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Abstract

A Swedish pedigree with an autosomal dominant inheritance of idiopathic scoliosis was ini-

tially studied by genetic linkage analysis, prioritising genomic regions for further analysis.

This revealed a locus on chromosome 1 with a putative risk haplotype shared by all affected

individuals. Two affected individuals were subsequently exome-sequenced, identifying a

rare, non-synonymous variant in the CELSR2 gene. This variant is rs141489111, a c.

G6859A change in exon 21 (NM_001408), leading to a predicted p.V2287I (NP_001399.1)

change. This variant was found in all affected members of the pedigree, but showed

reduced penetrance. Analysis of tagging variants in CELSR1-3 in a set of 1739 Swedish-

Danish scoliosis cases and 1812 controls revealed significant association (p = 0.0001) to

rs2281894, a common synonymous variant in CELSR2. This association was not replicated

in case-control cohorts from Japan and the US. No association was found to variants in

CELSR1 or CELSR3. Our findings suggest a rare variant in CELSR2 as causative for idio-

pathic scoliosis in a family with dominant segregation and further highlight common variation

in CELSR2 in general susceptibility to idiopathic scoliosis in the Swedish-Danish population.

Both variants are located in the highly conserved GAIN protein domain, which is necessary

for the auto-proteolysis of CELSR2, suggesting its functional importance.
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Introduction

Idiopathic scoliosis is the most common spinal deformity manifesting in children and adoles-

cents, and is characterised by an abnormal structural curvature of the spine. The prevalence of

idiopathic scoliosis is approximately 2–3% worldwide [1, 2]. The cause of this disorder remains

elusive, but studies on twins have shown a heritability of approx. 40%, indicating the impor-

tance of genetic factors [3].

Genome wide association studies have identified several common genetic variants that

modulate the susceptibility to this disorder [4–7] and linkage studies and exome sequencing in

families with a high burden of idiopathic scoliosis have suggested some rare variants that mod-

ulate susceptibility to this disorder [8–13]. The function of the associated genes/variants is in

most cases unclear and their role in the pathogenesis of idiopathic scoliosis unknown. It is fur-

thermore clear that much of the underlying genetic risk factors and mechanisms still remain

to be identified.

The aim of the current study was to identify the hypothesized single gene underlying an

apparently dominant form of idiopathic scoliosis in a family from Sweden. An initial linkage

analysis was combined with subsequent exome sequencing to enable prioritization of genome

regions for risk variant search. Our analysis highlighted a rare non-synonymous variant in

CELSR2 as a plausible idiopathic scoliosis risk variant. The identification of CELSR2 and

understanding how it might contribute to the risk of idiopathic scoliosis may shed further

light on the pathways and mechanisms involved in the pathogenesis of idiopathic scoliosis.

Material & methods

All studies were carried out in accordance with the relevant guidelines and regulations and all

participating individuals gave their written informed consent. The Ethical Committee at Lund

University (LU 200–95, LU 280–99, LU 363–02), the Regional Ethical Review Board in Stock-

holm (290/2006, 2009/1124-31/2, 2012/1595-31/2) and Lund (567/2008, 2014/804), and the

Regional Committees on Health Research Ethics for Southern Denmark (S-2011002) approved

the study.

Samples

Swedish family. A three-generation family (Fig 1) with a high burden of idiopathic scolio-

sis participated in the study. All participating family members (n = 15) were blood-sampled

and radiographed. All but one (I:II) were examined by a spine surgeon; however this individ-

ual had no scoliosis on radiographs. Individuals with a curve angle of 10 degrees or more, as

measured by the Cobb method [14], were diagnosed with scoliosis. No one had any signs of a

non-idiopathic scoliosis and all had an onset in adolescence, i.e. after the age of ten years (S1

Table). DNA was extracted from blood either by a salt precipitation method on the Autopure

LS system (Qiagen, Hilden, Germany) or the QIAamp 96 DNA blood kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions.

Swedish-Danish case-control cohort. The Swedish-Danish scoliosis case-control dataset

consisted of 1739 individuals with idiopathic scoliosis (Scoliosis and Genetics in Scandinavia;

ScoliGeneS) and 1812 controls, described in more detail in [15].

