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Abstract

Introduction—Metabolomics is a valuable tool for biomarker screening of colorectal cancer
(CRC). In this study, we profiled the urinary metabolomes of patients enrolled in a prospective
patient cohort (ColoCare). We aimed to describe changes in the metabolome in the longer clinical
follow-up and describe initial predictors as candidate markers with possibly prognostic
significance

Methods—In total, 199 urine samples from CRC patients pre-surgery (n=97), 1-8 days post-
surgery (n=12) and then after 6 and 12 months (n=52 and 38, respectively) were analyzed using
both GC-MS and IH-NMR. Both datasets were analyzed separately with built in uni- and
multivariate analyses of Metaboanalyst 2.0. Furthermore, adjusted linear mixed effects regression
models were constructed.

Results—Many concentrations of the metabolites derived from the gut microbiome were affected
by CRC surgery, presumably indicating a tumor-induced shift in bacterial species. Associations of
the microbial metabolites with disease stage indicate an important role of the gut microbiome in
CRC.

We were able to differentiate the metabolite profiles of CRC patients prior to surgery from those at
any post-surgery timepoint using a multivariate model containing 20 marker metabolites
(AUCROC=0.89; 95% CI:0.84-0.95).

Conclusion—To the best of our knowledge, this is one of the first metabolomic studies to follow
CRC patients in a prospective setting with repeated urine sampling over time. We were able to
confirm markers initially identified in case-control studies and pin point metabolites which may
serve as candidates for prognostic biomarkers of CRC.
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1. Introduction

In 2012, colorectal cancer (CRC) was the second most common cancer in Europe, and the
second most common cause of death from cancer with almost 215,000 deaths each year
(Ferlay et al. 2013). In the US, CRC was the third most common cancer for both genders
with more than 50,000 deaths in 2013 (ACS 2013). While improvements in the early
detection of disease occurrence are crucial, biomarkers for tertiary prevention, to improve
the prediction of disease recurrence, are urgently needed. To date, treatment and clinical
follow-up of CRC patients largely follows standardized guidelines. Only a few markers for
personalized therapies exist, such as KRAS mutation as a predictive biomarker for anti-
EGFR therapy in metastasized patients (Normanno et al. 2013). Moreover, the detection of
early stage metastasis is limited by the sensitivity of currently available tumor markers,
CA19-9 and CEA, and imaging technologies such as abdominal sonography, computed
tomography (CT) and magnetic resonance imaging (MRI) (Bellomi et al. 2005).

Metabolomics, the systematic investigation of metabolites in a given biological system
(Fiehn 2002), has been more extensively used in cancer research in recent years (Spratlin et
al. 2009). To date, many mass spectrometry (MS)-based metabolomic studies investigating
CRC have been published using different hyphenated techniques such as liquid
chromatography (LC-MS), gas chromatography (GC-MS) and capillary electrophoresis (CE-
MS). Among these methods, GC-MS has the longest history. Extensive electron-impact
mass spectral databases (NIST, GOLM, WILEY (Hummel et al. 2007)) on biochemicals are
available, making it a robust method for metabolic profiling (Dunn et al. 2005). Nuclear
magnetic resonance (NMR)-based techniques are known to have less sensitivity in
comparison to MS-based methods, but compensate for this disadvantage by being highly
reproducible and, furthermore, quantitative without the need for individual calibration of
each detected analyte (Pan et al. 2007).

Metabolomic studies on CRC to date focus either on profiling of tumor tissue (Chan et al.
2009; Denkert et al. 2008; Mal et al. 2009; Mal et al. 2012) to gain insight into cancer
biology, or use serum (Farshidfar et al. 2012; Kondo et al. 2011; Leichtle et al. 2012; Ma et
al. 2010; Nishiumi et al. 2012; Qiu et al. 2009; Ritchie et al. 2010) and/or urine samples
(Cheng et al. 2012; Ma et al. 2009; Qiu et al. 2010; Wang et al. 2010) with the aim to detect
novel markers for early disease detection. As previously reviewed by our own group
(Liesenfeld et al. 2013), most studies have used a simple case-control study design with only
a few investigations conducting follow-up studies with repeated sampling of biospecimens
over time (Farshidfar et al. 2012; Ma et al. 2010). Studies with a prospective design have the
advantage of allowing the assessment of the predictive value of metabolomics with regard to
patients’ outcomes, such as recurrence rates, metastasis or survival. Additionally, effects of
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therapy (primarily surgical intervention, but also radio- and chemotherapy) can also be
monitored and assessed.

In this GC-MS- and *H-NMR-based metabolomics study, we profiled 199 urine samples at
different study timepoints in a prospective CRC patient cohort, the ColoCare study. We
aimed to compare urinary metabolomes of CRC patients prior to surgery with those a few
days and at 6 and 12 months post-surgery, assessing potential effects related to the primary
therapeutic intervention. Additionally, we aimed to describe changes in the metabolome in
the longer follow-up and describe initial predictors as candidate markers with possibly
prognostic significance. To the best of our knowledge, this study is one of the first CRC
metabolomic approaches embedded in a prospective study design.

