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Abstract

Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated 

with premature mortality. Future concentrations of these air pollutants will be driven by natural 

and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning 

emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the 

Correspondence to: J. J. West (jjwest@email.unc.edu).
*Now at National Centre for Atmospheric Science (NCAS), University of Reading, Reading, United Kingdom
**Now at NIWA, Wellington, New Zealand

HHS Public Access
Author manuscript
Atmos Chem Phys. Author manuscript; available in PMC 2017 December 14.

Published in final edited form as:
Atmos Chem Phys. 2016 ; 16(15): 9847–9862. doi:10.5194/acp-16-9847-2016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and 

PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, 

together with projections of future population and baseline mortality rates, to quantify the human 

premature mortality impacts of future ambient air pollution. Future air pollution-related premature 

mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health 

impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and 

projected future population and baseline mortality rates. Additionally, the global mortality burden 

of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, 

using present-day and future population and baseline mortality rates. The change in future ozone 

concentrations relative to 2000 is associated with excess global premature mortality in some 

scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the 

large increase in methane emissions and by the net effect of climate change projected in this 

scenario, but it leads to considerable avoided premature mortality for the three other RCPs. 

However, the global mortality burden of ozone markedly increases from 382,000 (121,000 to 

728,000) deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, 

mostly due to the effect of increases in population and baseline mortality rates. PM2.5 

concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, 

and are associated with avoided premature mortality, particularly in 2100: between −2.39 and 

−1.31 million deaths/year for the four RCPs. The global mortality burden of PM2.5 is estimated to 

decrease from 1.70 (1.30 to 2.10) million deaths/year in 2000 to between 0.95 and 1.55 million 

deaths/year in 2100 for the four RCPs, due to the combined effect of decreases in PM2.5 

concentrations and changes in population and baseline mortality rates. Trends in future air 

pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic 

growth and air pollution control specific to each RCP and region. Mortality estimates differ among 

chemistry-climate models due to differences in simulated pollutant concentrations, which is the 

greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the 

use of model ensembles to characterize uncertainty. Increases in exposed population and baseline 

mortality rates of respiratory diseases magnify the impact on premature mortality of changes in 

future air pollutant concentrations and explain why the future global mortality burden of air 

pollution can exceed the current burden, even where air pollutant concentrations decrease.

1 Introduction

Ambient air pollution has adverse effects on human health, including premature mortality. 

Exposure to ground-level ozone is associated with respiratory mortality (e.g. Bell et al., 

2005; Gryparis et al., 2004; Jerrett et al., 2009; Levy et al., 2005). Exposure to fine 

particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is associated with 

mortality due to cardiopulmonary diseases and lung cancer (e.g. Brook et al., 2010; Burnett 

et al., 2014; Hamra et al., 2014; Krewski et al., 2009; Lepeule et al., 2012). Previous studies 

have estimated the present-day global burden of disease due to exposure to ambient ozone 

and/or PM2.5 (e.g., Apte et al., 2015; Evans et al., 2013; Forouzanfar et al., 2015), with 

several studies estimating this burden using only output of global atmospheric models 

(Anenberg et al., 2010; Fang et al., 2013a; Lelieveld et al., 2013; Rao et al., 2012; Silva et 

al., 2013). However, few studies have evaluated how the global burden might change in 

future scenarios (Lelieveld et al., 2015; Likhvar et al., 2015; West et al., 2007). Other global 
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studies have estimated future air pollution-related mortality as a by-product of analyses of 

other future changes, such as the effects of climate change or of climate change mitigation 

(e.g., Fang et al., 2013b; Selin et al., 2009; West et al., 2013), but do not focus on the range 

of plausible future mortality as their main purpose. Similarly, studies at local and regional 

scales have evaluated the mortality impact of changes in air quality due to future climate 

change (Bell et al., 2007; Chang et al., 2010; Fann et al., 2015; Heal et al., 2012; Jackson et 

al., 2010; Knowlton et al., 2004, 2008; Orru et al., 2013; Post et al., 2012; Sheffield et al., 

2011; Tagaris et al., 2009) but few such studies have evaluated changes beyond 2050.

Future ambient air quality will be influenced by changes in emissions of air pollutants and 

by climate change. Changes in anthropogenic emissions will likely dominate in the near-

term (Kirtman et al., 2013 and references therein), and depend on several socio-economic 

factors including economic growth, energy demand, technological choices and 

developments, demographic trends and land use change, as well as air quality and climate 

policies. Climate change will affect the ventilation, dilution, and removal of air pollutants, 

the frequency of stagnation, photochemical reaction rates, stratosphere−troposphere 

exchange of ozone, and natural emissions (Fiore et al., 2012, 2015; Jacob and Winner, 2009; 

von Schneidemesser et al., 2015; Weaver et al., 2009). Climate change is likely to increase 

ozone in polluted regions during the warm season, particularly in urban areas and during 

pollution episodes. In remote regions, however, ozone is likely to decrease due to greater 

water vapor concentrations, which increase the loss of ozone by photolysis and subsequent 

formation of hydroxyl radicals (Doherty et al, 2013). The effects of climate change on PM2.5 

concentrations are generally uncertain as changes in temperature affect both reaction rates 

and gas to particle partitioning as well as wildfires and biogenic emissions, and vary 

regionally primarily due to differing projections of changes in precipitation (Fiore et al., 

2012, 2015; Fuzzi et al., 2015; Jacob and Winner, 2009; von Schneidemesser et al., 2015; 

Weaver et al., 2009).