Japanese case-control cohort. The Japanese case-control dataset consisted of 2,109 cases

and 11,140 controls. Japanese AIS subjects were recruited from collaborating hospitals of the

Japanese Scoliosis Clinical Research Group and were diagnosed through clinical and radiologic

examinations by expert scoliosis surgeons. Control subjects were recruited from the BioBank

Japan Project (https://biobankjp.org) and its related projects. It is described in more detail in

[16].
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US case-control cohort. The US case-control dataset consisted of an independent cohort

of 9,312 Caucasian subjects (1,360 cases and 7,952 controls). Case subjects were recruited at

Texas Scottish Rite Hospital for Children in Dallas, Texas as previously described [6] and gen-

otyped using Illumina HumanCoreExome Beadchip array. Informed consents were obtained

from all research subjects. The study was approved by the Institutional Review Board of the

University of Texas Southwestern Medical Center. For controls, we utilized a single dataset of

individuals downloaded from the dbGaP web site [17] from the Geisinger Health System-

MyCode, eMERGE III Exome Chip Study under phs000957.v1.p1 (https://www.ncbi.nlm.nih.

gov/projects/gap/cgi-bin/study.cgi?study_id=phs000957.v1.p1). The dbGaP controls were pre-

viously genotyped on the same microarray platform used for cases. Only subjects self-reported

as Non-Hispanic White (NHW) were included in the present study. Phenotypes of all controls

were reviewed to exclude any with associated musculoskeletal or neurological disorders.

Family genotyping & linkage analysis

1 ug of genomic DNA from each of the 15 participating family members was used at the

SNP&SEQ genotyping facility in Uppsala, Sweden for genotyping on the Illumina HumanOm-

niExpressExome-8v1-2 array according to standard protocols (Illumina, San Diego, US) and

the results were analyzed using the software GenomeStudio 2011.1 from Illumina. Two con-

trols were also run in parallel. Genotyping was based on cluster files generated from the signal

intensities from more than 800 DNA samples processed in parallel to this project. Samples

with low (<95%) genotyping rate, markers with low (<99%) success rate, and monomorphic

Fig 1. The pedigree included in the current study. Affected individuals are indicated in black, unaffected in white. An obligate carrier of the

chromosome 1 putative scoliosis risk haplotype (denoted by blue bars) is marked with a black dot. All numbered individuals have been genotyped and

included in the linkage analysis. All putative non-risk haplotypes are denoted by white bars. The two exome-sequenced individuals are marked with

asterisks. Carriers of the rare CELSR2 variant identified by exome sequencing are marked by a green box.

https://doi.org/10.1371/journal.pone.0189591.g001

CELSR2 in idiopathic scoliosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0189591 December 14, 2017 3 / 14

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000957.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000957.v1.p1
https://doi.org/10.1371/journal.pone.0189591.g001
https://doi.org/10.1371/journal.pone.0189591


markers were removed. Markers with any inheritance errors within the pedigree, as assessed

by Pedcheck [18] were removed from subsequent analysis.

LD-based pruning of the genotype data was performed using the pairwise LD threshold

function in PLINK (v1.07, http://www.pngu.mgh.harvard.edu/purcell/plink/, [19]), with a

window of 50 markers, shifting by five markers at a time, and allowing the markers within

each window to have an r2 of max 0.2 (—indep-pairwise 50 5 0.2). The Rutgers genetic map

interpolator (available at compgen4.rutgers.edu/mapinterpolator), based on the genetic map

by Matise et al. [20], was used to attain genetic map information for the markers in the linkage

analysis. The data (genotypes, pedigree information, phenotype information) was stored in

BCGenome, a genome data integration platform from BC Platforms (Espoo, Finland). Merlin

(v1.1.2, available at csg.sph.umich.edu/abecasis/Merlin/index.html, [21]) was used to perform

non-parametric linkage analysis, using the exponential model and assessing sharing of genetic

regions between all affected individuals. Merlin was also used to predict the most likely haplo-

types within the region of interest on chromosome 1.

Exome sequencing

Two individuals, heterozygote carriers of the putative chromosome 1 risk haplotype, were cho-

sen for exome sequencing. 120ng of genomic DNA was used to prepare AmpliSeq libraries

run on Ion Torrent (Life Technologies, USA) sequencing according to standard protocols.

