Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Nov 3;73(Pt 12):1817–1819. doi: 10.1107/S2056989017015730

Crystal structure of diethyl 3,3′-[(2,4-di­chloro­phen­yl)methyl­idene]bis­(1H-indole-2-carboxyl­ate)

Yu-Long Li a, Hong-Shun Sun a,*, Hong Jiang a, Yu-Liang Chen a, Yang-Feng Chen a
PMCID: PMC5730230  PMID: 29250393

In the title compound, the two indole ring systems are approximately perpendicular to one another, making a dihedral angle of 80.9 (5)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers and these are further linked by N—H⋯O and hydrogen bonds and short Cl—Cl contacts into supra­molecular chains.

Keywords: crystal structure, bis­indole, MRI, contrast agent

Abstract

In the title compound, C29H24Cl2N2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.1249 and 0.0075 Å) are approximately perpendic­ular to one another, with a dihedral angle of 80.9 (5)° between them. The benzene ring is inclined to the mean planes of the two indole ring systems by 76.1 (3) and 78.3 (4)°. Weak intra­molecular C—H⋯π inter­actions affect the mol­ecular conformation. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers which are further linked into supra­molecular chains by N—H⋯O hydrogen bonds and short Cl—Cl contacts.

Chemical context  

Bis(indol­yl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Porter et al.,1977; Sundberg, 1996). They are important anti­biotics in the field of pharmaceuticals with diverse activities, displaying anti­cancer, anti­leishmanial and anti­hyperlipidemic properties (Chang et al., 1999; Ge et al., 1999). Furthermore, bis­(indolyl)methane derivatives can also be used as precursors for MRI necrosis avid contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar bis­(indoly)methane compounds (Sun et al., 2012, 2015; Li et al., 2014; Lu et al., 2014). We report here the mol­ecular and crystal structure of the title bis­(indoly)methane derivative.graphic file with name e-73-01817-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The overall conformation of the mol­ecule is affected by intra­molecular C4—H4ACg5 and C15—H15ACg1 inter­actions (Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings, respectively), Fig. 1, Table 1. The two indole ring systems are nearly perpendicular to one another, subtending a dihedral angle of 80.9 (5)° while the C24–C29 benzene ring is inclined to the N1/C2–C9 and N2/C13–C20 indole ring systems by dihedral angles of 76.1 (3) and 78.3 (4)°, respectively. The carboxyl groups lie close to the planes of the indole ring systems to which they are bound, with dihedral angles between the carboxyl groups and the mean planes of the N1/C2–C9 and N2/C13–C20 indole ring systems of 8.3 (5) and 5.6 (3)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular C—H⋯π(ring) contacts (Table 1) are shown as dotted black lines with ring centroids displayed as coloured spheres.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.07 2.864 (4) 152
N2—H2A⋯O4ii 0.86 2.04 2.871 (4) 161
C11—H11A⋯Cl1iii 0.97 2.81 3.731 (5) 158
C4—H4ACg5 0.93 2.77 3.516 (4) 137
C15—H15ACg1 0.93 2.72 3.476 (5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, pairs of N1—H1A⋯O1 and N2—H2A⋯O4 hydrogen bonds, Table 1, link the mol­ecules into inversion dimers that form supramolecular chains along the b-axis direction. C11—H11A⋯Cl1 and short Cl2⋯Cl2 contacts [Cl2⋯Cl2(1 − x, 1 − y, −z) = 3.467 (2) Å] bridge these chains and form sheets of mol­ecules parallel to (Inline graphic12), Fig. 2.

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds (Table 1) and Cl⋯Cl contacts are shown as dashed lines.

Database survey  

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015) dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014) and dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014). In these structures, the two indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 84.0 (5), 79.5 (4) and 87.8 (5)°, respectively.