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) 

simulated preindustrial (1850), present-day (2000) and future (2030, 2050 and 2100) 

concentrations of ozone and PM2.5 with an ensemble of 14 state-of-the-art chemistry climate 

models (Table S1) (Lamarque et al., 2013, Stevenson et al., 2013) to support the IPCC’s 

Fifth Assessment Report. Using modeled 1850 and 2000 concentrations from this ensemble, 

we showed previously that exposure to present-day anthropogenic ambient air pollution is 

associated with 470 (95% Confidence Interval (CI): 140, 900) thousand deaths/year from 

ozone-related respiratory diseases, and 2.1 (1.3, 3.0) million deaths/year from PM2.5-related 

cardiopulmonary diseases and lung cancer (Silva et al., 2013). These results were obtained 

for a wider range of cardiopulmonary diseases and using a different exposure-response 

model for PM2.5 mortality than the present study, as discussed later.

The ACCMIP models simulated future air quality for specific periods through 2100, for four 

global greenhouse gas (GHG) and air pollutant emission scenarios projected in the 

Representative Concentration Pathways (RCPs) (Van Vuuren et al., 2011a and references 

therein). The four RCPs were developed by different research groups with different 

assumptions regarding the pathways of population growth, economic and technological 

development, and air quality and climate policies. Anthropogenic radiative forcing in 2100 
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ranges from a very low level in the mitigation scenario RCP2.6 (Van Vuuren et al., 2011b), 

to medium levels in the two stabilization scenarios, RCP4.5 (Thomson et al., 2011) and RCP 

6.0 (Masui et al., 2011), to a high level in the very high baseline emissions scenario RCP8.5 

(Riahi et al., 2011). All RCPs assume increasingly stringent air pollution controls as 

countries develop economically, leading to decreases in air pollutant emissions that reflect 

the different methods of the different RCP groups (e.g., Smith et al., 2011). But as 

assumptions are similar among the RCPs, the four scenarios do not span the range of 

possible futures published in the literature for short-term species. For example, other studies 

have simulated scenarios in which air pollution controls are kept at current levels while 

underlying trends (e.g., energy use) increase overall emissions (Lelieveld et al., 2015; 

Likhvar et al., 2015). While most air pollutants are projected to decrease, ammonia increases 

in all RCPs due to the projected increase in population and food demand, and methane 

increases in RCP8.5 because of its projected rise in livestock and rice production. However, 

these scenarios follow different pathways in different regions. In some regions, emissions 

increase to mid-century before decreasing, while in other regions emissions are already 

decreasing at present and continue decreasing to 2100. Models in the ACCMIP ensemble 

incorporate chemistry-climate interactions, including mechanisms by which climate change 

affects ozone and PM2.5, although models do not all include the same mechanisms of 

interactions and do not always agree on the net effect of these interactions (von 

Schneidemesser et al., 2015).

Using modeled ozone and PM2.5 concentrations from the ACCMIP ensemble, we estimate 

the future premature human mortality associated with exposure to ambient air pollution. Our 

premature mortality estimates are obtained using a health impact function, combining the 

relative risk of exposure to changes in air pollution with future exposed population and 

cause-specific baseline mortality rates. We estimate overall future premature mortality 

considering the difference in air pollution associated with 2030, 2050 and 2100 emissions 

and climate relative to that resulting from 2000 emissions and climate. Mortality estimates 

are obtained at a sufficiently fine horizontal resolution (0.5°×0.5°) to capture both global and 

regional effects and inform regional and national air quality and climate change policy, but 

are not expected to capture local scale (e.g., urban) air pollution effects.

2 Methods

2.1 Ambient ozone and PM2.5 concentrations

Concentrations of ozone and PM2.5 in surface air are calculated for the present day (2000) 

and for the 2030, 2050 and 2100 decades for the four RCPs using the output of simulations 

by the ACCMIP ensemble of chemistry-climate models. As described by Lamarque et al. 

(2013) not all models are truly coupled chemistry climate models. OsloCTM2 and 

MOCAGE are chemical transport models driven by offline meteorological fields, and UM-

CAM and STOC-HadAM3 do not model the feedback of chemistry on climate.

All ACCMIP models used nearly identical anthropogenic and biomass burning emissions for 

the present day and future, but they used different natural emissions (e.g. biogenic volatile 

organic compounds, ocean emissions, soil and lightning NOx), which mostly impacted 

emissions of ozone precursors (Lamarque et al., 2013; Young et al., 2013) and natural 
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aerosols (i.e., dust and sea salt). Model output shows good agreement with recent 

observations, both for ozone (Young et al., 2013) and for PM2.5 (Shindell et al., 2013), 

although models tend to overestimate ozone in the Northern Hemisphere and underestimate 

it in the Southern Hemisphere, and to underestimate PM2.5, particularly in East Asia. Future 

surface concentrations of air pollutants vary across scenarios and models, but ozone is 

projected to decrease except in RCP8.5, mostly associated with the large increase in 

methane concentrations specific to this scenario and the effect of climate change in remote 

regions (von Schneidemesser et al., 2015; Young et al., 2013).

We obtained hourly and monthly output from the ACCMIP ensemble simulations for a base 

year (2000) and for future projections under the four RCPs (2030, 2050 and 2100), with 

each time period corresponding to simulations of up to 10 years, depending on the model. 

Only two models reported results for all four RCP scenarios and the three future time 

periods – GFDL-AM3 and GISS-E2-R. PM2.5 is calculated as a sum of aerosol species 

reported by six models (see Supplemental Material), and four of these models also reported 

their own estimate of total PM2.5 (Table S1). Our PM2.5 formula includes nitrate; since this 

species was reported by three models only, we calculate the average nitrate concentrations in 

each cell reported by these models and add this average to PM2.5 for the other models, 

following Silva et al. (2013). We use our PM2.5 estimates to obtain all mortality results, and 

perform a sensitivity analysis using the PM2.5 concentrations reported by four models using 

their own PM2.5 formulas, which differed among models, as done by Silva et al. (2013). The 

native grid resolutions of the 14 models varied from 1.9°×1.2° to 5°×5°; we regrid ozone and 

PM2.5 species surface concentrations from each model to a common 0.5°×0.5° horizontal 

grid to take maximum advantage of how the grids of different models overlap, following 

Anenberg et al. (2009, 2014) and Silva et al. (2013).