The sequencing was performed at the Uppsala Genome Center, Uppsala, Sweden. The

sequence reads were aligned to the hg19 genome reference assembly using the Ion Proton

pipeline (Life Technologies, USA) and single nucleotide variants (SNVs) were identified in

each sample using the Torrent Suite Software (Life Technologies, USA).

The list of variants was filtered to retain only non-synonymous/splice/stop variants with a

read depth of at least 10x. We also removed any variant with a frequency of 1% or higher in

the 1000Genomes dataset (either all populations or Europeans, http://browser.1000genomes.

org/, [22]) or the ExAC dataset (all populations or Europeans, exac.broadinstitute.org, [23]).

Based on our linkage and haplotype analysis, we further limited our analysis to variants

shared by both exome-sequenced individuals as heterozygous, and located within the linked

region on chromosome 1 (GRCh37: 1:84,722,102–113,819,478). Finally, the sequence quality

underlying any such variants was manually assessed using the IGV browser (http://www.

broadinstitute.org/igv/, [24]) to eliminate false-positive variant calls due to e.g. read-end

artifacts.

Bioinformatic analysis

The tissue expression of any genes carrying putative candidate scoliosis risk variants was

assessed through the FANTOM5 promoterome browser available at http://fantom.gsc.riken.

jp/zenbu/, [25]. The potential effects of the identified variant were assessed by looking at the

SIFT [26], PolyPhen [27], MutTaster [28] and CADD [29] scores of each variant. The conser-

vation of the variant was also assessed through the prediction of GERP-scores. These analyses

were performed through the ANNOVAR pipeline [30].

To analyse the effects of the p. V2287I mutation in CELSR2, we compared the predicted 3D

structure of the protein either with a Valine (V) or Isoleucine (I) at position 2287 of the pro-

tein. We used the RaptorX tool (available at raptorx.uchicago.edu [31]) for 3D structure pre-

dictions with default parameters.

A Taqman assay C_166310564_10 from Life Technologies (Thermo Fisher, Waltham, US),

following the manufacturer0s instructions, was used to assess the frequency of the rare CELSR2
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variant, identified through exome sequencing of the family, in a previously described cohort of

Swedish-Danish individuals with idiopathic scoliosis [15].

Genotyping of common CELSR1, 2 and 3 variants in a Swedish-Danish

case-control cohort

The Agena (http://agenabio.com/, San Diego, US, previously Sequenom) MassARRAY1 Sys-

tem, combined with iPLEX1 chemistry, was used to genotype a set of common variants in

CELSR1, 2 and 3. The variants were chosen using the LD TAG SNP Selection tool at https://

snpinfo.niehs.nih.gov/snpinfo/snptag.php, [32]) to tag each gene with an LD threshold of r2 =

0.8. For practical reasons, only the variants fitting into two iPLEX pools were selected. The 20

common variants in CELSR1-3 were genotyped in the same cohort of Swedish-Danish cases

and controls as used previously [15]. The HWE of each marker in controls was assessed, and

any sample with<80% call-rate was removed.

Replication studies of associated CELSR2 variants

The genotyping and imputation analysis in the Japanese cohort were carried out as previously

described [16].

In the US cohort, initial per-sample quality control measures were applied and we excluded

sex inconsistencies and any with missing genotype rate per person more than 0.03. The

remaining samples were merged using the default mode in PLINK.1.9 [33]. Duplicated or

related individuals were removed as described in [34]. We used principal component analysis

(PCA) [35] on the merged data projected onto HapMap3 samples as recommended by [36] to

correct for possible stratification. We used PLINK for per-SNPs quality control including gen-

otyping call-rate per marker (>95%) and deviation from Hardy-Weinberg equilibrium (cutoff

p-value = 10−4). To check the association for common SNPs around the CELSR2 gene we

performed genotype imputation using minimac3 [37] with the 1000G-Phase3.V.5 reference

panel as described in the instructions provided by the software developer available at (http://

genome.sph.umich.edu/wiki/Minimac3_Imputation_Cookbook). Only common SNPs

(MAF>0.05) with imputation quality r2 >0.3 were included for further analysis. Genetic asso-

ciation for the imputed allele dosages for the region around the CELSR2 gene (2Mb each side)

was performed by Mach2dat software [38] using logistic regression with gender and ten princi-

pal components as covariates.

