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Abstract

The human brain is remarkably complex with connectivity constituting its basic organizing
principle. Although long-range connectivity has been focused on in most research, short-range
connectivity is characterized by unique and spatiotemporally heterogeneous dynamics from
infancy to adulthood. Alterations in the maturational dynamics of short-range connectivity has
been associated with neuropsychiatric disorders, such as autism and schizophrenia. Recent
advances in neuroimaging techniques, especially diffusion magnetic resonance imaging (dMRI),
resting-state functional MRI (rs-fMRI), electroencephalography (EEG) and
magnetoencephalography (MEG), have made quantification of short-range connectivity possible in
pediatric populations. This review summarizes findings on the development of short-range
functional and structural connections at the macroscale. These findings suggest an inverted U-
shaped pattern of maturation from primary to higher-order brain regions, and possible “hyper-"
and “hypo-" short-range connections in autism and schizophrenia, respectively. The precisely
balanced short- and long-range connections contribute to the integration and segregation of the
connectome during development. The mechanistic relationship among short-range connectivity
maturation, the developmental connectome and emerging brain functions needs further
investigation, including the refinement of methodological approaches.
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1. Introduction

Information transfer in the human brain at a macroscopic level arises from both interactions
between adjacent areas, referred to as “short-range” or local connections, and projections
from distant areas, referred to as “long-range” or distant connections, together forming a
complex distributed network (Bullmore and Sporns, 2009; Sepulcre et al., 2010). Short-
distance connections are thought to predominate both structural (e.g. Hagmann et al., 2008;
Ouyang et al., 2016a) and functional networks (e.g. Alexander-Bloch et al., 2013; Honey et
al., 2009; Salvador et al., 2005).

During brain development, the interconnections of billions of neurons follow a precisely
regulated spatiotemporal sequence that includes neurogenesis and neuronal migration (Rakic
1972, 1995; Sidman and Rakic, 1973), synaptic formation (Huttenlocher, 1979;
Huttenlocher and Dabholkar, 1997), dendritic arborization (Sidman and Rakic, 1973;
Bystron et al., 2008), axonal growth (Kostovi¢ and Jovanov-Milosevi¢, 2006; Innocenti and
Price, 2005) and myelination (Miller et al., 2012; Yakovlev and Lecours, 1967). Human
brain network topology has been conceptualized as an economic trade-off between
minimizing wiring costs through reducing connection distance and allowing the emergence
of ‘expensive’ but adaptively valuable topological patterns through increasing connection
distance (e.g. Bassett et al., 2010; Bullmore and Sporns, 2012) important for efficient
cortical processing (Kaas, 2006; Bullmore and Sporns, 2012). Disturbance of the balance of
long-range and short-range connections is thought to be associated with mental disorders
such as autism spectrum disorder (ASD) and schizophrenia (SZ) (e.g. Courchesne and
Pierce, 2005; Innocenti and Price, 2005; Paus et al., 2008).

Neuroimaging techniques, including functional magnetic resonance imaging (fMRI),
diffusion MRI (dMRI), magnetoencephalography (MEG) and electroencephalography
(EEG), offered unprecedented insight into brain functional and structural connectivity
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Diffusion tensor imaging (DTI)
(Basser et al., 1994) is used to quantify the microstructure of white matter (WM) tracts
constituting structural connectivity (SC). DMRI-based tractography (e.g. Behrens et al.,
2007; Mori et al., 1999) has been widely used to trace fiber pathways. The functional
connectivity (FC) can be quantified typically as the Pearson’s correlation coefficient
between the blood-oxygen-level-dependent (BOLD) time series from different brain regions
with resting-state fMR (rs-fMRI) (Biswal et al., 1995), or the coherence measuring the
degree of correlation between spatially discrete electrode groupings in different frequency
bands with EEG or MEG (e.g. Engel and Singer, 2001; Lachaux et al., 1999). With the
progression of these neuroimaging techniques, brain can be mapped as a complex network at
the macroscale. This comprehensive map of brain connectivity consists of a set of nodes
(e.g. voxels, regions, sensor and magnetometers) and set of connections between the nodes
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also called as edges (e.g. WM pathways from dMRI, functional correlations from fMRI,
EEG or MEG) (Sporns et al., 2005). Graph theoretic approaches can be applied to these
structural and functional connectivity data, and provides an uncomplicated but powerful
mathematical framework for characterizing the topological properties of nodes, edges and
the entire network such as modularity, efficiency and hubs (see e.g. Bullmore and Sporns,
2009 for review).

Since the human brain “connectome”, a complete set of neural elements (e.g. neurons, brain
regions) and their interconnections (e.g. synapses, fiber pathways, temporal signal
correlations), became a major NIH neuroscience initiative in 2009 (NIH RFA-MH-10-020),
the emergence and maturation of the brain connectivity from around birth to young adults
(The Developing Human Connectome Project (AHCP) in Europe and The Lifespan Human
Connectome Project of NIH) have been of particular interests. With recent technical
advances in neuroimaging techniques towards higher resolution and with specific focus on
pediatric populations, short-range structural and functional connections can be delineated to
understand typical and atypical brain maturation. For example, currently advanced MRI
parameters enhance dMRI spatial resolution to around 1.5mm isotropic (e.g. Yu et al., 2016)
in neonatal brain compared to conventional resolution of 2-3mm isotropic. Specific MEG
systems tailored for infant brain has also been recently established (e.g. Roberts et al., 2014;
Edgar et al., 2015; Okada et al., 2016).