Synthesis and crystallization  

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 2,4-di­chloro­benzalde­hyde (0.88 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with ethanol. The reaction was monitored with TLC (AcOEt:hexane = 1:3). Colourless block-like crystals of the title compound suitable for X-ray analysis were obtained in 92% yield by slow evaporation of an ethanol solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms with U iso(H) = xU eq(C,N), where x = 1.5 for methyl H atoms and 1.2 for all others.

Table 2. Experimental details.

Crystal data
Chemical formula C29H24Cl2N2O4
M r 535.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.776 (2), 15.939 (3), 17.581 (4)
β (°) 101.94 (3)
V3) 2680.2 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968)
T min, T max 0.921, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 5221, 4917, 2864
R int 0.034
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.067, 0.192, 1.00
No. of reflections 4917
No. of parameters 328
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −1.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017015730/sj5539sup1.cif

e-73-01817-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015730/sj5539Isup2.hkl

e-73-01817-Isup2.hkl (240.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015730/sj5539Isup3.cml

CCDC reference: 1582719

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Crystal data

C29H24Cl2N2O4 F(000) = 1112
Mr = 535.40 Dx = 1.327 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 9.776 (2) Å θ = 9–13°
b = 15.939 (3) Å µ = 0.28 mm1
c = 17.581 (4) Å T = 293 K
β = 101.94 (3)° Block, colorless
V = 2680.2 (9) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
Graphite monochromator θmax = 25.4°, θmin = 1.7°
ω/2θ scans h = 0→11
Absorption correction: ψ scan (North et al., 1968) k = 0→19
Tmin = 0.921, Tmax = 0.973 l = −21→21
5221 measured reflections 3 standard reflections every 200 reflections
4917 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.670P] where P = (Fo2 + 2Fc2)/3
4917 reflections (Δ/σ)max < 0.001
328 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −1.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.99326 (13) 0.65116 (9) 0.32372 (10) 0.0997 (6)
O1 0.0795 (3) 0.57429 (17) −0.06706 (15) 0.0537 (7)
N1 0.1566 (3) 0.53608 (18) 0.09007 (17) 0.0440 (8)
H1A 0.0821 0.5101 0.0675 0.053*
C1 0.4458 (4) 0.6877 (2) 0.0923 (2) 0.0371 (8)
H1B 0.4656 0.6719 0.0418 0.044*