Results

Identification of candidate genomic regions

Fifteen family members (Fig 1) were genotyped using the Illumina HumanOmniExpressEx-

ome-8v1-2 array (genotyped individuals are marked with Roman numerals). The average gen-

otyping call rate, per SNP with sample call rate> 0, was >99%. The average call rate per

sample was>99%. A set of 19,030 pruned-in genetic markers with a 100% call rate was used

for the subsequent non-parametric linkage analysis. S1 Fig shows the linkage for all chromo-

somes. The only region of the genome harboring an NPL linkage signal >1, indicating

increased sharing of that chromosomal region by affected individuals, was at ca. 100–150 cM

on chromosome 1 (Fig 2). This region thus emerged as the most plausible region harboring a

putative scoliosis risk gene/variant, shared by the majority of affected family members.

We found that one haplotype co-segregated with idiopathic scoliosis in the pedigree, as

shown in blue in Fig 1 (all other haplotypes are marked as white) and in further detail in S2

Table. This putative risk haplotype was found in one copy in all affected individuals, as well as

CELSR2 in idiopathic scoliosis
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in unaffected individuals I:II, I:IV and II:VII as shown in Fig 1, and most likely explains the

linkage signal we identified. Based on this analysis, the putative disease variant was hypothe-

sized to lie between 84,8–113,8 Mb (Genome Reference Consortium version 37, GRCh37),

yielding a candidate region of circa 30Mb containing approx. 300 known genes. We restricted

our subsequent search for scoliosis risk variants to this genomic region.

Exome sequencing analysis & CELSR2

We exome sequenced II:I and II:III, two members of the pedigree who shared one copy each

of the putative risk haplotype on chromosome 1, in order to look for shared rare variants

within the haplotype. We obtained >35M reads from each individual, with>95% on target

and an average base coverage depth of>100, >98% of target bases covered at least 1x, and

>57M bases in target regions (S2 Fig).

In total, 64,948 variants were called in the exome analysis; the full set of variants is available

as S1 Data. Of these, 40,818 were found in both individuals. 40,291 variants were autosomal,

and 16,290 variants were exonic/affecting splice sites. Of these, 7162 variants were predicted to

result in stop codon loss or gain, or non-synonymous changes and 61 of them were located

within the region of linkage on chromosome 1. Filtering by frequency (allowing <1% minor

allele frequency in 1000Genomes ALL/EUR or ExAC ALL/EUR), only three variants

remained. Two of these variants were further excluded as being highly likely technical artifacts

(S3 Fig).

Fig 2. Genetic linkage peak on chromosome 1, indicating sharing in all affected individuals. The

maximum K&C non-parametric LOD (NPL) score was attained through the exponential model. The x-axis

shows the position on the chromosome (in cM), the y-axis shows the NPL score.

https://doi.org/10.1371/journal.pone.0189591.g002
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The final filtered list of high-quality non-synonymous variants within the linkage region on

chromosome 1 thus consisted of only one single-nucleotide variant. This finding was con-

firmed by Sanger sequencing (S4 Fig shows individual I:III (wildtype) and I:I (heterozygote

carrier)). This variant was rs141489111, a non-synonymous variant resulting in a c.G6859A

(NM_001408) change in exon 21 of the cadherin EGF lag seven-pass G-type receptor 2

(CELSR2) gene. Rs141489111 is predicted to result in a p.V2287I (NP_001399.1) change in the

protein.

This variant was found on the genotyping array used for the initial linkage analysis. The co-

segregation of this variant and the chromosome 1 risk haplotype with scoliosis within the

entire pedigree could thus be assessed (green boxes in Fig 1).

The A allele of rs141489111 is rare; it is not found in any of the 1000 Genomes populations

and it has a frequency of only 0.22% in the NHLBI-ESP European American Cohort (http://

evs.gs.washington.edu/EVS/, Exome Variant Server, NHLBI GO Exome Sequencing Project

(ESP), Seattle, WA, accessed 26.01.2017). It has a frequency of 0.1477% in the ExAC (http://

exac.broadinstitute.org/, accessed 03.07.2017) non-Finnish European population, and 0.086%

in the whole dataset. The frequency of this variant in the GnomAD database (http://gnomad.

broadinstitute.org/, accessed 03.07.2017) is 0.1643% in non-Finnish Europeans and 0.089% in

the whole dataset. The putative p.V2287I change replaces a hydrophobic side chain by a larger

one. The SIFT and MutTaster scores (1 and 0.96, respectively) do not argue for this variant

being directly damaging to the CELSR2 protein, whereas the PolyPhen score of 0.36 is more

indeterminate and the CADD score of 22 indicates that this variant might be damaging. The

rs141489111 GERP score of 4.06 indicates considerable conservation of this amino acid, argu-

ing for a functional restraint on its function. S5 Fig shows clustalX alignments (available at

http://www.uniprot.org) of the amino acids 2261–2320 of Q9HCU4 (human CELSR2) com-

pared to those of several other vertebrate animals. Position 2287 in the human CELSR2 is

marked in red. This position is strongly conserved, as well as the adjacent region.

The V2287I variant is located within the ancient and highly conserved GAIN domain

[39] (Fig 3). Fig 4 shows the predicted three-dimensional structure of the GAIN domain of

CELSR2 (pdb-files available on demand). While the V2287I change is not expected to have

major effects on the structure of the protein, the predicted structure of CELSR2 indicates that

it is located in close proximity to the H2355-T2357 autoproteolysis cut site [39].

Genotyping of rare CELSR2 variant in an independent cohort

1737 Swedish individuals with idiopathic scoliosis [15] were successfully genotyped for the

CELSR2 rs141489111 variant (genotyping success rate of>99%). We identified five indepen-

dent carriers of the rs141489111 variant, including the proband of the Swedish large family.

This equates to an allele frequency of 0.1439% in this case cohort. We found no indication that

the four carriers were directly related to the family under study or to each other.

Genotyping of common CELSR1-3 variants in an independent cohort

To further investigate CELSR2 and its related genes CELSR1 and CELSR3, we selected a set of

twenty common tagging variants within these genes. Removing any samples with a genotyping

success rate<80% yielded data for 1731 cases and 1783 controls.

No significant association was found to any of the variants in CELSR1 or CELSR3, but two

variants in CELSR2 showed significant association at the p<0.05 level (Table 1 and S6 Fig).

The C allele of the CELSR2 rs6698843 variant was overrepresented in cases (0.571 vs. 0.546),

p = 0.0398, OR 1.10 (not significant after Bonferroni-correction for multiple testing). This var-

iant results in a predicted synonymous P1712P in one of the EGF-like domains of CELSR2, as

CELSR2 in idiopathic scoliosis
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shown in Figs 3 and 4. The A allele of the CELSR2 rs2281894 variant had a frequency of 0.225

in cases versus 0.188 in controls (p = 0.0001, OR 1.25 (Bonferroni-corrected p = 0.002)). The

more strongly associated variant rs2281894 represents a predicted synonymous R2060R within

the GAIN domain of the CELSR2 protein (Figs 3 and 4). These two markers are neither in

linkage disequilibrium with each other nor with the rare rs141489111 variant identified in the

large family.

Replication study of common CELSR2 variants

The two common variants in CELSR2 that showed significant association to idiopathic scolio-

sis in the Swedish-Danish population, rs6698843 and rs2281894, were further tested for associ-

ation in two additional case-control datasets. In a genome-wide association study (GWAS)

dataset from Japan (previously described in detail in [16]), neither marker showed association

Fig 3. Schematic of the structure of the CELSR2 protein. Shown are the cadherin, EGF-like, and laminin-G-like domains. Also the transmembrane

(TM) 7-pass domain and the evolutionarily conserved GAIN domain. The GAIN domain contains within it a GPS domain and is the site of

autoproteolytic cleavage of CELSR2. The rare V2287I variant and more common R2060R tagging variant are both located within the GAIN domain.

https://doi.org/10.1371/journal.pone.0189591.g003

Fig 4. Visualisation of the predicted structure of the GAIN domain of CELSR2. The left panel shows the

wildtype 2287V form, the right panel shows the mutated 2287I form. The location of the V2287I and R2060R

variants are shown, as well as the site of autoproteolytic cleavage.

https://doi.org/10.1371/journal.pone.0189591.g004
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to idiopathic scoliosis. Rs6698843 had a p-value of 0.61 and an OR of 0.98; rs2281894 had a

p-value of 0.95 and an OR of 1.00. Results from the US cohort did not show association

with idiopathic scoliosis for the two common CELSR2 variants (rs6698843_p-value = 0.839

(OR = 1.01); rs2281894_p-value = 0.465 (OR = 0.96).