With no comprehensive review on the topic of short-range connections found in the
literature, the purpose of this review is to consolidate recent studies relating to short-range
structural and functional connectivity in both typical and atypical human brain maturation.
We argue that the short-range connections are as neuroscientifically and clinically important
as the rather well-studied long-range connections in the developmental connectome during
brain maturation. Most of this literature is derived from studies using MRI technique (dMRI
and fMRI), with some MEG and EEG studies also included. First, we present a short-range
connectivity definition, providing illustrations of short- vs. long-range connections. Second,
we describe the major findings in the area of short-range connections during typical brain
development. Third, we review findings of short-range connections in neurodevelopmental
disorders, focusing primarily on ASD and SZ. Fourth, we identify remaining challenges for
short-range connectivity research, including lack of an analytic computational platform
tailored for quantification of short-range structural and functional connectivity, and suggest
avenues that could be explored for future research.

2. What is short-range structural and functional connectivity?

2.1 Short-range structural connectivity (SC)

SC is usually described as the physical axonal pathways linking sets of neurons at the
microscale or fiber tracts linking different brain regions at the macroscale, and their
associated biophysical attributes (Sporns, 2007; Johansen-Berg and Rushworth, 2009). SC
properties such as length and strength can be characterized using dMRI and dMRI-based
tractography. The connectivity strength is usually related to axonal microstructure that can
be quantified by dMRI-derived metric measurements. There have been different definitions
of short-range SC in the literature (shown in Table 1). One definition of short-range SC is
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the connectivity constituted by the fiber tracts connecting adjacent gyri (e.g. Ouyang et al.,
20164, 2017a, 2017b; Im et al., 2014, 2015). Most of these axonal fibers are located in
superficial WM (SWM) regions (Dejerine, 1895; Meynert, 1872), in contrast to well-defined
long axonal fiber bundles located in deep WM (DWM). This definition of short-range SC,
shown in Fig 1A, is consistent with anatomically well-defined U-fibers or short-range
association fibers (SAFs) (Meynert, 1872). Short-range SC under this definition, therefore, is
proposed in this review. As a (partial) alternative, other definitions of short-range SC include
the connectivity constituted by fibers less than a certain physical distance regardless of their
location (e.g. Shukla et al., 2011; Guevara et al., 2017).

2.2 Short-range functional connectivity (FC)

FC is usually referred to as the degree to which neural activity in one brain region correlates
with neural activity in another brain region (David, et al., 2004; Friston, 1994). FC can be
quantitatively characterized by fMRI, EEG and MEG. There have been different definitions
of short-range FC, also described as local FC, in the literature (shown in Table 2). One
definition of short-range FC is the FC between the regions close in space measured by
Euclidean distance (e.g. Sepulcre et al., 2010), ranging from 12mm (Mueller et al., 2013) to
75mm (e.g. Guo et al. 2014, Liang et al 2013, Guo et al 2015), to be differentiated from
long-range FC. Short-range FC, quantified as regional homogeneity (ReHo) (Zang et al.,
2004), has also been defined as the connectivity of a given voxel to those of its nearest
neighboring voxels, ranging from 6 voxels (Shukla et al., 2010) to 26 voxels (e.g. Anderson
et al., 2014; Dajani and Uddin, 2016; Lopez-Larson et al., 2011). In addition, short-range FC
has been defined as the connectivity within the same lobe (e.g. Ghanbari et al., 2015; Repovs
etal., 2011; Sala-Llonch et al., 2014). Short-range FC defined by FC with less than a certain
Euclidean distance and within neighboring voxels are essentially the same. Short-range FC
under this definition, as illustrated in Fig 1B, is proposed in this review.

3. Typical development of short-range connectivity and its role in

developmental connectome

Short-range connections, serving as part of the cortico-cortical networks, have been
investigated with neural histology (e.g. Meynert, 1972) and radiographic tracing
(Schmahmann and Pandya, 2006) previously. The connections are characterized by the
overproduction of axons, axon branches and synapses followed by selective pruning
(Innocenti and Price, 2005; Huttenlocher and Dabholkar, 1997). It has been suggested that
the development of exuberant connections followed by pruning represents a fundamental
mechanism in the development and tuning of neural circuits and brain networks (Innocenti
and Price, 2005). More recently, the development of noninvasive neuroimaging modalities
capable of studying this process /n vivo has provided new insights into the development of
short-range SC and FC in both normal development and developmental disorders.

3.1 Typical maturation of short-range structural connectivity and its role in developmental
structural connectome

Short-range SC, reflected by SAFs located in SWM regions, is characterized by unique and
spatiotemporally heterogeneous dynamics throughout infancy to adulthood. The
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maturational process of short-range SC, along with other significant maturational processes,
is illustrated in Figure 2. SAFs are among the slowest to myelinate, and may remain
incompletely myelinated until the third decade of life (Barkovich, 2000; Parazzini et al.,
2002; Wu et al., 2016). Major SAF tracts located in SWM have been identified reproducibly
among the adult human brains (Qishi et al., 2008; Zhang et al., 2010a; Catani et al., 2012;
Guevara et al., 2012; Guevara et al., 2017) and macaque brain (Zhang et al, 2010b; Qishi et
al., 2011) using dMRI-based tractography. It is likely that these reproducibly traced SAFs
are those below the dense WM zones beneath the infragranular layers of the cortex (Reveley
et al., 2015). Unlike long association fibers (LAFs) that usually project along the direction
perpendicular to the cortical surface to another cortical regions distal from the projection
region, the SAFs run mostly parallel to the cortical surface and connect two adjacent gyri.