Cl2 0.61986 (13) 0.53457 (7) 0.08076 (8) 0.0813 (5)
O2 0.2675 (3) 0.65654 (16) −0.05724 (14) 0.0478 (7)
N2 0.3672 (3) 0.91230 (18) 0.04635 (18) 0.0458 (8)
H2A 0.3841 0.9599 0.0272 0.055*
C2 0.3421 (4) 0.6237 (2) 0.1094 (2) 0.0373 (8)
O3 0.6370 (3) 0.77571 (16) 0.01095 (16) 0.0514 (7)
C3 0.3369 (4) 0.5821 (2) 0.1812 (2) 0.0400 (8)
O4 0.6115 (3) 0.91368 (16) −0.00828 (18) 0.0600 (8)
C4 0.4188 (4) 0.5829 (3) 0.2572 (2) 0.0554 (11)
H4A 0.4952 0.6187 0.2702 0.066*
C5 0.3842 (5) 0.5301 (3) 0.3120 (3) 0.0628 (12)
H5A 0.4388 0.5304 0.3620 0.075*
C6 0.2703 (5) 0.4761 (3) 0.2950 (3) 0.0598 (12)
H6A 0.2510 0.4410 0.3337 0.072*
C7 0.1858 (4) 0.4738 (2) 0.2225 (2) 0.0526 (10)
H7A 0.1089 0.4382 0.2111 0.063*
C8 0.2203 (4) 0.5274 (2) 0.1659 (2) 0.0424 (9)
C9 0.2289 (3) 0.5925 (2) 0.0549 (2) 0.0379 (8)
C10 0.1837 (4) 0.6072 (2) −0.0283 (2) 0.0378 (8)
C11 0.2406 (5) 0.6680 (3) −0.1409 (2) 0.0611 (12)
H11A 0.1587 0.7029 −0.1577 0.073*
H11B 0.2245 0.6142 −0.1670 0.073*
C12 0.3646 (5) 0.7087 (3) −0.1591 (3) 0.080
H12A 0.3509 0.7169 −0.2143 0.120*
H12B 0.4449 0.6737 −0.1418 0.120*
H12C 0.3789 0.7619 −0.1333 0.120*
C13 0.3873 (3) 0.7766 (2) 0.0822 (2) 0.0367 (8)
C14 0.2657 (4) 0.8105 (2) 0.1040 (2) 0.0393 (8)
C15 0.1617 (4) 0.7797 (3) 0.1419 (2) 0.0499 (10)
H15A 0.1632 0.7241 0.1582 0.060*
C16 0.0581 (5) 0.8334 (3) 0.1541 (3) 0.0624 (12)
H16A −0.0111 0.8133 0.1786 0.075*
C17 0.0542 (5) 0.9170 (3) 0.1308 (3) 0.0755 (14)
H17A −0.0165 0.9517 0.1409 0.091*
C18 0.1515 (4) 0.9490 (3) 0.0938 (3) 0.0610 (12)
H18A 0.1474 1.0047 0.0776 0.073*
C19 0.2575 (4) 0.8959 (2) 0.0809 (2) 0.0430 (9)
C20 0.4467 (4) 0.8411 (2) 0.0468 (2) 0.0378 (8)
C21 0.5712 (4) 0.8480 (2) 0.0141 (2) 0.0410 (9)
C22 0.7623 (5) 0.7796 (3) −0.0215 (3) 0.0673 (13)
H22A 0.8306 0.8168 0.0093 0.081*
H22B 0.7397 0.8006 −0.0744 0.081*
C23 0.8196 (6) 0.6929 (4) −0.0202 (4) 0.113 (2)
H23A 0.9022 0.6932 −0.0417 0.170*
H23B 0.7509 0.6566 −0.0505 0.170*
H23C 0.8427 0.6730 0.0325 0.170*
C24 0.5846 (4) 0.6817 (2) 0.1501 (2) 0.0391 (8)
C25 0.6324 (4) 0.7431 (2) 0.2053 (2) 0.0437 (9)
H25A 0.5790 0.7912 0.2068 0.052*
C26 0.7582 (4) 0.7340 (3) 0.2582 (2) 0.0530 (11)
H26A 0.7885 0.7758 0.2948 0.064*
C27 0.8370 (4) 0.6642 (3) 0.2566 (3) 0.0614 (12)
C28 0.7963 (4) 0.6021 (3) 0.2019 (3) 0.0634 (12)
H28A 0.8513 0.5547 0.2006 0.076*
C29 0.6715 (4) 0.6124 (2) 0.1493 (2) 0.0505 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0617 (8) 0.0762 (9) 0.1361 (13) −0.0114 (7) −0.0373 (8) 0.0215 (8)