2. Materials and methods

2.1 Study population

This study is part of the international prospective cohort study, ColoCare, recruiting newly-
diagnosed CRC patients prior to surgery. ColoCare investigates predictors of cancer
recurrence, survival, treatment toxicities and health-related quality of life. Within the study,
extensive follow-up observations over the duration of 5 years are being performed: three
follow-up timepoints in year one, followed by one each year thereafter, including a
comprehensive collection of biospecimens and data. The ColoCare study has been approved
by the ethics committee of the medical faculty at the University of Heidelberg and study
participants provided their written informed consent. Patients were categorized according to
the American Joint Committee on Cancer (AJCC) staging system based on histopathologic
findings. Both patients with colon carcinoma (ICD-18) and patients with rectal or
rectosigmoidal cancer (ICD-19/20) were included. Urine, generally from morning fasting,
was collected from patients at baseline, prior to surgery, and in some cases from patients 1-8
days post-surgery. As part of the ColoCare follow-up regime, additional biosepecimens were
obtained approximately 6 and 12 months post enrollment at the National Center of Tumor
Disease, Heidelberg (NCT). Spot urine samples from these respective follow-up visits were
included (see Table 1 for study population and sample availability). If patients underwent
adjuvant chemotherapy, follow-up visits were scheduled at least 2 weeks after their last
chemotherapy cycle had been completed. Urine samples were aliquoted immediately and
stored at —80 °C until analysis. Self-reported food and fluid intake before sample collection
was monitored during follow-up visits. Patients who reported alcohol or tobacco use 24 h
prior to urine collection were excluded from this dataset.

2.2 Chemicals and reagents

HPLC-grade methanol and acetonitrile were purchased from VWR International (Fontenay-
sous-Bois, France). Sodium 3-(trimethylsilyl)-propionate-2,2,3,3-d4 99 % D (TSP) was
purchased from Euriso-top (Saint-Aubin Cedex, France).
Bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1 % trimethylchlorosilane was
purchased from Supelco (Bellefonte, USA). Deuterium oxide (D20), pyriding,
methoxyamine.HCI, L-4-chlorophenylalanine, uridine 5’ -diphosphoglucuronic acid
trisodium salt (UGA), saturated alkane mixture (C7—Cy4p) and all analytical reference
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standards were purchased from Sigma Aldrich (Steinheim, Germany) at the highest purity
available.

2.3 Sample preparation

For GC-MS analysis, the method for urine sample preparation was adapted from literature
(Cheng et al. 2012), but without urease treatment because low enzyme specificity resulting
in distorted metabolite levels have been reported by several research groups (Kind et al.
2007; Perroud et al. 2006). Pooled quality control (QC) samples and Kovat’s alkane
mixtures were injected with each analytical batch.

For 1H-NMR, 540 pL urine were spiked with 60 pL KoHPO4/NaH,PO, buffer in D,O (pH
6.5, 1.5 M) (Xiao et al. 2009) containing 10 mM TSP to a final D,O concentration of 10 %
(v/v) for lock and shim purposes and TSP concentration of 1 mM. QC samples were run at
the beginning and end of each analytical batch.

2.4 GC-MS data acquisition

Analysis was carried out on an Agilent 6890 GC/ 5973 MS single quadrupole system.
Aliquots of 1 pL were injected onto a HP-5 MS fused silica column (30 m x 0.25 mm; 0.25
um film thickness of the 5 % phenyl 95 % dimethylpolysiloxane stationary phase; Agilent
J&W Scientific) in splitless mode. Chromatographic and mass spectrometric conditions are
described in the Supplementary Data.

2.5 1H-NMR data acquisition

1H-NMR spectra were acquired using a Bruker Avance Il NMR spectrometer equipped with
a 5-mm, inverse-configuration probe with triple-axis gradient capability at a field strength of
14.1 T operating at 600.1 MHz for 1H. Spectra were acquired at 25 °C using the 1D NOESY
with pre-saturation pulse program resident in the spectrometer software. Detailed 1H-NMR
acquisition parameters can be found in the Supplementary Data.

2.6 Data pre-processing

GC-MS raw files were converted to netCDF format and processed with MZMine 2.0
(Pluskal et al. 2010) (see Supplementary Data for parameters). Chromatographic peaks were
annotated based on four different levels following literature recommendations (Sumner et al.
2007). Level 1: authentic reference standard available, level 2: electron impact (EI) spectral
match (>75 %) and Kovat’s retention indices (RI) match (£20) to the NIST 2011 database,
level 3: (EI) spectral match (>75 %) to multiple components of a chemical class (i.e. sugars),
level 4: unknown metabolite. A data matrix was constructed using the peak area of the base
peak of each metabolite divided by the peak area of the internal standard (L-4-
chlorophenylalanine). Artefact peaks resulting from the derivatization process and
interferences due to urea were removed from the dataset. Urea interferences have been noted
before in urinary GC-MS studies, leading to effects such as ion suppression, peak distortion
and/or column overload (Kind et al. 2007). We excluded metabolites with >30 % coefficient
of variance (CV) in QC samples from the final data analysis (Dunn et al. 2011).
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For 1H-NMR, a targeted profiling approach using spectral fitting was applied. Bruker NMR
files were imported into Chenomx NMR suite software (Chenomx, Edmonton, Canada),
spline baseline and automatic shim correction were performed prior to manual fitting of
spectra against the built in library version 7.7.

2.7 Data analysis

Data analysis was conducted using the Metaboanalyst 2.0 toolbox program (Xia et al. 2012)
separately for GC-MS and H-NMR data. GC-MS data was normalized by sum, log-
transformed and auto-scaled prior to analysis, whereas urinary concentrations determined by
IH-NMR were normalized to creatinine (umol/mmol creatinine), log transformed and auto-
scaled. If >40 % missing values were present for a given metabolite, the metabolite was not
used for data analysis. For model building we tested and compared three different methods
for missing value imputation (minimum, mean and median). Non-parametric univariate
analyses (Wilcoxon—Mann—-Whitney tests) were used for the comparison of two groups and
one-way ANOVA for multiple group comparison. Furthermore, partial least squares
discriminant analysis (PLS-DA) models were constructed with Metaboanalyst. Finally, to
account for possible confounding variables, linear mixed effects regression models, not yet
implemented in Metaboanalyst, were built into the statistical software R 3.0.1 (www.r-
project.org) adjusting raw p-values for sex, disease stage, BMI, adjuvant and neoadjuvant
chemo- and radiotherapy, NSAID use, smoking and fasting status. The linear mixed effects
models were built with the "mer" function of the package Ime4 (Bates et al. 2013) using
patient ID as random-effect term, while the p-values for the fixed-effects terms were
calculated using an approximate F-test based on the Kenward—Roger approach as
implemented in the package pbkrtest (Hgjsgaard 2013). As a last step, adjusted p-values (p-
adjust) were corrected for multiple testing using the Benjamini—-Hochberg procedure (FDR)
(Benjamini et al. 1995).

Binary class discrimination abilities (i.e. comparing pre- vs. post-surgery patients) were
assessed with ROCCET toolbox to construct receiver operator characteristic curves (ROC)
(Xia et al. 2013).

2.8 Pathway visualization

To visualize the overall effect of therapeutic intervention on CRC patients’ metabolomes, we
used the approach of chemical similarity (PubChem ID) and biochemical pathway mapping
(KEGG ID) with the MetaMapp tool and Cytoscape as previously described (Barupal et al.
2012). In the case of compound classes (i.e. level 3 annotations), we mapped metabolites to
their closest annotated chemical entity (i.e. gluconic acid for sugar acids, sucrose for
disaccharides). Unknowns and glucuronides were mapped as a separate group. 3.

3. Results

From the GC-MS data, a total of 198 metabolites were annotated after removal of all
artifacts arising from derivatization. More than 85 % (169 metabolites) passed the initial QC
criteria of <30 % CV in the QC samples. The median % CV in QC samples across all 198
metabolites was 12.3 % indicating a robust analytical method. For metabolites that showed
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multiple peaks during derivatization, i.e. from isomers or partial silylation of amino groups,
only the most abundant peak was used for analysis.

A total of 161 metabolites were annotated by *H-NMR spectral fitting. The reproducibility
was generally higher than for GC-MS (median % CV: 7.3%; see also Supplementary Figure
4). Without chromatographic separation prior to *H-NMR analysis, the fitting of signals in
crowded regions of the spectra (e.g. 3-5 ppm) is problematic due to spectral overlap. We
therefore validated both methodologies against each other by applying a conservative
approach: metabolites with a Spearman rank correlation coefficient <0.5 over the whole
dataset (GC-MS peak area vs. 1H-NMR concentrations) were subject to manual inspection
and deleted from either the TH-NMR or GC-MS dataset (see Supplementary Table S1 for the
exclusion criteria). The remaining cleaned datasets, containing 168 metabolites for GC-MS
and 152 metabolites for IH-NMR, produced very consistent results throughout the analyses
(vide infra).

3.1 Patient urine metabolomes change after surgery

A primary aim of this study was to monitor patient urine metabolomes on a prospective
basis. We therefore compared two groups:

a. patients pre-surgery, still bearing a tumor, and

b. patients after therapeutic surgery (n = 12 at 1-8 days post-surgery; n = 52 at 6
months follow-up, n = 38 at 12 months follow-up)

Significantly altered metabolites between the groups are listed in Table 2. Corresponding
fold-change plots for GC-MS and IH-NMR can be found in Fig. 1. Altogether, 39
metabolites detected by GC-MS remained significant after adjustment for covariables and
multiple testing (FDR <0.05), whereas only 2-aminobutyrate was found to be significant in
our IH-NMR analysis. Many unknown metabolites (level 3 or 4 identification) were of high
significance in the GC-MS dataset, however, they were absent from the 1H-NMR data due to
its use as a targeted profiling technique in our study.