DTI-derived metrics (i.e. fractional anisotropy (FA), mean, axial and radial diffusivity (MD,
AD and RD)) and measures (i.e. fiber number and fiber length) from dMRI-based
tractography are often used to quantify the microstructure of SWM and SAF pathways,
respectively. In infants with postmenstrual age from 26 to 40 weeks, it was observed that FA
increased and MD decreased in SWM of primary motor, primary visual, visual association
and prefrontal brain regions with age (Smyser et al., 2016). During late childhood and
adolescence (10-18 years), it was found that FA increased with age in most of SWM at a
depth from 1 mm to 5 mm at the GM/WM boundaries, including but not limited to bilateral
precentral, orbitofrontal cortex (OFC), insula, bilateral posterior cingulate, bilateral superior
temporal and left lingual, while MD, and RD decreased in SWM underneath bilateral motor
sensory cortices and superior temporal auditory cortex (Wu et al., 2014). Within a similar
age range of 9 to 19 years, increased FA were reported in SAFs with a fiber length from 4
mm to 35mm in frontal, parietal and temporal lobes of typical developmental brains (Shukla
et al., 2011). Based on measures of SAF pathways, it has been found the ratio of the fiber
number of whole brain SAFs in the entire brain cortico-cortical connectivity fibers decreased
with age from 2 to 16 years then followed by an increased from 16 to 25 years (Ouyang et
al., 2016a). The developmental pattern of SAFs quantified as fiber volume traced from
postcentral gyrus (PoCG, the primary somatosensory cortex) is illustrated in Figure 3 as an
example.

Short-range SC plays a pivotal role in the brain structural network development. The
monotonic increase of brain structural network strength and efficiency, and the decrease of
clustering coefficients and small-worldness through infancy and childhood, suggest that the
integration increase and segregation decrease of the human brain structural network start as
early as birth and continue until the onset of adolescence (Huang et al., 2015). The network
density and network mean strength contributed by SAFs (connecting the first neighboring
gyri) are relatively lower compared to long-range connections, with lower FA, MD and AD
but higher RD values of the SAFs (Im et al., 2014; Im et al., 2015). Nevertheless, SAFs play
significant role in reshaping the developmental connectome. A few recent studies on
structural network of developing brains (e.g. Dennis et al., 2013; Hagmann et al., 2010;
Huang et al., 2015; Yap et al., 2011) suggested that emergence of the maturing brain
networks are associated with both enhancement of some WM fibers and elimination of other
fibers. Network-based measurements of local connectivity efficiencies were found to
decrease significantly, possibly due to synaptic pruning (Huang et al., 2015). In addition, the
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normalized whole brain SAFs fiber number decrease was associated with an increase in
brain network efficiency in typical brain development from 2 to 7 years (Ouyang et al.,

2017a). From the aspect of wiring “cost”, a decrease in the fraction of ‘low wiring-cost’
short-range connection and the emergence of ‘expensive’ long-range connections could
result in higher efficiency of information transfer between distant brain regions.

Based on the summarized studies of short-range SC listed in Table 1, an inverted U-shaped
developmental course of short-range SC changes from birth to adulthood was suggested, as
illustrated in Figure 5A. In addition, the developmental trajectories of regional SAFs also
vary across cortical regions reflecting the earlier maturation of primary sensorimotor cortex
and later maturation in higher-order association cortices like prefrontal cortex (Ouyang et
al., 2016a; Phillips et al., 2013), as illustrated in Figure 5B. This pattern is similar to DTI
studies of deep white matter (DWM) maturation (e.g. Lebel et al., 2008; Delpolyi et al.,
2005; McKinstry et al., 2002), and structural MRI study of GM volume (e.g. Gogtay et al.,
2004) that show prefrontal cortex mature after lower-order somatosensory and visual
cortices.

3.2 Typical maturation of short-range functional connectivity and its role in developmental
functional connectome

Knowledge of short-range FC is derived primarily from investigations using the rs-fMRI
technique, which measures connectivity by examining the task-independent levels of co-
activation (baseline BOLD signal) between brain regions to investigate the spatially
distributed connectivity networks (Biswal et al., 1995). The connectivity patterns obtained
from rs-fMRI are thought to reflect the stable and intrinsic functional architecture of the
brain (Buckner et al., 2009).

A few studies have reported on short-range FC changes in the early development period.
With /in utero fMRI, short-range FC has been found to increase with the gestational age in
fetuses during the second trimester (Jakab et al., 2014). For the early developmental
newborn brains from 31-42 postmenstrual weeks (PMW), age-related FC strength increases
were found primarily in the connections of short to middle distance, as shown in Figure 4
(Cao et al. 2016). A longitudinal study focused on preterm infants aged from 26 PMW
through term equivalent age showed a prevalence of short-range FC, with long-range FC
identifiable only in older infants and between more midline locations (Smyser et al. 2010).
In contrast, from late childhood to adulthood, the short-range FC of the whole brain was
found to decrease. Age-dependent changes of short-range FC have also been shown to be
heterogeneous across functional networks. For example, intrinsic connectivity networks
(ICNs) related to complex social and emotional processing exhibit the largest increase in
long-range FC and decrease in diffuse short-range FC (Kelly et al. 2009). While a general
reduction of short-range FC throughout the whole brain was demonstrated as subjects aged,
the cingulate and right temporal lobe (Lopez-Larson et al. 2011), and the subcortical grey
nuclei (Anderson et al. 2014) exhibited a stark decrease. The weakened short-range FCs may
serve as a good predictor of brain maturity as indexed by chronological age (Dosenbach et
al. 2010). These results support the idea that during development systematic pruning
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improves brain efficiency and eliminates redundancy in brain networks (Supekar et al.,
2009).