O1 0.0412 (15) 0.0659 (18) 0.0512 (16) −0.0065 (14) 0.0034 (13) 0.0008 (14)
N1 0.0394 (17) 0.0439 (18) 0.0467 (18) −0.0081 (14) 0.0045 (14) 0.0025 (14)
C1 0.0398 (19) 0.0283 (17) 0.043 (2) 0.0036 (15) 0.0076 (16) −0.0009 (15)
Cl2 0.0746 (8) 0.0529 (7) 0.1067 (10) 0.0220 (6) −0.0039 (7) −0.0310 (7)
O2 0.0522 (15) 0.0472 (15) 0.0421 (15) −0.0103 (13) 0.0050 (12) 0.0081 (12)
N2 0.0482 (18) 0.0284 (15) 0.064 (2) 0.0026 (14) 0.0178 (16) 0.0064 (14)
C2 0.0386 (19) 0.0289 (18) 0.044 (2) −0.0002 (15) 0.0090 (17) 0.0012 (15)
O3 0.0497 (16) 0.0397 (14) 0.0711 (18) 0.0091 (12) 0.0271 (14) 0.0049 (13)
C3 0.044 (2) 0.0314 (18) 0.044 (2) 0.0024 (16) 0.0090 (17) 0.0068 (16)
O4 0.0536 (17) 0.0404 (15) 0.094 (2) 0.0019 (13) 0.0339 (16) 0.0158 (15)
C4 0.058 (3) 0.056 (2) 0.050 (2) −0.012 (2) 0.005 (2) 0.005 (2)
C5 0.061 (3) 0.070 (3) 0.054 (3) −0.003 (2) 0.005 (2) 0.018 (2)
C6 0.063 (3) 0.057 (3) 0.062 (3) 0.001 (2) 0.019 (2) 0.023 (2)
C7 0.050 (2) 0.047 (2) 0.063 (3) −0.0070 (19) 0.017 (2) 0.011 (2)
C8 0.039 (2) 0.036 (2) 0.053 (2) 0.0003 (16) 0.0113 (17) 0.0015 (17)
C9 0.0347 (18) 0.0327 (18) 0.047 (2) −0.0003 (15) 0.0107 (16) 0.0019 (16)
C10 0.0344 (19) 0.0329 (18) 0.045 (2) 0.0045 (16) 0.0061 (17) −0.0003 (16)
C11 0.058 (3) 0.068 (3) 0.052 (3) −0.007 (2) −0.002 (2) 0.016 (2)
C12 0.080 0.080 0.080 0.000 0.017 0.000
C13 0.0364 (19) 0.0316 (18) 0.042 (2) 0.0024 (15) 0.0072 (16) −0.0020 (15)
C14 0.040 (2) 0.0365 (19) 0.043 (2) 0.0038 (16) 0.0105 (16) −0.0017 (16)
C15 0.046 (2) 0.050 (2) 0.058 (3) 0.0015 (19) 0.021 (2) 0.0061 (19)
C16 0.059 (3) 0.059 (3) 0.078 (3) 0.000 (2) 0.035 (2) 0.002 (2)
C17 0.064 (3) 0.058 (3) 0.114 (4) 0.021 (2) 0.042 (3) −0.001 (3)
C18 0.056 (3) 0.041 (2) 0.093 (3) 0.012 (2) 0.030 (2) 0.006 (2)
C19 0.040 (2) 0.038 (2) 0.054 (2) 0.0029 (17) 0.0158 (18) 0.0010 (17)
C20 0.0388 (19) 0.0288 (18) 0.046 (2) −0.0016 (15) 0.0097 (16) −0.0008 (15)
C21 0.039 (2) 0.039 (2) 0.045 (2) −0.0015 (17) 0.0076 (17) 0.0001 (17)
C22 0.063 (3) 0.061 (3) 0.089 (3) 0.012 (2) 0.041 (3) 0.002 (2)
C23 0.102 (4) 0.099 (5) 0.158 (6) 0.055 (4) 0.071 (4) 0.029 (4)
C24 0.038 (2) 0.0334 (18) 0.046 (2) −0.0048 (16) 0.0095 (16) 0.0011 (16)
C25 0.045 (2) 0.0338 (19) 0.052 (2) −0.0043 (17) 0.0096 (18) 0.0023 (17)
C26 0.060 (3) 0.043 (2) 0.052 (2) −0.018 (2) 0.004 (2) 0.0031 (18)
C27 0.045 (2) 0.052 (3) 0.080 (3) −0.008 (2) −0.006 (2) 0.016 (2)
C28 0.042 (2) 0.046 (2) 0.097 (4) 0.005 (2) 0.001 (2) 0.008 (2)
C29 0.046 (2) 0.034 (2) 0.069 (3) 0.0024 (18) 0.006 (2) −0.0040 (19)