Ozone and PM2.5 concentrations are calculated in each grid cell for each model separately. 

For both pollutants, we use identical metrics to those reported in the epidemiological studies 

we considered for the health impact assessment (next section):

▪ Seasonal average of daily 1-hr maximum ozone concentration, for the six 

consecutive months with highest concentrations in each grid cell;

▪ Annual average PM2.5 concentration.

Among the 14 models, five models reported only monthly ozone concentrations, while the 

remaining models reported both hourly and monthly values. We calculate the ratio of the 

seasonal average of daily 1-hr maximum to the annual average of monthly concentrations, 

for each scenario/year, for those that reported both hourly and monthly concentrations. Then 

we apply that ratio to the annual average of monthly ozone concentrations for the former 

five models, as previously done by Silva et al. (2013). The differences in ozone and PM2.5 

concentrations between future year (2030, 2050 and 2100) and 2000 are shown in Tables S2 

and S3, for each model. For ten world regions (Figure S1), we also estimate regional multi-

model averages for each scenario/year (Figures S2 and S3).
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2.2 Health impact assessment

We estimate future air pollution-related cause-specific premature mortality using generally 

the same methods as those used by Silva et al. (2013) to obtain present-day estimates, but 

with two important differences: (1) we use the recently published Integrated Exposure-

Response (IER) model for PM2.5 (Burnett et al., 2014) instead of a log-linear model 

(Krewski et al., 2009), and (2) we use projections of population and baseline mortality rates 

from the International Futures (IFs) integrated modeling system (Hughes et al., 2011).

We apply a health impact function to estimate premature mortality associated with exposure 

to ozone and PM2.5 ambient air pollution (ΔMort) in each grid cell: ΔMort = y0 * AF *Pop, 

where y0 is the baseline mortality rate (for the exposed population), AF = 1 – 1/RR is the 

attributable fraction, RR is the relative risk of death attributable to a change in pollutant 

concentrations, (RR=1 if there is no increased risk of death associated with a change in 

pollutant concentrations), and Pop is the exposed population (adults aged 25 and older). We 

calculate changes in premature mortality by applying the change in pollutant concentrations 

in each future year (2030, 2050 and 2100) relative to year 2000 concentrations - the present-

day state of air pollution - to the future population. To estimate ozone mortality, we apply 

the exposure-response function to the difference in ozone concentrations, while for PM2.5 

mortality we apply the exposure-response function to concentrations in each year (future 

years and 2000) and then subtract the mortality estimates. We therefore estimate ‘avoided’ / 

‘excess’ premature mortality due to decreases / increases in air pollutant concentrations in 

the future years relative to 2000 concentrations. This approach differs from a calculation of 

the global burden of air pollution-related mortality since we use 2000 rather than 1850 

concentrations as baseline. We estimate mortality changes due to future concentration 

changes, relative to the present, to avoid applying the health impact function at very low 

concentrations where there is less confidence in the exposure-response relationship. For 

example, the simulated 1850 air pollutant concentrations are often below the lowest 

measured value of the American Cancer Society study (Jerrett et al., 2009; Krewski et al., 

2009). For illustration, we also estimate mortality relative to 1850 concentrations, which 

could be regarded as global burden of disease calculations, following Silva et al. (2013).

For each model, we estimate ozone-related mortality due to chronic respiratory diseases 

(RESP), using RR from Jerrett et al. (2009). We also estimate PM2.5-related mortality due to 

ischemic heart disease (IHD), cerebrovascular disease (STROKE), chronic obstructive 

pulmonary disease (COPD) and lung cancer (LC), using RRs from the IER model (Burnett 

et al., 2014). We use RR per age group for IHD and STROKE and RR for all-ages for COPD 

and LC. We apply the IER model instead of RRs from Krewski et al. (2009), used by Silva 

et al. (2013), as the newer model should better represent the risk of exposure to PM2.5, 

particularly at locations with high ambient concentrations. In the IER model, the 

concentration-response function flattens off at higher PM2.5 concentrations yielding different 

estimates of excess mortality for identical changes in air pollutant concentrations in less-

polluted vs. highly-polluted locations. Specifically, a one unit reduction of air pollution may 

have a stronger effect on avoided mortality per million people in regions where pollution 

levels are lower (e.g. Europe, North America, etc.) compared with highly-polluted areas (e.g. 

East Asia, India, etc.), which would not be the case for a log-linear function (Jerrett et al. 
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2009; Krewski et al. 2009). Therefore, using the IER model may result in smaller changes in 

avoided mortality in highly-polluted areas than using the log-linear model.

Each RCP includes its own projection of total population, but not population health 

characteristics. For all scenarios, we choose to use a common projection of population and 

baseline mortality rates per age group from the IFs (Figures S6 and S7). IFs projects 

population and mortality based on UN and WHO projections from 2010 through 2100, per 

age group and country, mostly based on three drivers – income, education, and technology 

(Hughes et al., 2011). Population projections from IFs differ from those underlying each 

RCP, but lie within the range of the RCPs (Figure S6). In 2030, global total population in IFs 

is within 0.08% of that reported for RCP2.6, RCP4.5 and RCP6.0 and 5% lower than for 

RCP8.5; however, in 2100 IFs projects larger global populations than RCP2.6 (+7%), 

RCP4.5 (+13%) and RCP6.0 (+2%) and considerably lower than RCP8.5 (−27%). IFs 

projects rising baseline mortality rates for cardiovascular diseases (CVD) and RESP, 

globally and in most regions (particularly in East Asia and India), reflecting an aging 

population. By using projections from IFs, we have a single source of population and 

baseline mortality rates, assuring their consistency and enabling us to isolate the effect of 

changes in air pollutant concentrations across the RCPs. Had we used the population 

projections from each scenario, the magnitude of the changes (increases or decreases in 

premature mortality relative to 2000) would likely increase in RCP8.5, but decrease in 

RCP2.6, RCP4.5 and RCP6.0. With the exception of Europe, Former Soviet Union (FSU) 

and East Asia, where population is projected to decrease in 2100 relative to 2000, had we 

used present-day population and baseline mortality we would have obtained lower estimates 

for excess or avoided mortality in each scenario/year, as projected increases in population 

and baseline mortality magnify the impact of changes in air pollutant concentrations. 