Discussion

Idiopathic scoliosis has proven to be a complex disorder with high genetic heterogeneity. By

linkage analysis and exome sequencing of a family with a high burden of idiopathic scoliosis

we identified a rare missense mutation in the highly conserved CELSR2 gene. We suggest a

novel causative mechanism in the aetiology of idiopathic scoliosis.

The rare CELSR2 variant co-segregating with idiopathic scoliosis in the pedigree under

study is a previously described variant with a frequency of approx. 0.08–0.16% in the general

European population. The position of the rare CELSR2 rs141489111 variant, as well as the G-

protein coupled receptor (GPCR) auto-proteolysis-inducing (GAIN) domain within which it

is situated, is strongly conserved throughout evolution, arguing for the functional importance

of this protein. Upon genotyping of a large cohort of independent Swedish-Danish idiopathic

scoliosis patients, we did not find an elevated prevalence. This variant does thus not alone

explain a significant part of idiopathic scoliosis susceptibility at the population level, while it

remains a plausible candidate for rare, monogenic forms of scoliosis.

In order to further understand the possible importance of CELSR2 in idiopathic scoliosis,

we genotyped common variants within CELSR2 and the related genes CELSR1 and 3, in a large

independent case-control cohort. Interestingly enough, we found an association of idiopathic

Table 1. Association of tagging variants in CELSR1, 2 and 3 to idiopathic scoliosis in a set of Swedish cases and controls.

GENE Chr Name b38 pos Assoc Allele Case,Control Counts Case,Control Freq P value OR (95% CI)

CELSR1 22 rs35364389 46364189 T 544:2904, 550:3026 0.158, 0.154 0.6465

CELSR1 22 rs9615351 46364584 G 837:2611, 858:2708 0.243, 0.241 0.8339

CELSR1 22 rs6007897 46384624 C 552:2912, 542:3030 0.159, 0.152 0.3780

CELSR1 22 rs6008794 46391797 G 546:2910, 547:3025 0.158, 0.153 0.5748

CELSR1 22 rs6008813 46416688 A 861:2597, 867:2711 0.249, 0.242 0.5156

CELSR1 22 rs4823549 46468568 G 1890:1568, 1929:1645 0.547, 0.540 0.5656

CELSR1 22 rs4823554 46475875 C 2392:1038, 2462:1102 0.697, 0.691 0.5506

CELSR1 22 rs9627484 46512158 G 1116:2348, 1150:2428 0.322, 0.321 0.9454

CELSR1 22 rs4823849 46530585 A 2120:1328, 2169:1397 0.615, 0.608 0.5705

CELSR1 22 rs4823561 46533795 A 235:3229, 242:3336 0.068, 0.068 0.9727

CELSR1 22 rs4823850 46535180 G 237:3207, 233:3337 0.069, 0.065 0.5523

CELSR2 1 rs413380 109252404 T 115:3337, 118:3456 0.033, 0.033 0.9444

CELSR2 1 rs10858082 109256099 G 1583:1869, 1587:1979 0.459, 0.445 0.2546

CELSR2 1 rs653635 109263691 T 3105:353, 3196:376 0.898, 0.895 0.6618

CELSR2 1 rs6698843 109264212 C 1965:1479, 1941:1613 0.571, 0.546 0.0398 1.10 (1.00–1.21)

CELSR2 1 rs2281894 109267922 A 780:2682, 671:2895 0.225, 0.188 0.0001 1.25 (1.12–1.41)

CELSR2 1 rs4970834 109272258 C 2817:627, 2888:676 0.818, 0.810 0.4125

CELSR2 1 rs629301 109275684 T 2691:763, 2746:828 0.779, 0.768 0.2808

CELSR3 3 rs12107252 48653883 T 3053:407, 3153:425 0.882, 0.881 0.8811

CELSR3 3 rs3821875 48660221 C 3064:396, 3164:410 0.886, 0.885 0.9720

The name of each marker, position (build 38), the allele counts and allele frequencies are shown. Also the P-values as well as the odds ratio (OR) and 95%

confidence interval (CI) for markers with P-values < 0.05. All P-values are uncorrected.