Many significant metabolites, not present in human biochemical pathways, were presumably
of microbial origin, for example 2,3-butanediol, maleamate, hydrogquinone, guajacol,
pyrogallol and the hippuric acid derivatives 2-, 3- and 4-hydroxyhippurate. All of them were
diminished in pre-surgery CRC patients’ urine compared to post-surgery urine (fold change
<1, Fig. 1a). In contrast, two microbial metabolites, p-cresol and its glucuronide (p-cresol-g-
O-glucuronide), were found to be excreted in higher concentrations in patients pre-surgery
(p-adjusted < 0.05 < FDR).

Several amino acids, phenylalanine, threonine, tyrosine, lysine, tryptophan, asparagine and
glycine, were detected at significantly lower concentration in the urine of patients pre-
surgery compared to post-surgical timepoints by both GC-MS and IH-NMR analysis.
Alanine, histidine, hydroxyproline, glutamine, leucine, isoleucine and lysine had highly
significant raw p-values, but became non-significant after adjusting for covariates. Some
metabolites of valine (3-hydroxyisobutyrate and y-glutamyl-valine) were present in higher
concentrations pre-surgery. Additionally, concentrations of some tryptophan catabolites, e.g.
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3-indoxylsulfate, xanthurenate and indole-3-acetate, were found to be altered. We also
observed significant decreased excretions of myc-inositol, 5-methylhydantoine, oxalate and
tartrate in pre-surgery patients’ urine.

Several metabolites were significant after adjustment for covariates, but did not sustain
multiple testing (p-adjusted < 0.05 < FDR): the oncometabolite 2-hydroxyglutarate was
elevated in pre-surgery patients’ urine, whereas pyrrole-2-carboxylic acid, a metabolite of
collagen and a product of the p-hydroxyproline isomer (Yamanishi et al. 1972), was found at
higher levels in urine of patients after surgical intervention. A metabolite similar to
cadaverine (putatively a polyamine derivative) and xanthine were elevated in pre-surgery
patients’ urine at borderline significance.

We observed a combined modulating effect of adjuvant chemo- and radiotherapy on the
described changes in metabolite levels when pre- and post-surgery individuals were
compared (see Supplementary Table S3). The differences between pre- and post-surgical
samples were more pronounced among patients undergoing additional adjuvant
chemotherapy. However, the same direction of change in metabolite levels was already
observed in patients who only underwent surgery with no adjuvant treatment. In contrast,
neoadjuvant treatment, prior to surgery, did not have a distinct effect on patients’
metabolomes.

Overall effects of the therapeutic intervention were visualized with MetaMapp and
cytoscape where groups of altered metabolites were clustered together according to their
chemical similarity (see Fig. 2).

3.2 Distinguishing early and late stage disease

To investigate whether metabolites in the urine could discriminate CRC patients by disease
stage, patients prior to surgery were compared based on staging of their excised tumors
according to the AJCC staging system. CRC patients were grouped as follows:

. stage O (carcinoma in situ) and stage | (localized) as "early"

. stage 11 (locally advanced) and stage Il (locally advanced with lymphnodes
affected) as "intermediate™

. stage 1V (metastasized) as "late".

A PLS-DA score plot of pre-surgery CRC patients by stage is illustrated in Supplementary
Fig. S3. Additionally, discriminating metabolites were selected using one-way ANOVA.
Sixteen metabolites in both GC-MS and H-NMR datasets were found to significantly
discriminate CRC stages (p-values <0.05), but only two of them remained significant after
adjusting for multiple testing, a dipeptide of hydroxyproline (Hyp-Hyp) and p-cresol-g-O-
glucuronide.

p-Cresol and its glucuronide were present at higher concentrations both in pre-surgery
patients compared to post-surgery counterparts and in later stages of the disease (Fig. 1a and
Table 3). p-Cresol-- O-glucuronide was determined to be a level 2 metabolite but showed a
very high correlation with p-cresol (data not shown). A peak at 375 m/zin the electron-
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impact spectrum indicated the presence of a glucuronide group for the latter compound
(Thevis et al. 2001). We therefore chose to synthesize the glucuronide enzymatically
(Supplementary Material) to unequivocally identify this phase 1l metabolite of p-cresol as
the B-O-glucuronide.

We observed that Hyp-Hyp was increased in intermediate- and late-stage pre-surgery
patients when compared to early-stage patients. Though it was increased in pre-surgery
patients, the increase was not considered significant. We also found hippurate to be excreted
in higher concentrations in intermediate- and late-stage patients compared to early-stage
patients and detected the same trend by GC-MS and *H-NMR analysis. Urea levels were
diminished in late-stage patients compared to early- or intermediate-stage patients. Glycerol,
galactarate and butyrate levels were increased only in late stage CRCs, whereas the opposite
trend was seen for carnitine. Moreover, we detected 3 unknowns, 2 glucuronides and one
sugar alcohol that enabled discrimination between the different stages in our GC-MS
dataset.

Generally, early-stage patients were easier to distinguish from more advanced stages of the
disease, whereas intermediate stages were only poorly differentiated from either of these
groups (see Supplementary Fig. S3).