Geometric parameters (Å, º)

Cl1—C27 1.738 (4) C11—H11B 0.9700
O1—C10 1.221 (4) C12—H12A 0.9600
N1—C8 1.356 (5) C12—H12B 0.9600
N1—C9 1.368 (4) C12—H12C 0.9600
N1—H1A 0.8600 C13—C20 1.389 (5)
C1—C2 1.511 (5) C13—C14 1.429 (5)
C1—C24 1.521 (5) C14—C15 1.414 (5)
C1—C13 1.525 (4) C14—C19 1.418 (5)
C1—H1B 0.9800 C15—C16 1.377 (5)
Cl2—C29 1.730 (4) C15—H15A 0.9300
O2—C10 1.312 (4) C16—C17 1.392 (6)
O2—C11 1.450 (5) C16—H16A 0.9300
N2—C19 1.363 (4) C17—C18 1.358 (6)
N2—C20 1.375 (4) C17—H17A 0.9300
N2—H2A 0.8600 C18—C19 1.393 (5)
C2—C9 1.396 (5) C18—H18A 0.9300
C2—C3 1.436 (5) C20—C21 1.454 (5)
O3—C21 1.327 (4) C22—C23 1.489 (7)
O3—C22 1.456 (5) C22—H22A 0.9700
C3—C4 1.409 (5) C22—H22B 0.9700
C3—C8 1.415 (5) C23—H23A 0.9600
O4—C21 1.212 (4) C23—H23B 0.9600
C4—C5 1.372 (5) C23—H23C 0.9600
C4—H4A 0.9300 C24—C25 1.389 (5)
C5—C6 1.390 (6) C24—C29 1.396 (5)
C5—H5A 0.9300 C25—C26 1.388 (5)
C6—C7 1.369 (6) C25—H25A 0.9300
C6—H6A 0.9300 C26—C27 1.358 (6)
C7—C8 1.405 (5) C26—H26A 0.9300
C7—H7A 0.9300 C27—C28 1.380 (6)
C9—C10 1.457 (5) C28—C29 1.380 (5)
C11—C12 1.467 (6) C28—H28A 0.9300
C11—H11A 0.9700
C8—N1—C9 109.6 (3) C14—C13—C1 129.2 (3)
C8—N1—H1A 125.2 C15—C14—C19 117.7 (3)
C9—N1—H1A 125.2 C15—C14—C13 135.6 (3)
C2—C1—C24 111.6 (3) C19—C14—C13 106.7 (3)
C2—C1—C13 113.6 (3) C16—C15—C14 118.8 (4)
C24—C1—C13 113.4 (3) C16—C15—H15A 120.6
C2—C1—H1B 105.8 C14—C15—H15A 120.6
C24—C1—H1B 105.8 C15—C16—C17 121.7 (4)
C13—C1—H1B 105.8 C15—C16—H16A 119.1
C10—O2—C11 118.2 (3) C17—C16—H16A 119.1
C19—N2—C20 109.6 (3) C18—C17—C16 121.4 (4)
C19—N2—H2A 125.2 C18—C17—H17A 119.3
C20—N2—H2A 125.2 C16—C17—H17A 119.3
C9—C2—C3 105.7 (3) C17—C18—C19 117.9 (4)
C9—C2—C1 125.0 (3) C17—C18—H18A 121.0
C3—C2—C1 129.3 (3) C19—C18—H18A 121.0
C21—O3—C22 115.8 (3) N2—C19—C18 129.6 (3)
C4—C3—C8 117.6 (3) N2—C19—C14 108.0 (3)
C4—C3—C2 135.5 (3) C18—C19—C14 122.5 (3)
C8—C3—C2 106.9 (3) N2—C20—C13 109.0 (3)
C5—C4—C3 119.1 (4) N2—C20—C21 117.0 (3)
C5—C4—H4A 120.5 C13—C20—C21 134.0 (3)
C3—C4—H4A 120.5 O4—C21—O3 122.9 (3)
C4—C5—C6 122.2 (4) O4—C21—C20 123.3 (3)
C4—C5—H5A 118.9 O3—C21—C20 113.8 (3)
C6—C5—H5A 118.9 O3—C22—C23 107.4 (4)
C7—C6—C5 121.2 (4) O3—C22—H22A 110.2
C7—C6—H6A 119.4 C23—C22—H22A 110.2
C5—C6—H6A 119.4 O3—C22—H22B 110.2
C6—C7—C8 117.2 (4) C23—C22—H22B 110.2