https://doi.org/10.1371/journal.pone.0189591.t001
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scoliosis to another variant, rs2281894, also situated in the GAIN domain of CELSR2. This

association could not be replicated in large cohorts of Japanese and US case-control datasets. It

remains unknown if this is due to differences in diagnostic criteria/selection of samples or per-

haps due to population differences in the underlying genetic risk factors. Future studies, aim-

ing to dissect in further detail the overall importance of the CELSR1-3/associated genes

contribution to scoliosis in multiple populations will be undertaken to understand this further.

CELSR2 is highly expressed in neuronal tissues, including adult temporal lobe, occipital

pole and postcentral gyrus, in addition to whole brain, neurons and fetal and adult spinal

chord (as assessed through FANTOM5). In CELSR2-deficient mice, the development and pla-

nar organization of ependymal cilia are compromised, leading to fatal hydrocephalus [40].

Compound heterozygosity for mutations in CELSR2 have recently been suggested to cause

Joubert syndrome, a ciliopathy disorder, in a young girl [41]. This girl showed a phenotype of

cortical heterotopia, microophthalmia, severe growth retardation, cone-shaped epiphyses and

growth hormone deficiency. This phenotype is obviously more severe than idiopathic scoliosis

and supports the notion that a drastic change in the function of CELSR2, e.g. a gain-of-func-

tion due to the mutation, would likely be lethal or cause a more severe phenotype than idio-

pathic scoliosis. Based on this, it seems more plausible that the mutation identified in the

current family would involve a loss of function, with heterozygote carriers having approxi-

mately half of the wildtype levels of functioning CELSR2. This is mirrored by the situation in

ADGRG6 (also called GPR126), a gene previously associated to idiopathic scoliosis [4]. The

protein product of this gene also carries a GAIN domain, and also needs to be auto-proteo-

lysed to function properly. The ADGRG6 variants that have been associated to idiopathic scoli-

osis have been intronic, and presumably only mildly or not directly functional. In contrast,

homozygosity for a mutation that severely reduces the auto-proteolytic function of ADGRG6
has been shown in severe arthrogryposis multiplex congenita [42]. This further argues for the

importance of the GAIN domains and supports our idea that any mutations abolishing their

function (in ADGRG6 or CELSR2) would likely lead to more severe phenotypes than idiopathic

scoliosis.

The penetrance of scoliosis in carriers of the CELSR2 variant in the present study is incom-

plete, suggesting additional unknown modifiers of disease risk (genetic or environmental).

This is a common finding even in clearly monogenic situations (reviewed in e.g. [43]). Another

example of this is the reduced penetrance of POC5 mutations segregating with idiopathic scoli-

osis in the families studied by Patten et al. [13]. They suggest the possible presence of a second

risk variant within the families. Another thing to keep in mind is that idiopathic scoliosis is a

continuous variable that we dichotomise, and that the difference between a classification as

unaffected and mild scoliosis may be very subtle.

The cellular function of CELSR2 is not fully understood but it is known to be important for

axon guidance, neuronal migration, and cilium polarity [44–46]. CELSR2 is located at the

plasma membrane and belongs to the flamingo cadherin subfamily [40]). This group of pro-

teins is involved in contact-mediated communication between cells and consists of a large

extra-cellular domain, a seven-pass transmembrane domain and a cytoplasmic tail [47]. The

rare variant identified in the family induces a change from valine to isoleucine in the extracel-

lular part of the protein, in the so-called GAIN domain. The GAIN domain is required and

necessary for autoproteolysis of the protein [39], and while the result of changing this particu-

lar valine to an isoleucine remains unclear, it is plausible to suggest a possible effect on this

mechanism.

In conclusion, we have identified CELSR2 as a putative novel risk gene idiopathic scoliosis,

and we hypothesise that this effect may be mediated through a disruption of the auto-proteolytic
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mechanism of the GAIN domain in the CELSR2. Future studies will focus on functional studies

to understand the specific mechanisms underlying this disruption.
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most strongly associated variant, rs2281894, is marked with a diamond; the colour of the other
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