3.3 Colon vs. rectal cancer patients

Among pre-surgery CRC patients enrolled in our study, 54 had rectal cancer and 43 had
colon cancer. Seven metabolites were significantly different after adjusting for all covariates
and multiple testing if colon and rectal cancer patients prior to surgery were compared.
Results are shown in Supplementary Table S2. Hippurate and 3-(3-hydroxyphenyl)-3-
hydroxypropionate were excreted in higher concentrations in colon cancer patients, whereas
the opposite was true for cis-aconitic acid, pyroglutamate, 4-hydroxy-3-methoxy-mandelate
and two unidentified metabolites. For many of the previously mentioned gut microbiota-
associated metabolites, e.g. 3- and 4-hydroxyhippurate, guajacol, p-cresol and p-cresol-s-O-
glucuronide, they were excreted in higher concentrations from colon cancer patients,
although the differences were not statistically significant after multiple testing. Interestingly,
Hyp-Hyp and p-cresol, which were present in higher concentrations in late-stage patients
were elevated in colon carcinoma patients compared to rectal cancer patients (p-adjusted =
0.056). We furthermore compared pre-surgery patients who received neoadjuvant therapy (n
= 36) against pre-surgery patients without any therapy prior to surgery (n = 50). No
metabolites differed significantly after adjusting for multiple testing.

3.4 Metabolite markers for CRC

We chose to build two binary classification models for the differentiation of tumor bearing
individuals (pre-surgery CRC patients) from patients after therapeutic intervention:

Model 1 — Manual metabolite selection—We manually selected those metabolites that
were significant after adjusting for covariates (p-adjusted), with fewer than 10% missing
values, where a direct effect of surgery was seen in patients 1-8 days post-surgery (labeled
as "post™) and maintained over a period of up to one year (6 month and 12 month follow-up).
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Box plots of 20 metabolites fulfilling these requirements are illustrated in Fig. 2. We
selected 4 amino acids (tyrosine, threonine, tryptophan and glycine), 10 metabolites with
high confidence in identification (level 1 or 2) and 6 unidentified, but highly significant
species (see Supplementary Table S4 for list of selected metabolites; all p-adjust < 0.10).
These 20 metabolites were used to construct a multivariate model (based on partial least
squares-discriminat analysis) with the ROCCET toolbox (Xia et al. 2013).

Model 2 — Automatic metabolite selection—A second model was constructed by
selecting the ten best differentiating metabolites from both GC-MS and H-NMR based on
their univariate ROC. Metabolite selection was performed with fasted individuals only (n =
108) to avoid marker selection due to differences in fasting state. This second model, based
on these 20 automatically selected metabolites, was constructed using the same ROCCET
parameters as in Model 1.

Both metabolite sets were used to discriminate pre- from post-surgery individuals in the full
dataset and a subset of fasted individuals. The results are illustrated in Fig. 3 with
metabolites and univariate AUCs provided in the Supplementary Data.

We were able to differentiate pre- from post-surgery patients with high accuracy in both
models. The method for imputation of missing values only had a marginal effect on the
overall model performance (see Supplementary Data). The automatically selected set of
metabolites performed slightly better than the manually selected set (cf. Fig. 3a vs. 3b).
Overall, only small differences in the model performance were observed between a full
dataset and a dataset consisting of fasted patients (AUCs in the range of 0.85-0.92),
indicating that both metabolite sets were independent of a patients’ fasting state.

4. Discussion

Our results show that urine metabolomes of CRC patients prior to surgery can be
distinguished from those of patients after surgery. This indicates that patients’ metabolomes
are primarily affected by the disease or disease-associated removal of the tumor and
substantial parts of the intestine, although an exacerbating effect of adjuvant chemotherapy
was also observed. Furthermore, we were able to identify several metabolites associated
with particular disease stages as candidates for prognostic markers. Generally, we observed
many metabolites with unknown identity (level 3 or 4) to be highly and significantly altered.
Unfortunately, due to a targeted 1H-NMR profiling approach and a low mass accuracy in
single-quadrupole MS, we were not able to fully identify these unknowns; a process that
remains one of the main challenges of metabolomics studies (Sumner et al. 2007).

Most studies published thus far have employed simple case-control designs, comparing CRC
patients with healthy individuals (Liesenfeld et al. 2013). Many of the metabolites, which
were discovered as potential biomarkers in these studies, were also significant in our
prospective study.
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4.1 Differences by stage: degradation products of collagen as candidates for prognostic
biomarkers for CRC

We were able to identify several urinary metabolites that distinguished early- from late-stage
CRC patients. We identified Hyp-Hyp at higher levels in late-stage cancer patients’ urine.
The metabolite was also significantly altered in the urine of hepatocellular cancer patients
(Wu et al. 2009). Hydroxyproline (Hyp) itself, a major component of collagen, showed no
difference in excretion levels by stage. It has long been known that cancer cells need to
degrade extracellular matrix components in order to disseminate through connective tissue
(Deryugina et al. 2006). Dipeptides of hydroxyproline might be derived from the process of
disseminating tumor cells, degrading collagen during the process of early metastasis,
although the definitive origin of the metabolite remains to be determined. Interestingly, CRC
patients prior to surgical intervention and post-surgery patients did not show a significant
difference in their urinary excretion of Hyp-Hyp. However, colon cancer patients excreted
higher levels of Hyp-Hyp compared to rectal cancer patients—an observation that cannot be
explained by neoadjuvant therapy. Future mechanistic studies are needed to determine
whether or not dipeptides of Hyp are formed during early metastasis and if the marker has a
prognostic value for CRC patients. Other metabolites differentiating early- from
intermediate- or late-stage CRC patients are discussed below.

4.2 Post-surgery urine metabolome changes indicative of the importance of the gut
microbiome

We found many small aromatic components, such as guajacol, three derivatives of
hydroxyhippuric acids, pyrogallol and hydrogquinone lower in CRC patients prior to surgery
compared to post-surgery timepoints. In contrast, p-cresol and its glucuronide tended to be
present at higher concentrations in pre-surgical patients. Moreover, p-cresol and its
glucuronide were of value for discerning the different stages of the disease (Table 3). All of
the above metabolites can be classified as being mainly derived from the gut microbiota, due
to their absence of human biochemical pathways. Some of these metabolites have previously
been found to discriminate healthy controls from CRC patients. Qui et al. and Cheng et al.
both reported altered p-cresol levels in the urine of CRC patients compared to healthy
controls, but with an opposing direction (Cheng et al. 2012; Qiu et al. 2010). We not only
measured elevated concentrations of p-cresol and its glucuronide in the late stages of CRC,
but, moreover, surgical intervention markedly reduced the levels in patients after surgery by
approximately 50 %. Interestingly, Zhang et al. found the glucuronide of p-cresol, identified
using characteristic precursor ions and neutral loss fragments in LC-MS/MS, to be up-
regulated in rats with 2,4,6 trinitrobenzene induced colitis. p-Cresol and its glucuronide
might therefore reflect an inflammatory response of the gut microbiota (Zhang et al. 2012).

Our study and the results of several other authors (Cheng et al. 2012; Qiu et al. 2010; Zhu et
al. 2013) indicate that metabolites derived from the gut microbiome show marked
differences either over the course of the illness or in case-control designs pointing towards
an important role of the gut microbiota in the pathogenesis of CRC (Cheng et al. 2012; Qiu
et al. 2010) (Zhu et al. 2013). The origin of small aromatic compounds is mainly from
microbial metabolism of aromatic amino acids, though eukaryotic pathways may also
contribute. Qui et al. discussed their findings of altered p-cresol metabolites in the context of
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perturbed populations of Clostridium sp. (Qiu et al. 2010). Studies led by Bone et al. showed
that p-cresol species arise primarily from tyrosine conversion of anaerobic bacteria in the left
colon (Bone et al. 1976). The tumor promoting activities of p-cresol and related compounds
have been known for decades (Boutwell et al. 1959). In addition to p-cresol, we observed 3-
(3-hydroxyphenyl)-3-hydroxypropionate, a metabolite that has been associated with
members of Clostridiae (Shaw 2010), to be elevated in colon cancer patients’ urine
compared to rectal cancer patients’ urine. Moreover, urinary butyrate levels were increased
in late-stage CRC patients prior to surgery. Butyrate shows growth promoting effects in
normal colon cells but also tumor inhibitory effects (hence it is known as the "butyrate
paradox™) (Vanhoutvin et al. 2009). Its effects on secondary prevention of CRC by its
induction of glutathione S-transferases might, though, be a double edged sword, by
enhancing detoxification in both normal and cancer cells (Scharlau et al. 2009).

Our findings suggest that surgical removal of the tumor and parts of the intestine may affect
microbial metabolites and possibly the microbiota itself, with adjuvant chemotherapy
exacerbating this effect. The microbial activity in the gut may lead to the production of
toxins (Heavey et al. 2004), mutagens (Carman et al. 1988) or the production of reactive
oxygen intermediates as previous demonstrated (Owen et al. 2000). On the other hand, the
tumor microenvironment can also influence and select bacterial communities, for example
by providing a niche for certain bacterial species (Marchesi et al. 2011). Therapeutical
intervention and/or removal of parts of the intestine might therefore change the bacterial
population, which in turn leads to an altered metabolism in the gut.

Interestingly, our results support the hypothesis that the gut microbiota play a more
important role for colon cancer than for rectal or rectosigmoidal cancer patients. Most of the
microbiome associated metabolites were found to be altered in colon carcinoma patients,
irrespective of prior neoadjuvant treatment (see Supplementary Table S2), which is in line
with the findings that these compounds arise directly in the colon (Bone et al. 1976).

Many of these bacterial metabolites are absorbed by the intestine and further metabolized by
the host and/or excreted in the urine. The identified glucuronide of p-cresol is an example of
these detoxification mechanisms. Many of the partially identified metabolites (i.e. labeled
with the level 3 tag "glucuronide™) might serve as exposure markers for such exogenous or
endogenous substances. However, future studies will have to establish how the composition
of the microbiome (assessed, for example, by genotyping analyses) is associated with the
metabolites excreted in urine. Moreover, it remains to be determined whether a decreased
absorption area after removal of parts of the intestine, or a change in the composition of the
microbiome itself, might account for the different excretion rates of microbial metabolites.

4.3 Long-known hallmarks of cancer monitored by the metabolomic profile of CRC
patients’ urine

4.3.1 Amino acid metabolism and protein synthesis—Although the concentrations
of some amino acids were primarily affected by co-variables such as fasting status, many

other amino acids, such as phenylalanine, threonine, tyrosine, lysine, tryptophan, asparagine
and glycine for example, were excreted at lower concentrations in pre-surgery CRC patients
urine. Alterations in the amino acid profiles of cancer patients have been described multiple

7
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times (Leichtle et al. 2012; Maeda et al. 2010; Miyagi et al. 2011). Miyagi et al. compared
targeted plasma amino acid profiles of various cancer entities against controls and also
reported decreased levels for most amino acids in CRC, except for isoleucine, proline and
glycine (Miyagi et al. 2011).

Decreased levels of 2-oxobutyrate in combination with an increase in 2-aminobutyrate might
favor the hypothesis of increased amino acid catabolism of threonine (Paxton et al. 1986;
Steele 1982). On the other hand, lower urinary excretion might also reflect an increased
uptake of amino acids by the tumor for protein biosynthesis, accompanied by cellular
turnover and tumor growth. Interestingly, we observed lower urinary urea levels among late-
stage patients. Urinary urea, as the prime end product of amino acid catabolism, is an
indicator of nitrogen excretion. The utilization of nitrogen is of special interest for the cancer
cachexia syndrome, which accompanies about half of cancer patients (Kern et al. 1988).
Lower levels of urinary urea in late-stage cancers might indicate less nitrogen flux into
catabolic reactions, and a likely higher amino acid flux into protein biosynthesis. This is in
line with the theory that tumors act as "nitrogen sinks" on a systemic level (Kern et al.

1988). This theory is further supported by animal studies led by Beck and Tisdale who
observed an initial increase in urinary urea excretion after transplantation of colon
adenocarinomas in mice, but a decrease below the baseline level at late stages of tumor
growth (Beck et al. 1989).

Additionally, phenylalanine and tyrosine, precursors for catecholamine biosynthesis, were
significantly altered in post-surgery patients. These aromatic amino acids serve as precursors
for aromatic microbial products, such as p-cresol, as indicated by our chemical similarity
network (see Fig. 2). Furthermore, urinary dopamine, a downstream metabolite of tyrosine,
was found to be diminished in patients still bearing a tumor. Dopamine may have anti-
angiogenic effects, inhibiting vascular endothelial growth factor (VEGF) /n vitro
(Chakroborty et al. 2009). Moreover, it reduced tumor growth in tumor bearing mice by
blocking the effects of daily restraint stress (immobilization) (Moreno-Smith et al. 2013).

In addition, four members of tryptophan metabolism were affected by the surgical
intervention: tryptophan itself (0.82-fold) as well as xanthurenate (0.79-fold) and indole-3-
acetate (0.80-fold) were diminished in pre-surgery compared to post-surgery patients,
whereas 3-indoxylsulfate levels were increased 1.46-fold (Fig. 1). Cheng et al. also reported
diminished levels of tryptophan metabolism (5-hydroxy-Trp, indoleacetate, indole and
others) in CRC patients compared to healthy individuals (Cheng et al. 2012). Tryptophan is
the precursor of several neurotransmitters and hormones such as serotonin and melatonin,
but also of kynurenine and its downstream catabolites. Recently, kynurenine was described
as an endogenous ligand of the arylhydrocarbon receptor, promoting a tumor progressive
mechanism (Opitz et al. 2011). We did not detect kynurenine in our urinary samples but
noted a catabolite, xanthurenate, to be lowered in CRC patients prior to surgery compared to
post-surgery patients. Moreover Cheng et al. reported diminished levels of another
catabolites of kynurenine (kynurenate) in the urine of CRC patients compared to urine of
healthy controls (Cheng et al. 2012).
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4.3.2 Oncometabolites—We observed moderately higher (1.27-fold, FDR = 0.068)
urinary excretion of the oncometabolite 2-hydroxyglutarate in patients at pre- compared to
post-surgery. Oncometabolic activities of 2-hydroxyglutarate have recently been discovered
(Losman et al. 2013): 2-hydroxyglutarate can promote epigenetically driven carcinogenesis
by directly inhibiting histone lysine demethylases (Hgjsgaard 2013) and 5-methylcytosine
hydroxylases (Pollard et al. 2005). The metabolite itself has been described as being derived
from the neomorphic activity of mutated isocitrate dehydrogenase (IDH). While IDH
mutations are most common in glioblastomas and acute myelogenous leukemia (Bates et al.
2013), they were initially discovered in metastatic colon cancer (Rakheja et al. 2013).

myo-Inositol was diminished by 0.43 and 0.68-fold, respectively, according to GC-MS and
IH-NMR analysis in pre-surgery CRC patients compared to post-surgery. myo-Inositol and
its derivatives have previously been associated with different cancer-types/biological
matrices and varying direction of change (Aa et al. 2012; Perroud et al. 2006; Thysell et al.
2010). Denkert et al. reported lower levels of an inositol stereoisomer in colon cancer tissue
compared to normal colon mucosa (Denkert et al. 2008), in concordance with the observed
lower urinary myo-inositol levels in pre-surgery, tumor bearing patients in our study.
Another group compared CRC patients at different stages and observed that inositol was less
abundant in tissues of CRC liver metastasis (Farshidfar et al. 2012). Inositol might therefore
play a role in cellular signaling, via its link to the phosphoinositol-3-kinase PI3K pathway,
impacting CRC pathogenesis.

Interestingly, 1.74-fold higher levels (borderline significance; p-adjusted 0.07) of a
metabolite similar to cadaverine was also observed in pre-surgery CRC patients. We
hypothesize the metabolite to be a polyamine derivative, but further investigations will have
to confirm the exact chemical identity of the metabolite. Increased levels of polyamines have
been reported in the plasma and urine of cancer patients (Liu et al. 2013).

5. Concluding remarks

To the best of our knowledge, this study is one of the first reporting urine metabolomic data
with repeated sampling from a prospective CRC patient cohort. While most studies
published so far have compared CRC patients to healthy controls, we were able to monitor
patient metabolomes over time. Moreover, we used two complimentary methods, GC-MS
and TH-NMR, enabling us to independently validate our findings. A main limitation of our
study was the low sensitivity of NMR and single-quadrupole MS as well as the low unit
mass accuracy for the latter technique. Subsequently, we were unable to identify a number of
metabolites of high significance by not being able to conduct more sophisticated library
searches or sum formula calculations.

Surgical intervention had an impact on several metabolites derived from the gut microbiota.
Moreover, amino acids and downstream metabolites of aromatic amino acids were altered.
Nevertheless, we were able to formulate a discrimination model consisting of thirteen
marker metabolites to differentiate pre- from post-surgery CRC patients with good accuracy.
Additionally, we observed a dipeptide of hydroxyproline, together with p-cresol and its
glucuronide, to be present in higher concentrations in the urine of late stage CRC patients.
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To further evaluate whether these candidate metabolites are of prognostic value for patients’
clinical outcome, a validation study with continued follow-up over a longer time period will
be needed.
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Refer to Web version on PubMed Central for supplementary material.
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Fold change plots: Pre- vs. post-surgery
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a) Fold-change plot comparing pre- vs. post-surgery CRC patients; fold changes >1 indicate
higher urinary concentrations pre-surgery, fold changes <1 indicate lower urinary
concentrations pre-surgery. a) Metabolites present in GC-MS dataset. b) Metabolites present

in NMR dataset. C) Metabolites present in both GC-MS and NMR datasets.
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Fig. 2.

Mgapped pathway for the therapeutic effects on colorectal cancer patients’ metabolomes.
Metabolites were mapped according to their biochemical pathway (KEGG - bold line) and
chemical similarity (PubChem ID - light gray line). Fold changes and adjusted/FDR-
corrected p-values were abstracted by comparing patients pre- and post surgery. Only
metabolites with an adjusted/ FDR-corrected p-value <0.1 were labeled as increased/
decreased.

Metabolomics. Author manuscript; available in PMC 2017 December 14.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Liesenfeld et al.

a

0.4 0.6 0.8 1.0

Sensitivity (True positive rate)

0.2

0.0

Sensitivity (True positive rate)
0.4 0.6 0.8 1.0

0.2

0.0

—— Full dataset:
AUC = 0.87; 95 % Cl: 0.82 - 0.93

----- Fasted only:
AUC = 0.86; 95% CI: 0.72 - 0.95

T T T T T
0.4 0.6 0.8 10

1-Specificity (False positive rate)

— Full dataset:
AUC = 0.89; 95 % CI: 0.84 - 0.95

----- Fasted only:
AUC = 0.92; 95% CI: 0.83 - 0.98

0.0

Fig. 3.

0.2 0.4 0.6 0.8 1.0

1-Specificity (False positive rate)

Samples

Samples

-2

-3

-2

-3

Page 20

D post
® pre

0.0

T T T T
0.2 0.4 0.6 0.8

Predicted Class Probabilities

P post
® pre

0.0

T T T T
0.2 0.4 0.6 0.8

Predicted Class Probabilities

Receiver operator characteristic (ROC) curves for the differentiation between pre- and post-
surgery CRC patients. a) Model 1 using manual variable selection; ROC curve and score
plot from a partial least squares-discriminant analysis (PLS-DA) model containing 20
metabolites for all patients in our dataset (bold line) and a subset of fasted patients (dahed
line). b) Model 2 using automatic variable selection; ROC curve and score plot from a partial
least squares-discriminant analysis (PLS-DA) model containing 20 metabolites for all
patients in our dataset (bold line) and a subset of fasted patients (dashed line).
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