The developmental functional connectome is reconfigured through the integration and
segregation processes, contributed by increasing long-range FC and decreasing short-range
FC, respectively (Cohen et al., 2008; Fair et al., 2007; Fair et al., 2009). The integration and
segregation are spatiotemporally varying in typical brain maturation. For example, a
gradually enhanced functional network segregation was reported in the third trimester, which
is primarily driven by the rapid increase of short-range FC of the primary functional regions
(Cao et al., 2016). Although as early as second and third trimesters of pregnancy inter-
hemisphere long-range FC between primary functional regions has been demonstrated to
exist and increase with age in healthy fetuses (Thomason et al., 2013, 2015; Jakab et al.,
2014), the development of long-range FC mainly involved in global information integration
occurs mostly after birth (e.g. Gao et al., 2009; Dosenbach et al., 2010; Fair et al., 2009;
Supekar et al., 2009). A study for developmental brains aged from preterm to 4-year
reported networks changes from strong local connectivity into an interhemispheric network
(Lee, et al. 2013). These findings suggest a transition from a more local to a more distributed
organization during development, likely the result of age-dependent systematic pruning of
short-range FC (Supekar et al. 2009).

Taken together, the typical maturational process of short-range FC is characterized by
spatiotemporally heterogeneous dynamics, with overall strengthening of short-range FC in
early development followed by weakening of short-range FC in later stage. Based on the
summarized studies of short-range FC listed in Table 2, an inverted U-shaped developmental
course of short-range FC changes from birth to adulthood was also suggested, similar to that
of short-range SC with a possible delay, as illustrated in Figure 5A.

4. Atypical development of short-range connectivity in human brain

ASD and SZ are two common developmental brain disorders that are associated with
alterations in short-range connectivity. ASD is possibly associated with “hyperconnectivity”
and SZ associated with “hypoconnectivity” in short-range connections, but such association
between ASD or SZ and hyper- or hypo-connectivity is not conclusive. Aberrant short-range
connections have also been observed in other brain disorders such as Alzheimer’s disease
(e.g. Carmeli et al., 2014; Fornari et al., 2012; Phillips et al., 2016a), tuberous sclerosis
complex (e.g. Im et al., 2015), Huntington’s disease (e.g. Philips et al., 2016b) and
Tourette’s syndrome (e.g. Wen et al., 2016). It is beyond the scope of this review to discuss
all brain disconnectivity in greater depth (for review on disconnection syndromes, see e.g.
Catani and ffytche 2005; Geschwind. 1965a, 1965b). In this review we focus exclusively on
short-range connections changes in ASD and SZ, as they are two common and complex
spectrum disorders with possible early clinical onset (toddler age for ASD and childhood-
onset for SZ), highly related to developmental connectome, and manifesting no readily
observed alterations in structural brain appearance or morphometry.
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4.1 Atypical maturation of short-range connectivity in autism spectrum disorder

ASD is a complex neurodevelopmental disorder with multiple causes (Pefiagarikano et al.,
2011; Zhao et al., 2007) and can be behaviorally defined based on impairments in
communication and social interactions, repetitive and ritualized behaviors, and restricted
interests (American Psychiatry Association (APA), 2013). It affects 1 in every 68 children as
reported a Center for Disease Control and Prevention survey done in 2012. ASD has been
extensively studied during brain development using neuroimaging methods such as fMRI,
EEG/MEG and dMRI. One of the most striking findings in ASD is that the pattern of local
or short-range “hyperconnectivity” has been frequently suggested in the brain of individuals
with ASD (Belmonte er al., 2004; Courchesne and Pierce, 2005) especially in young age
groups (Rudie and Dapretto, 2013). Short-range hyperconnectivity in ASD contrasts with
typically observed long-range “hypoconnectivity” (e.g. Monk et al., 2009; Ouyang et al.,
2016b; Travers et al., 2012).

With fMRI, short-range FC was found to increase bilaterally in temporo-occipital regions of
adolescents with ASD (Keown et a/. 2013). In slightly younger individuals with ASD (7-13
years), hyperconnectivity was observed in the whole brain and also at the subsystems levels
in both long- and short-range connections and the strength of hyperconnectivity correlated
with the symptom severity in ASD (Supekar et a/. 2013). In another study with a large age
range (6-40 years) (Long et al., 2016), both short-range (<30mm) and long-range (>90mm)
FC were found to decrease, but no change was observed in medium-range FC (>30mm and
<90mm) in posterior cingulate cortex and medial prefrontal cortex regions in individuals
with ASD. In studies that incorporated ReHo analyses of fMRI data, there was an increase in
short-range connectivity in default-mode network (DMN), visual, motor resting-state
networks in individuals with ASD (6-17 years) (Washington et al., 2014) while other studies
found more mixed results such as both hypo- and hyperconnectivity of short-range
connections (e.g. Dajani and Uddin, 2016; Maximo et al. 2013; Shukla et al., 2010).
Specifically, individuals with ASD showed decreased short-range FC in superior parietal and
prefrontal regions (Shukla et al., 2010), middle/posterior cingulate and medial frontal
regions (Maximo et al., 2013), sensory processing brain regions (Dajani and Uddin, 2016)
and increased short-range FC in lateral and medial temporal regions (Shukla et al., 2010),
occipital and posterior temporal regions (Maximo et al., 2013) and complex information
processing regions (Dajani and Uddin, 2016). In general, short-range “hyperconnectivity”
was suggested for children with ASD. Some mixed findings in these studies might be related
to varying age ranges, data acquisition, processing method, the different definition of short-
range (or local) connectivity, as well as intrinsic heterogeneity of the ASD population, which
challenges the generalizability of studies with small sample size.

Short-range FC in ASD has also been studied using EEG and MEG. Alterations in short-
range connectivity in ASD was reported in a region-specific and frequency-dependent
manner in these studies (e.g. Barttfeld et al., 2011; Ghanbari et al., 2015; Khan et al., 2013;
Khan et al., 2015; Ye et al., 2014). Using EEG data acquired during resting state in
participants with ASD, there was an increase of short-range connectivity in lateral-frontal
regions of delta band, low frequencies ranging from 1-4 Hz, and this short-range coherence
was more pronounced as ASD severity increased (Barttfeld et al., 2011). Similarly, studies
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examining the resting state brain activity in ASD with MEG reported increased short-range
connectivity in ASD in the frontal lobe in the delta band (Ghanbari et al. 2015), as well as
temporal and subcortical regions in beta (15-30Hz) and gamma (above 30 Hz) bands (Ye et
al., 2014). Decreased short-range connectivity ASD was also observed in the fusiform face
area (Khan et al., 2013) and somatosensory cortex (Khan et al., 2015) in task-based MEG
studies.

Prior studies have shown abnormalities in WM microstructure and alterations in long-range
connectivity in individuals with ASD (e.g. Alexander et al., 2007; Barnea-Goraly et al.,
2004; Monk et al., 2009; Ouyang et al., 2016b). The studies on SAFs in ASD revealed
atypical WM microstructure indicated by decreased FA and increased MD and RD (Shukla
etal., 2011; Sundaram et al., 2008). Schukla et al found reduced FA, increased MD and RD
in SAFs (fibers with 4-35mm length) in frontal lobe, and increased MD and RD in SAFs in
temporal and parietal lobes SAFs in children with ASD in the age range of 9 t018 years.
Sundaram et al (Sundaram et al., 2008) reported reduced FA of SAFs (defined as intra-lobe
fibers) in frontal lobe in children with ASD with age of 4.8+2.4 years, but no difference in
averaged SAFs fiber length or total number between ASD group and typical developing
group. Focusing on the normalized SAF fiber number, Ouyang et al (Ouyang et al., 2017b)
revealed that the normal decrease of short-range SC in prefrontal and posterior-cingulate
cortex did not occur for children aged 2—7 years with ASD, suggesting “structural”
hyperconnectivity. Future research is needed to test the reproducibility of global and regional
short-range structural hyperconnectivity in children with ASD using dMRI-derived metric
measurement and dMRI-based tractography.

With graph theory analysis, alterations in both functional and structural brain network
organization in ASD have been shown (e.g. Rudie et al., 2013; Keown et al., 2017; Fishman
et al., 2015; Itahashi et al., 2014). Reduced functional integration with weaker short and
long-range connectivity within functional systems, and reduced functional segregation with
stronger connectivity between functional systems were found in individuals with ASD
(Keown et al., 2017; Fishman et al., 2015; Rudie et al., 2013). The topological properties of
functional networks exhibited a randomized tendency of segregation with reduced local
efficiency (Rudie et al., 2013), and reduced clustering coefficient (Itahashi et al., 2014) in
ASD. In structural network, contrary to increased global efficiency with age in healthy
individuals (Hagmann et al., 2010), global efficiency was found decreased with age in
individuals with ASD (Rudie et al., 2013; Ouyang et al., 2017a), indicating the network
efficiency does not appropriately shift from a more local to a more distributed pattern during
brain development of ASD. Such a more prominent local pattern of network efficiency may
be due to the hyperconnectivity of short-range connections in individuals with ASD.

4.2 Atypical maturation of short-range connectivity in schizophrenia

SZ is a debilitating, psychiatric disorder characterized with mental impairments including
hallucinations, delusions, avolition, apathy, anhedonia, and loss of cognitive functions across
multiple domains (Tandon et al., 2009). It affects around 1% of the worldwide population,
about 24 million people (Abi-Dargham, 2014). The onset of SZ usually falls in late
adolescence, a time most critical in psychological development (Paus et al., 2008; Gogtay et
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al., 2011). It has been suggested an aberrant brain developmental trajectory and
dysconnectivity play important role in the pathophysiology of SZ (Murray et al., 1987;
Weinberger, 1987). Opposite to the “hyperconnectivity” of ASD, a “hypoconnectivity”
pattern of brain connections was suggested in individuals with SZ due to an exaggeration of
the synaptic elimination or pruning (Feinberg, 1983; McGlashan and Hoffman, 2000; Paus
et al., 2008), especially for those with childhood-onset or early-onset SZ (mean age of onset
<10 years).

Inconsistent findings were reported in prior fMRI studies related to short-range FC in SZ
patients (e.g. Alexander-Bloch et al., 2013; Guo et al 2014; Guo et al. 2015; Jiang et al.
2015; Repovs et al., 2011; Su et al., 2015; Wang et al., 2014). Increased short-range FC has
been found in left superior medial frontal gyrus (Guo et al., 2015), right superior frontal
gyrus (Jiang et al., 2015), DMN (Repovs et al., 2011), subcortical system and
interhemispheric links (Guo et al., 2014) in patients with SZ. On the other hand, reduced
short-range connectivity in the right postcentral gyrus, left middle occipital cortex (Jiang et
al., 2015) or in a whole brain manner (Alexander-Bloch et al; 2013; Wang et al., 2014) has
been shown. Interestingly, reduced short-range FC strength is more likely found in early-
onset SZ than late-onset SZ (Alexander-Bloch et al., 2013; Jiang et al, 2015). Moreover, the
symptom scores of SZ (i.e. Positive and Negative Syndrome Scale or PANSS) also
correlated with the strength of short-range connections but not long-range connections in SZ
(Jiang et al., 2015; Su et al., 2015), indicating an important role of short-range connections
in the brain maturation of patients with SZ. Overall, it can be concluded that alterations of
short-range connections take place in SZ, but it is not certain that “hypoconnectivity” is the
alteration. The inconsistency might be related to varying factors including age of SZ onset,
age range of the subjects with SZ, medication usage (i.e. minimally treated vs medication
naive), methodological differences, as well as the different definition of short-range (or
local) connectivity.

Short-range SC studies in SZ are relative fewer than FC studies, and several dMRI studies
reported alterations of SWM microstructure in several brain areas in SZ patients compared
with healthy controls (Phillips et al., 2011; Nazeri et al. 2013). Specifically, reduced SWM
FA values of SZ patients have been found in left temporal, bilateral occipital regions
(Phillips et al., 2011), left posterior parieto-occipital (including lateral occipital cortex,
precuneus and posterior cingulate cortex) and left frontal regions (Nazeri et al., 2013). Also,
the SWM FA in the left frontal region predicted attention, working memory and processing
speed performance in healthy individuals, but not in patients with SZ (Nazeri et al., 2013).

Numerous topological alterations of structural and functional brain networks have been
found in SZ with graph theory analysis. Reduced hierarchical organization (e.g. Bassett et
al., 2008), reduced modularity (Alexander-Bloch et al., 2010 and 2013), less clustering and
small-worldness (e.g. Liu et al., 2008; Lynall et al., 2010) were found in the brain network
organization of individuals with SZ. These topological disruptions in SZ are predicted given
the greater mean connection distance between the most strongly connected brain regions,
and these abnormalities of network properties observed in SZ, like less clustering and less
modularity, suggested an aberrant neurodevelopmental process favoring proportionally fewer
short-range connections (Alexander-Bloch et al., 2013).
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4.3 Summary of aberrant maturation of short-range connections in ASD and SZ

A pattern of short-range hyperconnectivity appears to occur in individuals with ASD,
especially in early childhood (e.g Keown et al. 2013; Supekar et a/. 2013; Rudie and
Mapretto, 2013), while early-onset or childhood-onset SZ is associated with short-range
hypoconnectivity (e.g. Alexander-Bloch et al., 2013; McGlashan and Hoffman, 2000), as
suggested by sketch plot of Figure 5C. Since the pathogenic mechanisms for “hyper-" and
“hypo-" short-range connections in ASD and SZ are not clear, these short-range connection
patterns associated with ASD and SZ are possibly the consequence of atypical synaptic
pruning during development (e.g. Feinberg, 1983; McGlashan and Hoffman, 2000; Tang et
al., 2014). Although neuroimaging studies cannot immediately address the question of
whether dysconnectivity in ASD or SZ is primarily synaptic or axonal pruning, these
findings help to clarify the neuroimaging phenotype of alterations in short-range
connectivity. Direct measurement of the elimination of short-range connections holds the
key to filling an existing knowledge gap of developmental connectomics during typical and
atypical brain maturation.

5. Future directions, methodological considerations and conclusion

In this review, we have consolidated findings on short-range connectivity in human brain
during typical and atypical brain maturation. Several key attributes of short-range
connectivity maturation were inferred from the studies. First, an inverted U-shaped
developmental course was likely for both age-dependent short-range SC and FC, with
maturation of short-range FC slightly behind that of short-range SC. Second, the maturation
of short-range SC and FC is spatiotemporally heterogeneous, with the short-range
connectivity in prefrontal lobe developing latest and that in primary sensorimotor brain areas
earliest. Third, a suite of studies suggest that ASD or SZ are associated with aberrant
maturation of short-range connections.