Therefore, we estimate the overall effect of future air pollution (due to changes in emissions 

and climate change) considering the population that will potentially be exposed to those 

effects. We also obtain different estimates of changes in future mortality than if we had 

calculated the global burden in each year, using air pollutant concentrations, population and 

baseline mortality rates in that year, and subtracted the present-day burden. Our results do 

not reflect the potential synergistic effect of a warmer climate on air pollution-related 

mortality, i.e. we do not account for potential changes in the exposure-response relationships 

at higher temperatures (Pattenden et al. 2010; Wilson et al., 2014 and references therein).

Country-level population projections for 2030, 2050 and 2100 are gridded to 0.5°×0.5° using 

ArcGIS 10.2 geoprocessing tools, assuming that the spatial distribution of total population 

within each country is unchanged from the 2011 LandScan Global Population Dataset at 

approximately 1 km resolution (Bright et al., 2012), and that the exposed population is 

distributed in the same way as the total population within each country. IFs projections of 

mortality rates for CVD are used to estimate baseline mortality rates for IHD and STROKE 

considering their present-day proportion in CVD (using GBD 2010 baseline mortality rates), 

as are RESP projections for COPD and malignant neoplasms for LC. IFs projections for 

2010 are comparable to GBD 2010 (Lozano et al., 2012) estimates for CVD (+0.04%), 

RESP (+2.5%) and neoplasms (−12%). We estimate the number of deaths per 5-year age 

group per country using the country level population. The resulting population and baseline 
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mortality per age group at 30″×30″ are regridded to the same 0.5°×0.5° grid as the 

concentrations of air pollutants.

Uncertainty from the RRs is propagated separately for each model-scenario-year to mortality 

estimates in each grid cell, through 1000 Monte Carlo (MC) simulations, i.e. we repeat the 

calculations in each grid cell 1000 times using random sampling of the RR variable. For 

ozone, we use the reported 95% Confidence Intervals (CIs) for RR (Jerrett et al., 2009) and 

assume a normal distribution, while for PM2.5 we use the values for the parameters alpha, 

gamma, delta and zcf (counterfactual) reported by Burnett et al. (2014) for 1000 MC 

simulations (GHDx 2013). Then for each of the 1000 simulations, we add mortality over 

many grid cells to obtain regional and global mortality and estimate the empirical mean and 

95% CI of the regional and global mortality results. We assume no correlation between the 

RRs for the four causes of death; thus we may underestimate the overall uncertainty for 

PM2.5 mortality estimates. Uncertainty in air pollutant concentrations is based on the spread 

of model results by calculating the average and 95% CI for the pooled results of the 1000 

MC simulations for each model. This estimate of uncertainty in concentrations does not 

account for uncertainty in emissions inventories (as the ensemble used identical emissions) 

or for potential bias in modelled air pollutant concentrations. We also estimate the 

contribution of uncertainties in RR and in air pollutant concentrations to the overall 

uncertainty in mortality estimates using a tornado analysis; we obtained global mortality 

estimates treating each variable as uncertain individually (year 2000 concentrations, future 

year concentrations, RR for ozone and the four parameters in the IER model for PM2.5) and 

used central estimates for all other variables, and then calculated the contribution of each 

variable to the overall uncertainty (when all variables are treated as uncertain 

simultaneously). Uncertainties associated with population and baseline mortality rates are 

not reported by IFs, and are not considered in the uncertainty analysis.

3 Results

First, we present our estimates of ozone and PM2.5-related excess/avoided premature 

mortality in 2030, 2050 and 2100 for changes in pollutant concentrations between 2000 and 

each future period, for the four RCPs (sections 3.1 and 3.2, Figures 1 to 7). Figures 1 and 4 

show global mortality for the different ACCMIP models. The multi-model average mortality 

results are shown for individual grid cells (Figures 2 and 5) and for regional totals (Figures 3 

and 6). Finally, we include our estimates of the global mortality burden of both air pollutants 

for future concentrations relative to 1850 concentrations (section 3.3, Figures 8 and 9). In 

some cases, the changes in future mortality due to changes in future concentrations relative 

to 2000 show a different trend than the global mortality burden; this difference reflects the 

combined effects of future changes in concentrations relative to 1850, exposed population 

and baseline mortality rates.

3.1 Ozone-related future premature mortality

We find that future changes in ozone concentrations are associated with excess global 

premature mortality due to respiratory diseases in 2030, but avoided mortality by 2100 for 

all scenarios but RCP8.5 (Figure 1, Table S5). In 2030, all RCPs show excess multi-model 
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average ozone mortality, ranging from 11,900 (RCP2.6)to 264,000 (RCP8.5) deaths/year. 

For each RCP, however, some models yield avoided mortality in 2030. In 2050, multi-model 

averages are obtained from only 3 or 4 models, depending on the scenario, which makes it 

difficult to compare with the other two periods. In 2100, we estimate excess ozone mortality 

in RCP8.5 (316,000 deaths/year), but avoided ozone mortality for the other three RCPs from 

−1.02 million (RCP2.6) to −718,000 (RCP6.0) deaths/year with all models agreeing in sign 

of the change.

