 
Mapped pathway for the therapeutic effects on colorectal cancer patients’ metabolomes. 

Metabolites were mapped according to their biochemical pathway (KEGG – bold line) and 

chemical similarity (PubChem ID – light gray line). Fold changes and adjusted/FDR-

corrected p-values were abstracted by comparing patients pre- and post surgery. Only 

metabolites with an adjusted/ FDR-corrected p-value <0.1 were labeled as increased/

decreased.
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Fig. 3. 
Receiver operator characteristic (ROC) curves for the differentiation between pre- and post-

surgery CRC patients. a) Model 1 using manual variable selection; ROC curve and score 

plot from a partial least squares-discriminant analysis (PLS-DA) model containing 20 

metabolites for all patients in our dataset (bold line) and a subset of fasted patients (dahed 

line). b) Model 2 using automatic variable selection; ROC curve and score plot from a partial 

least squares-discriminant analysis (PLS-DA) model containing 20 metabolites for all 

patients in our dataset (bold line) and a subset of fasted patients (dashed line).
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