5.1 Future directions

Understanding short-range connections in typical and atypical developing brains is still in its
infancy. Among a few important future directions, the mechanistic relationship between the
short-range connection maturations and the developmental connectome requires further
investigation. Neurogenesis, axonal growth, and synaptic pruning (Huttenlocher and
Dabholkar, 1997; Innocenti and Price, 2005) have been considered as the major factors for
reshaping the developmental networks. Such cellular processes are precisely regulated by
spatiotemporal transcriptomic profiles (Silbereis et al., 2016). However, accurate and reliable
measurements of these cellular processes are at microscale levels. The bridge between these
microscale neuronal processes and macroscale connectome reconfiguration has not been
established and, obviously, even the ~1mm resolution of modern neuroimaging does not
approach cellular scales. Contemporary noninvasive neuroimaging techniques can be only
used to “infer” these cellular processes. The existing literature has jointly suggested the
maturational sequence from primary sensorimotor to higher-order cognitive brain functions.
The emergence of a specific brain function is typically associated with rapid growth and
subsequent pruning of short-range connections from certain brain regions characterized with
this function. Nevertheless, the exact mechanism of short-range connections underlying
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emerging primary or higher-order cognitive function is unknown. With cellular (e.g. Bourne
et al., 2004; Rakic et al, 1986) and MR imaging (e.g. Belcher et al., 2013; Modha et al.,
2010) approaches widely used in non-human primate models including marmoset and
macaque, integrating information from both approaches may reveal the spatiotemporal
relationship between the microscale cellular processes and macroscale short-range
connections. Ultra-high-resolution optical methods such as CLARITY (Chung et al., 2013)
may provide insights into the mechanistic relationship among the short-range connection
maturation, developmental connectome and emerging brain functions in animal models.

Another important direction is to delineate how developmental changes in short-range SC
reconfigure brain structural networks. A few studies have been conducted to understand the
role of short-range FC in reshaping brain functional networks. Specifically, it has been
revealed that the maturation of functional connectome is through the process of integration
by increasing long-range FC and segregation by decreasing short-range FC (Cohen et al.
2008; Fair, et al. 2007; Fair et al. 2008, Cao et al., 2016), using rs-fMRI and graph theory.
Similarly, further studies can be conducted using dMRI to investigate the role of short-range
SC in reconfiguring developmental structural connectome. By integrating short-range FC
and SC, knowledge on how short-range SC maturational processes underlie those of short-
range FC in typical and atypical (e.g. ASD and SZ) human brain development is also
needed. Other important future directions include investigating the relationship between
short-range connectivity and cognitive development, and the relationship between short-
range connectivity and behavioral maturation. All these studies on brain maturation would
particularly benefit from longitudinal studies that would allow tracking of developmental
trajectories of short-range connectivity within individuals. Elucidating the relationship
between developmental trajectories of short-range connectivity and those of network
organization, and the relationship of developmental trajectories of short-range connectivity
and those of cognitive or behavioral characteristics of an individual may lead to early
identification of biomarkers and subsequent early intervention for neurodevelopmental
disorders.

Short-range WM fibers constituting short-range SC are not well delineated by dMRI
tractography at various developmental periods, while long-range WM fibers have been
systematically characterized in fetal stage (e.g. Huang et al., 2009; Takahashi et al., 2012;
Mitter et al., 2015), infancy (e.g. Huang et al, 2006; Dubois et al. 2008; Jeon et al., 2015;
Mishra, et al., 2013; Yu et al., 2014), childhood and adolescence (e.g. Lebel et al., 2012),
and adulthood (e.g. Catani and de Schotten, 2008; Wakana et al., 2004; Huang et al, 2011).
The definitions of short-range connectivity are still varying across different studies. As
discussed in the previous section (see details in Section 2.1 and 2.2), without a common
definition of short-range FC and SC (see details in Table 1 and 2), it becomes more
complicated to integrate or compare findings from different studies on short-range
connectivity. A clear well-defined short-range SC and FC across different ages and brain
regions proposed in this review will facilitate systematic research in understanding short-
range connections in developmental connectome.
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5.2 Methodological considerations

The major methodological consideration is lack of analytic platforms dedicated to
quantification of short-range FC and SC. Most of the approaches in rs-fMRI are developed
for adult brain studies, while analyzing short-range FC of developmental brains needs age-
specific brain templates and parcellation for image processing such as seeded region of
interest (ROI) selection. For those early developing brains, the ROls of higher-order brain
functions in adult brains do not exist. With relatively small brain sizes, higher resolution is
also required to delineate the short-range connections in local regions for the developmental
brains. Since fMRI data is usually acquired at comparatively lower resolution and for longer
duration (scan time) than structural imaging such as T1-weighted or dMRI imaging, the
registration to structural images and removal of motion artifacts across the imaging series
forms an important step. Errors in this step are especially more prominent in studying
developmental brains with the smaller brain sizes. The situation becomes more complicated
in larger group studies where the fMRI data is averaged across the spatial and temporal
domains. The seed-based (ROI) analysis of rs-fMRI is not very robust in identifying the
temporal similarities of time series in structurally close regions (Sepulcre et al., 2010). In
addition, it is important to acknowledge that the potential effect of head motion on FC
measurements may lead to erroneous conclusions, especially when populations with
different levels of head motion during fMRI acquisition are compared (e.g. Deen and
Pelphrey, 2012 for head motion in ASD study). For short-range SC, while dMRI is relatively
superior in resolution compared to fMRI studies, it also relies heavily on the computer-based
methods using prior information about the WM tracts (deterministic tractography or
probabilistic tractography). Current available dMRI-based tractography algorithms are
known to suffer from false positives, especially in periventricular regions (e.g. Maier-Hein et
al., 2016). All these challenges are further amplified in studies that involve developmental
brains as there is no reliable way to check the accuracy of the trajectories due to lack of
comprehensive and longitudinal dMRI atlas for developing brain. Recently the brain
connectome studies have led to well developed software tools to understood DWM
trajectories. However, significant improvements in the tools for tracking and visualizing the
short-range connections in developmental human brain are still needed. For example, dMRI-
based tractography tends to oversimplify the underlying neuroanatomy, which may lead to
inaccurate estimation of the fiber orientations in complicated brain regions like SWM
(Reveley et al., 2015; Zhang et al., 2010a).