Excess ozone-related future premature mortality (Figures 2 and 3, Table S6) is noticeable in 

some regions in 2030 for all RCPs, particularly in India and East Asia for RCP8.5 (over 95% 

of global excess mortality), but all scenarios except RCP8.5 show avoided global ozone-

related mortality in 2100. Under this scenario in 2100, there are increases in ozone 

concentrations in all regions except North America, East Asia and Southeast Asia (Figure 

S2), likely driven by the projected large increase in methane emissions as well as by climate 

change. Avoided mortality in those three regions is outweighed by excess mortality in India, 

Africa and the Middle East. Also, some regions show different trends in future mortality 

relative to 2000 depending on the RCP, reflecting the effects of distinct assumptions in each 

RCP about economic growth and air pollution control with different trends in regional ozone 

precursor emissions. For example, North America and Europe show decreases in mortality 

through 2100 in all scenarios, except a slight increase in Europe for RCP8.5 in 2100. In East 

Asia, mortality peaks in 2050 for RCP6.0, driven by peak precursor emissions in 2050 in 

this scenario, but it peaks in 2030 for the other three RCPs. India shows peaks in mortality in 

2050 followed by decreases for all RCPs but RCP8.5, in which mortality increases through 

2100. Africa shows increases in mortality through 2100 for RCP2.6 and RCP8.5, while it 

peaks in 2050 for RCP4.5 and decreases through 2100 for RCP6.0. Also, the effect of 

changes in population and baseline mortality rates is noticeable in some regions when 

comparing the trends in total ozone-related mortality and mortality per million people in 

each region (Figure S10). For example, decreases in population projected for 2100 in 

Europe, FSU and East Asia, are reflected in greater changes in mortality per million people 

than in total mortality, while the threefold increase in population in Africa amplifies the 

changes in total mortality.

For RCP8.5, we propagate input uncertainty to the mortality estimates (Figure 1, Table S5). 

Global future premature mortality changes from 264,000 (−39,300 to 648,000) deaths in 

2030 to 316,000 (−187,000 to 1.38 million) deaths in 2100. Uncertainty in RR leads to 

coefficients of variation (CV) ranging from 31 to 37% (2030), 31 to 40% (2050) and 16 to 

47% (2100) for the different models. Considering the spread of model results, overall CV for 

the multi-model average mortality increases to 66% (2030), 78% (2050) and 125% (2100). 

While uncertainty in RR and in modeled ozone concentrations have similar contributions to 

overall uncertainty in mortality results in 2050 (51% and 49%, respectively), in 2030 

modeled ozone concentrations are the greatest contributor (81%), and in 2100 uncertainty in 

RR contributes the most to overall uncertainty (88%). For 2030, HadGEM2 differs in sign 

from the other 13 models with (avoided) global mortality totalling −33,900 deaths/year. For 

2050, LMDzORINCA differs substantially from the other 3 models with −38,900 deaths/

year. For 2100, HadGEM2 is a noticeable outlier with 1.2 million excess deaths/year and 

MOCAGE differs in sign from the other 12 models with −159,000 deaths/year.
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3.2 PM2.5-related future premature mortality

Global PM2.5-related premature mortality, considering the difference in future 

concentrations and 2000 concentrations, decreases substantially in most scenarios, 

particularly in 2100 (Figure 4, Table S7). In 2030, the multi-model average varies from 

−289,000 (RCP4.5) to 17,200 (RCP8.5) deaths/year, although one model (CICERO-

OsloCTM2) shows excess mortality for RCP2.6 and RCP8.5. In 2050, substantial avoided 

mortality is estimated for all scenarios except RCP6.0 which shows a small increase in 

mortality (16,700 deaths/year), but this is the average of only three models that do not agree 

on the sign of the change. In 2100, all scenarios show considerable avoided mortality, 

ranging from −1.31 million (RCP8.5) to −2.39 million (RCP4.5) deaths/year, reflecting the 

substantial decrease in emissions of primary PM2.5 and precursors.

In several regions (North America, South America, Europe, FSU and Australia), PM2.5 

future premature mortality decreases through 2100 for all RCPs (Figures 5 and 6, Table S7). 

However, in East Asia, Southeast Asia, India, Africa, and the Middle East, for some 

scenarios, PM2.5 mortality increases through 2030 or 2050 before decreasing. The changes 

in future mortality reflect changes in future PM2.5 concentrations relative to 2000 (Figure 

S3), and a substantial increase in exposed population through the 21st century, particularly in 

Africa, India and the Middle East (Figure S6). That is, any reduction/increase in mortality 

due to the decrease/increase in pollutant concentrations was amplified by the increases in 

exposed population. The decreases in population in Europe, FSU and East Asia have similar 

effects as those mentioned above for ozone-related mortality. For example, while total 

avoided mortality in 2100 in East Asia decreases compared to 2050, for RCP2.6, RCP4.5 

and RCP8.5, total avoided mortality per million people increases in the same scenarios 

(Figure S11). East and South Asia are the regions with the greatest projected mortality 

burdens, and the variability in PM2.5 among models is typically less in these regions than in 

several other regions globally, depending upon the scenario and year (Figure S9).

Future PM2.5-related mortality estimates are influenced by the nonlinearity of the IER 

function. For example, in RCP8.5 in 2030, all models project an increase in global 

population-weighted concentration (Table S3) but all models except one show decreases in 

global PM2.5-related mortality (Figure 4). This outcome results in part because PM2.5 

increases are projected in regions with high concentrations (particularly East Asia) that are 

on the flatter part of the IER curve, whereas PM2.5 decreases in regions with low 

concentrations (North America and Europe) have a steeper slope and therefore a greater 

influence on global mortality.