C6—C7—H7A 121.4 H22A—C22—H22B 108.5
C8—C7—H7A 121.4 C22—C23—H23A 109.5
N1—C8—C7 129.0 (3) C22—C23—H23B 109.5
N1—C8—C3 108.2 (3) H23A—C23—H23B 109.5
C7—C8—C3 122.8 (4) C22—C23—H23C 109.5
N1—C9—C2 109.6 (3) H23A—C23—H23C 109.5
N1—C9—C10 118.8 (3) H23B—C23—H23C 109.5
C2—C9—C10 131.6 (3) C25—C24—C29 116.6 (3)
O1—C10—O2 123.8 (3) C25—C24—C1 123.2 (3)
O1—C10—C9 122.4 (3) C29—C24—C1 120.2 (3)
O2—C10—C9 113.7 (3) C26—C25—C24 121.2 (4)
O2—C11—C12 107.0 (3) C26—C25—H25A 119.4
O2—C11—H11A 110.3 C24—C25—H25A 119.4
C12—C11—H11A 110.3 C27—C26—C25 120.0 (4)
O2—C11—H11B 110.3 C27—C26—H26A 120.0
C12—C11—H11B 110.3 C25—C26—H26A 120.0
H11A—C11—H11B 108.6 C26—C27—C28 121.3 (4)
C11—C12—H12A 109.5 C26—C27—Cl1 120.4 (4)
C11—C12—H12B 109.5 C28—C27—Cl1 118.3 (3)
H12A—C12—H12B 109.5 C29—C28—C27 118.0 (4)
C11—C12—H12C 109.5 C29—C28—H28A 121.0
H12A—C12—H12C 109.5 C27—C28—H28A 121.0
H12B—C12—H12C 109.5 C28—C29—C24 122.9 (4)
C20—C13—C14 106.8 (3) C28—C29—Cl2 118.1 (3)
C20—C13—C1 124.0 (3) C24—C29—Cl2 119.0 (3)
C24—C1—C2—C9 −156.0 (3) C13—C14—C15—C16 178.9 (4)
C13—C1—C2—C9 74.3 (4) C14—C15—C16—C17 −0.6 (7)
C24—C1—C2—C3 23.5 (5) C15—C16—C17—C18 1.1 (8)
C13—C1—C2—C3 −106.2 (4) C16—C17—C18—C19 −1.1 (8)
C9—C2—C3—C4 178.7 (4) C20—N2—C19—C18 179.4 (4)
C1—C2—C3—C4 −0.9 (7) C20—N2—C19—C14 −0.5 (4)
C9—C2—C3—C8 0.3 (4) C17—C18—C19—N2 −179.2 (4)
C1—C2—C3—C8 −179.3 (3) C17—C18—C19—C14 0.7 (7)
C8—C3—C4—C5 1.4 (6) C15—C14—C19—N2 179.6 (3)
C2—C3—C4—C5 −176.9 (4) C13—C14—C19—N2 0.6 (4)
C3—C4—C5—C6 −0.5 (7) C15—C14—C19—C18 −0.3 (6)
C4—C5—C6—C7 −0.6 (7) C13—C14—C19—C18 −179.4 (4)
C5—C6—C7—C8 0.7 (6) C19—N2—C20—C13 0.2 (4)
C9—N1—C8—C7 −176.9 (4) C19—N2—C20—C21 −178.2 (3)
C9—N1—C8—C3 1.5 (4) C14—C13—C20—N2 0.1 (4)
C6—C7—C8—N1 178.5 (4) C1—C13—C20—N2 179.2 (3)
C6—C7—C8—C3 0.3 (6) C14—C13—C20—C21 178.2 (4)
C4—C3—C8—N1 −179.8 (3) C1—C13—C20—C21 −2.7 (6)
C2—C3—C8—N1 −1.1 (4) C22—O3—C21—O4 0.0 (5)
C4—C3—C8—C7 −1.3 (5) C22—O3—C21—C20 180.0 (3)
C2—C3—C8—C7 177.5 (3) N2—C20—C21—O4 4.9 (5)
C8—N1—C9—C2 −1.4 (4) C13—C20—C21—O4 −173.1 (4)
C8—N1—C9—C10 176.0 (3) N2—C20—C21—O3 −175.1 (3)
C3—C2—C9—N1 0.6 (4) C13—C20—C21—O3 7.0 (6)
C1—C2—C9—N1 −179.7 (3) C21—O3—C22—C23 −179.8 (4)
C3—C2—C9—C10 −176.2 (3) C2—C1—C24—C25 −110.9 (4)
C1—C2—C9—C10 3.4 (6) C13—C1—C24—C25 18.9 (5)
C11—O2—C10—O1 −4.5 (5) C2—C1—C24—C29 69.4 (4)