5.3 Conclusion

Despite technical challenges in delineating the spatiotemporal patterns of short-range
connections in brain development, recent neuroimaging advances have ushered a new era in
which short-range FC and SC could be quantitatively characterized. As a major component
of information transfer inside the human brain, short-range connectivity in typical brain
development is characterized by unique and spatiotemporally heterogeneous dynamics
throughout infancy to adulthood. Numerous studies suggest an inverted U-shaped pattern in
the number of short-range connections across development, with functional trajectory
slightly lagging behind structural trajectory and earlier maturation in primary sensorimotor
cortices as compared to association cortices. The balance of short- and long-range
connections play a critical role in segregation and integration processes of developmental
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connectome. Alterations in developmental maturation of short-range connections are
associated with neuropsychiatric disorders such as ASD and SZ, which are respectively
characterized “hyperconnectivity” and “hypoconnectivity”. With investigation of short-range
connections still in its early stage, important questions remain to be answered to reveal
mechanistic relationship among the short-range connection maturations, the developmental
connectome and emerging primary or higher-order cognitive functions. Research in this area
will benefit from further methodological improvements including developing an analytic
platform tailored for quantification of short-range SC and FC in developmental brains.
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Highlight

. Short-range connectivity plays a key role in information transfer in human
brain.

. It contributes to segregation and integration of developmental connectome.

. Its maturation is spatiotemporally unique and heterogeneous in typical
development.

. Its maturation follows the sequence from primary to higher-order brain
regions.

. Alterations of short-range connections are associated with autism and

schizophrenia.
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Figure 1.
Short-range structural and functional connectivity from diffusion MRI (dMRI) and

functional MRI (fMRI), respectively. (A) With dMRI-based tractography, the fibers traced
from a specific cortical gyrus and connected to its adjacent gyri, also called U-fibers,
constitute short-range structural connectivity (SC) of the gyrus. The traced from a specific
cortical gyrus and connected to its non-adjacent gyri constitute long-range SC of the gyrus.
(B) Based on correlation of intrinsic blood-oxygen-level-dependent (BOLD) signal
fluctuations between brain regions, short-range functional connectivity (FC) is represented
by the functional connections inside the neighborhood brain regions, usually measured by
Euclidean distance (Adapted from Sepulcre et al., 2010, with permission). Long-range FC is
represented by the connections from outside the neighborhood brain regions.
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Figure 2.
Timeline of spatiotemporally distinctive human brain maturational processes, including

neurogenesis, synaptogenesis, long-range and short-range axon growth, myelination of long-
range and short-range fibers, synaptic pruning, and gray and white matter volume growth.
Time axis is in post-conceptional weeks (before birth), postnatal months (until 24 months),
and postnatal years (after 2 years). Processes related to maturation of short-range
connections are highlighted with black boxes. The color intensity in each bar corresponds to
the rate of developmental changes (Adapted from Giedd, 1999 with permission). The spatial
progression is illustrated using synaptogenesis as an example. Besides temporal information,
the spatial progression from primary sensorimotor cortex to higher-order prefrontal cortex of
synaptogenesis (blue bar) is illustrated by the curves in corresponding color above the time
axis.
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Figure 3.

Example of short-range SC changes of postcentral gyrus (PoCG) in typical brain maturation
from 2 to 25 years. (A) Short-range association fibers (SAFs) traced from PoCG in five
representative developmental brains from 2 to 25 years with dMRI-based tractography.
Three SAFs between PoCG and its adjacent gyri, namely PoCG-precentral gyrus (PreCG),
PoCG-superior parietal gyrus (SPG) and PoCG-supra marginal gyrus (SMG) are shown in
each panel. (B) The age-dependent change of the volume of SAFs traced from PoCG is
characterized with an initial increase from 2 to 12 years and later decrease from 12 to 25
years. (C) Three SAFs traced from PoCG shown in (A) have also been reproducibly
identified in 20 adult brains, as shown in probabilistic maps. (Adapted from Ouyang et al.,
2016a and Zhang et al., 2010, with permission)
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Figure 4.
Example of short-range FC changes during early brain development from 31 to 41

postmenstrual weeks (PMW). (A) Developing cortical FC strength from 31 to 41 PMW
demonstrating age-dependent gradual increases of FC strength. (B) Age effects on cortical
FC strength were differentiated with different distant bins. From 31-41 PMW, the age-
related FC strength increases were found primarily in the short to middle distance
connections. (Adapted from Cao, et al. 2016, with permission).
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Figure 5.
Sketch plots showing age-dependent short-range connectivity changes. (A) Age-dependent

short-range SC (solid line) and FC (dashed line) changes in typically maturational brain
(TD) with FC maturation lagging behind SC maturation. (B) Age-dependent changes of
short-range connection of primary (solid line) and higher-order association regions (dashed
line) in TD brain. (C) Age-dependent changes of short-range connection in brain with TD
(blue line), brain with autism spectrum disorder (ASD, orange line) and brain with
schizophrenia (SZ, red line).
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