Considering the results of the MC simulations for RCP8.5, premature mortality changes 

from −17,200 (−386,000 to 661,000) deaths in 2030 to −1.31 (−2.04 to −0.17) million 

deaths in 2100 (Figure 4, Table S7). Uncertainty in RR leads to a CV of 11 to 191% for the 

different models in the three future years. The spread of model results increases overall CV 

to 1644% (2030), 20% (2050) and 41% (2100). Uncertainty in modeled PM2.5 

concentrations in 2000 is the greatest contributor to overall uncertainty (59% in 2030, 45% 

in 2050, and 49% in 2100), followed by uncertainty in modeled PM2.5 in future years (40% 

in 2030, 26% in 2050 and 32% in 2100). Uncertainty in RR has a negligible contribution to 

overall uncertainty in 2030 (<1%), as the multi-model mean mortality change happens to be 

Silva et al. Page 10

Atmos Chem Phys. Author manuscript; available in PMC 2017 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



near zero (one model projects a large increase while the other five models project decreases), 

but contributes 29% in 2050 and 20% in 2100.

We compared mortality results using our estimates of PM2.5 from the sum of reported 

species with results using PM2.5 reported by four models applying their own formula to 

estimate PM2.5 (Figure 7). The multi-model average future avoided mortality for the four 

models which reported PM2.5 is comparable although lower than the average for our PM2.5 

estimates for the same models. Individual models do not show the same differences in 

mortality using their own vs. our PM2.5 estimates. Also, for two models (GFDL-AM3 and 

MIROC-CHEM) the two sources of PM2.5 estimates yield mortality changes of different 

sign in 2030. These results reflect the different aerosol species included by each model to 

estimate PM2.5 (e.g. nitrate is not included by all models).

3.3 Global burden on mortality of ozone and PM2.5

Here we present estimates of the global burden on mortality of ozone and PM2.5 

concentrations in the future, considering the four RCPs relative to preindustrial 

concentrations (1850) and future exposed population and baseline mortality rates (Figures 8 

and 9, Tables S8 and S9). For context, we estimate the present-day global burden, using 

2000 concentrations, population from Landscan 2011 Population Dataset, and baseline 

mortality rates from GBD2010, to be: 382,000 (121,000 to 728,000) ozone deaths/year and 

1.70 (1.30 to 2.10) million PM2.5 deaths/year. These estimates are 18.7% lower for ozone-

related mortality and 19.1% lower for PM2.5-related mortality than those obtained in our 

previous study (Silva et al., 2013), reflecting; a) more restrictive mortality outcomes 

(chronic respiratory diseases rather than all respiratory diseases, and IHD+STROKE+COPD 

rather than all cardiopulmonary diseases); b) updated population and baseline mortality 

rates; c) the use of the recent IER model (Burnett et al., 2014) for PM2.5 (instead of Krewski 

et al., 2009). Compared with the GBD 2013 (Forouzanfar et al. 2015), our estimates are 76% 

higher for ozone-related mortality and 42% lower for PM2.5-related mortality, likely due to 

the fact that we estimate the global mortality burden using 1850 concentrations as baseline, 

while Forouzanfar et al. (2015) consider counterfactual concentrations (theoretical 

minimum-risk exposure) that are mostly higher for ozone (uniform distribution between 33.3 

and 41.9 ppb) and lower for PM2.5 (uniform distribution between 5.9 and 8.7 μg/m3) than 

1850 concentrations. In addition, we consider ozone mortality from all chronic respiratory 

diseases while Forouzanfar et al. (2015) only account for COPD, and we restrict our 

mortality estimates to adult population while Forouzanfar et al. (2015) include PM2.5 

mortality from lower respiratory tract infections in children under 5 years old. As a 

sensitivity analysis, when we apply a counterfactual of 33.3ppb (instead of using 1850 

concentrations), our ozone-related mortality estimates are 23% higher for the multi-model 

mean, varying between +10% and +52% among models. Similarly, using the IER model 

counterfactual, our PM2.5-related mortality estimates are 22% lower for the multi-model 

mean, varying between −8% and −44% among models.

For ozone, the global mortality burden increases in all RCPs through 2050 to between 1.84 

and 2.60 million deaths/year, and then it decreases slightly for RCP8.5 and substantially for 

the other RCPs, ranging between 1.09 and 2.36 million deaths/year in 2100. The increase 

Silva et al. Page 11

Atmos Chem Phys. Author manuscript; available in PMC 2017 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can be explained by the rise in the baseline mortality rates for chronic respiratory diseases 

magnified by the increase in exposed population, while the decline is likely mostly related to 

the decrease in concentrations, slightly countered by further population growth (Figure 8). 

The global burden of mortality from PM2.5 shows a declining trend for all RCPs from 2030 

to 2100, peaking between 2.4 and 2.6 million deaths/year in 2030 then declining to between 

0.56 and 1.55 million deaths/year in 2100, except for RCP6.0 which peaks in 2050 (3.50 

million deaths/year) before declining considerably. For PM2.5, the increase in exposed 

population and the decline in concentrations have a much greater effect than changes in 

baseline mortality rates (Figure 9). These results are similar to those of Apte et al. (2015) 

who report a stronger effect of projected demographic trends in India and China in 2030 

than of changes in baseline mortality rates. Our estimates for the global burden of PM2.5 

mortality in 2050 (between 1.82 and 3.50 million deaths/year for the four RCPs) are 

considerably lower than those of Lelieveld et al. (2015) (5.87 million deaths / year for IHD

+STROKE+COPD+LC), likely due to the assumption in the RCP scenarios of further 

regulations on air pollutants, while the Business-As-Usual scenario of Lelieveld et al. (2015) 

does not assume regulations beyond those currently defined.

To help explain differences between the trends in future global burden (Figures 8 and 9) and 

in future mortality relative to 2000 (Figures 1 and 4), we estimate the future global burden 

for two cases: Case A - using 2000 concentrations relative to 1850 and present-day 

population but future baseline mortality rates; and Case B – using 2000 concentrations 

relative to 1850 but future population and baseline mortality rates. Case A reflects the effect 

of future baseline mortality rates on the global burden, if concentrations in future years were 

maintained at 2000 levels, while Case B reflects the combined effect of population and 

baseline mortality rates, i.e. it is identical to Case A except that population changes. The 

difference between the global burden for each RCP and Case B reflects the effects of 

changes in future air pollutant concentrations, and nearly equals future mortality relative to 

2000 concentrations in Figures 1 and 4. However, Cases A and B are calculated for all 14 

models for ozone and 6 models for PM2.5 (since all models reported air pollutant 

concentrations in 2000), while future mortality relative to 2000 is calculated for the models 

that report each scenario/year.

4 Discussion

In all RCP scenarios but RCP8.5, stringent air pollution controls lead to substantial 

decreases in ozone concentrations through the 21st century, relative to 2000. For RCP8.5, 

the higher baseline GHG (including methane) and air pollutant emissions lead to increases in 

future ozone concentrations. In contrast, global PM2.5 concentrations show a decreasing 

trend across all RCP scenarios. These changes in air pollutant concentrations, combined 

with projected increases in baseline mortality rates for chronic respiratory diseases, drive 

ozone mortality to become more important relative to PM2.5 mortality over the next century.

The importance of conducting health impact assessments with air pollutant concentrations 

from model ensembles, instead of from single models, is highlighted by the differences in 

sign of the change in mortality among models, and by the marked impact of the spread of 

model results on overall uncertainty in our mortality estimates. In most cases assessed here 
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(ozone mortality in 2030 relative to 2000, PM2.5 mortality in 2030, PM2.5 mortality in 2050 

and 2100 relative to 2000), uncertainty in modeled air pollutant concentrations is the greatest 

contributor to uncertainty in mortality estimates. The differences in air pollutant 

concentrations reported by the ACCMIP models reflect different treatment of atmospheric 

dynamics and chemistry, chemistry-climate interactions, and natural emissions in each 

model (Young et al., 2013). Although there is likely a bias in estimating health effects using 

air pollutant concentrations from coarse resolution models (Li et al., 2015; Punger and West, 

2013), particularly for PM2.5, we do not expect resolution to be an important factor for the 

differences in simulated concentrations across coarse resolution models. There are several 

uncertainties and assumptions that affect our results. We applied the same RR worldwide 

and into the future, despite differences in vulnerability of the exposed population, in 

composition of PM2.5, and in other factors that may support the use of different risk 

estimates or different concentration-response relationships. These uncertainties can be 

addressed through additional long-term epidemiological studies, particularly for large 

cohorts in developing countries, to improve RR estimates globally. These studies should be 

representative of wider ranges of exposure and air pollutant mixtures than existing studies in 

the US and Europe, and they should control for confounding factors such as other 

environmental exposures, use of air conditioning, socio-economic factors, etc. Also, we 

estimate mortality for adults aged 25 and older, and do not quantify air pollutant effects on 

morbidity, so we underestimate the overall impact of changes in pollutant concentrations on 

human health. Uncertainty is evaluated for a single future population projection, not 

accounting for the wide range of projections in the literature, and does not reflect uncertainty 

in baseline mortality rates, as these are not reported; uncertainties in both population and 

baseline mortality rates would be expected to increase with time into the future. The spread 

of model results does not account for uncertainty in emissions inventories, as all ACCMIP 

models used the same projections of anthropogenic emissions. Moreover, climate and air 

quality interactions and feedbacks are not sufficiently understood to be fully reflected in 

modeled air pollutant concentrations, and global models simplify atmospheric physics and 

chemical processes. This is particularly important when modeling air quality given scenarios 

of future emissions and climate change. For example, most global models do not fully 

address climate sensitivity to biogenic emissions (e.g. isoprene, soil NOx and methane) and 

stratosphere-troposphere interactions (e.g. stratospheric influx of ozone). A better 

understanding of aerosol-cloud interactions, of the impact of climate change on wildfires, 

and of the impact of land use changes on regional climate and air pollution is also crucial.

Our results are limited by the range of air pollutant emissions projected by the RCPs, which 

assume that economic growth strengthens efforts to reduce air pollution emissions. All RCPs 

project reductions in anthropogenic precursor emissions associated with more extensive air 

quality legislation as incomes rise, except for methane in RCP8.5 and for ammonia in all 

scenarios. These scenarios together do not encompass the range of plausible air pollution 

futures for the 21st century, as the RCPs were not designed for this purpose (van Vuuren et 

al., 2011a). Other plausible scenarios have been considered, such as the Current Legislation 

Emissions and Maximum Feasible Reductions scenarios used by Likhvar et al. (2015) and 

the Business-As-Usual scenario of Lelieveld et al (2015). As noted above, our global burden 

estimates for 2050 are considerably lower than the Business-As-Usual scenario of Lelieveld 
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et al. (2015). If economic growth does not lead to stricter air pollution control, emissions and 

health effects may rise considerably, particularly for scenarios of high population growth in 

developing countries (Amman et al., 2013).

5 Conclusions

Under the RCP scenarios, future PM2.5 concentrations lead to decreased global premature 

mortality versus what would occur with fixed year-2000 concentrations, but ozone-related 

mortality increases in some scenarios/periods. In 2100, excess ozone-related premature 

mortality for RCP8.5 is estimated to be 316 thousand (−187 thousand to 1.38 million) 

deaths/year (likely due to an increase in methane emissions and to the net effect of climate 

change), while for the three other RCPs avoided ozone mortality is between −718 thousand 

and −1.02 million deaths/year. For PM2.5, avoided future premature mortality is estimated to 

be between −1.33 and −2.39 million deaths/year in 2100. These reductions in ambient air 

pollution-related mortality reflect the decline in pollutant emissions projected in the RCPs, 

but the large range of results from the four RCPs highlights the importance of future air 

pollutant emissions for ambient air quality and global health. Mortality estimates differ 

among models and we find that, for most cases, the contribution to overall uncertainty from 

uncertainty associated with modeled air pollutant concentrations exceeds that from the RRs. 

Increases in exposed population and in baseline mortality rates of respiratory diseases 

magnify the impact on mortality of the changes in air pollutant concentrations.

Estimating future mortality relative to 2000 concentrations allows us to emphasize the 

effects of changes in air pollution in these results. However, increases in exposed population 

and in baseline mortality rates may drive an increase in the future burden of air pollution on 

mortality. Even in the most optimistic scenarios, the global mortality burden of ozone 

(relative to 1850 concentrations) is estimated to be over 1 million deaths/year in 2100, 

compared to less than 0.4 million in 2000. For PM2.5, the global burdens in 2030 and 2050 

for the four RCPs are greater than the global burden in 2000 but decrease to between 0.56 

and 1.55 million deaths/year in 2100, compared to 1.7 million deaths/year in 2000. A strong 

decline in PM2.5 concentrations for all RCPs together with demographic trends in the 21st 

century (with a projected substantial increase in exposed population) lead to a rising 

importance of ozone relative to PM2.5 for the global burden of ambient air pollution-related 

mortality.

The RCPs are based on the premise that economic development drives better air pollution 

control, leading to improved air quality. This trend is apparent in some developing countries 

now (Klimont et al., 2013), but it is yet to be determined how aggressive many developing 

nations will be in addressing air pollution. The assumed link between economic 

development and air pollution control in the RCPs requires new and stronger regulations 

around the world, as well as new control technologies, for the air pollution decreases in the 

RCPs to be realized. The projected reductions in mortality estimated here will be 

compromised if more stringent policies are delayed (e.g., Lelieveld et al., 2015).
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Figure 1. 
Estimates of future ozone respiratory mortality for all RCP scenarios in 2030, 2050 and 

2100, showing global mortality for 13 models and the multi-model average (million deaths/

year), for future air pollutant concentrations relative to 2000 concentrations. Uncertainty for 

the multi-model average shown for RCP8.5 is the 95% CI including uncertainty in RR and 

across models. Only models with results for the three years have lines connecting the 

markers.
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Figure 2. 
Future ozone respiratory mortality for all RCP scenarios in 2030, 2050 and 2100, showing 

the multi-model average in each grid cell, for future air pollutant concentrations relative to 

2000 concentrations.
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Figure 3. 
Future ozone respiratory mortality for all RCP scenarios in 2030, 2050 and 2100, showing 

the multi-model regional average (deaths/year) in ten world regions (Figure S1) and 

globally, for future air pollutant concentrations relative to 2000 concentrations.
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Figure 4. 
Estimates of future premature mortality (IHD+STROKE+COPD+LC) for PM2.5 calculated 

as a sum of species, for all RCP scenarios in 2030, 2050 and 2100, showing global mortality 

for six models and the multi-model average (million deaths/year), for future air pollutant 

concentrations relative to 2000 concentrations. Uncertainty shown for the RCP8.5 multi-

model average is the 95% CI including uncertainty in RR and across models.

Silva et al. Page 23

Atmos Chem Phys. Author manuscript; available in PMC 2017 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Future premature mortality (IHD+STROKE+COPD+LC) for PM2.5 calculated as a sum of 

species, for all RCP scenarios in 2030, 2050 and 2100, showing the multi-model average in 

each grid cell, for future air pollutant concentrations relative to 2000 concentrations.
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Figure 6. 
Future premature mortality (IHD+STROKE+COPD+LC) for PM2.5 calculated as a sum of 

species, for all RCP scenarios in 2030, 2050 and 2100, showing the multi-model regional 

average (deaths/year) in ten world regions (Figure S1) and globally, for future air pollutant 

concentrations relative to 2000 concentrations.
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Figure 7. 
Estimates of global future premature mortality (IHD+STROKE+COPD+LC) for RCP8.5 in 

2030 and 2100, for PM2.5 reported by four models and PM2.5 estimated as a sum of species 

for six models, showing global mortality for each model and the multi-model average 

(million deaths/year), for future air pollutant concentrations relative to 2000 concentrations. 

Models signaled with * reported their own estimate of PM2.5. Uncertainty shown for six 

models for sum of species is the 95% CI including uncertainty in RR and across models.
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Figure 8. 
Global burden on mortality of ozone concentrations relative to 1850, in the present day for 

2000 concentrations, showing multi-model average and 95% CI including uncertainty in RR 

and across models (deaths/year), and in 2030, 2050 and 2100 for all RCPs, showing multi-

model averages (deaths/year) given by the deterministic values. Also shown are future 

burdens using (Case A) 2000 concentrations relative to 1850 and present-day population but 

future baseline mortality rates and (Case B) 2000 concentrations relative to 1850 but future 

population and baseline mortality rates.
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Figure 9. 
Global burden on mortality of PM2.5 concentrations relative to 1850, in the present day for 

2000 concentrations, showing multi-model average and 95% CI including uncertainty in RR 

and across models (deaths/year), and in 2030, 2050 and 2100 for all RCPs, showing multi-

model averages (deaths/year) given by the deterministic values. Also shown are future 

burdens using (Case A) 2000 concentrations relative to 1850 and present-day population but 

future baseline mortality rates and (Case B) 2000 concentrations relative to 1850 but future 

population and baseline mortality rates.
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