C11—O2—C10—C9 173.4 (3) C13—C1—C24—C29 −160.8 (3)
N1—C9—C10—O1 3.8 (5) C29—C24—C25—C26 −2.0 (5)
C2—C9—C10—O1 −179.5 (4) C1—C24—C25—C26 178.3 (3)
N1—C9—C10—O2 −174.1 (3) C24—C25—C26—C27 0.0 (6)
C2—C9—C10—O2 2.5 (5) C25—C26—C27—C28 1.5 (6)
C10—O2—C11—C12 −167.2 (3) C25—C26—C27—Cl1 −178.8 (3)
C2—C1—C13—C20 −162.4 (3) C26—C27—C28—C29 −0.9 (7)
C24—C1—C13—C20 68.8 (4) Cl1—C27—C28—C29 179.4 (3)
C2—C1—C13—C14 16.4 (5) C27—C28—C29—C24 −1.2 (7)
C24—C1—C13—C14 −112.3 (4) C27—C28—C29—Cl2 −179.8 (3)
C20—C13—C14—C15 −179.2 (4) C25—C24—C29—C28 2.6 (6)
C1—C13—C14—C15 1.8 (7) C1—C24—C29—C28 −177.7 (4)
C20—C13—C14—C19 −0.4 (4) C25—C24—C29—Cl2 −178.8 (3)
C1—C13—C14—C19 −179.4 (3) C1—C24—C29—Cl2 0.9 (5)
C19—C14—C15—C16 0.2 (6)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg5 are the centroids of the N1,C8,C3,C2,C9 and C24–C29 rings respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.07 2.864 (4) 152
N2—H2A···O4ii 0.86 2.04 2.871 (4) 161
C11—H11A···Cl1iii 0.97 2.81 3.731 (5) 158
C4—H4A···Cg5 0.93 2.77 3.516 (4) 137
C15—H15A···Cg1 0.93 2.72 3.476 (5) 139

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x−1, −y+3/2, z−1/2.

Funding Statement

This work was funded by University of Natural Science Foundation in Jiangsu Province grant 17KJB320001. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions grant PPZY2015B179. Training program of Students innovation and entrepreneurship in Jiangsu Province grant 201712920001Y. Qing Lan Project of Jiangsu Province grant .

References

  1. Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261. [DOI] [PMC free article] [PubMed]
  6. Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  9. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  10. Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142. [DOI] [PMC free article] [PubMed]
  13. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  14. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113 New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017015730/sj5539sup1.cif

e-73-01817-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017015730/sj5539Isup2.hkl

e-73-01817-Isup2.hkl (240.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017015730/sj5539Isup3.cml

CCDC reference: 1582719

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES