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Abstract

The incidence of obesity is rapidly rising, increasing morbidity and mortality rates worldwide. 

Associated comorbidities include type 2 diabetes, heart disease, fatty liver disease, and cancer. The 

impact of excess fat on musculoskeletal health is still unclear, although it is associated with 

increased fracture risk and a decline in muscular function. The complexity of obesity makes 

understanding the etiology of bone and muscle abnormalities difficult. Exercise is an effective and 

commonly prescribed non-pharmacological treatment option, but it can be difficult or unsafe for 

the frail, elderly, and morbidly obese. Exercise alternatives, such as low-intensity vibration (LIV), 

have potential for improving musculoskeletal health, particularly in conditions with excess fat. 

LIV has been shown to influence bone marrow mesenchymal stem cell differentiation toward 

higher-order tissues (i.e., bone) and away from fat. While the exact mechanisms are not fully 

understood, recent studies utilizing LIV both at the bench and in the clinic have demonstrated its 

efficacy. Here, we discuss the current literature investigating the effects of obesity on bone, 

muscle, and bone marrow and how exercise and LIV can be used as effective treatments for 

combating the negative effects in the presence of excess fat.
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Introduction

Obesity rates are rising worldwide, especially in the United States, where more than one-

third (78.6 million) of adults and 17% of children are considered obese.1 This overall 

prevalence is only projected to increase, reaching 42% by 2030.2,3 An increase in the 

morbidity and mortality associated with being obese, whether it is a result of nutrition (i.e., 

high caloric intake) or exacerbated by hormonal imbalances (i.e., estrogen deficiency in 

menopause), is a major clinical concern. Obesity is associated with a myriad of 
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comorbidities, including type 2 diabetes,4 heart disease,5 stroke,6 metabolic syndrome,4 

cancer,3 and increased susceptibility to infectious disease.7 In 2008 alone, these 

cumulatively resulted in obesity-related medical spending of approximately $147 billion in 

the United States.8. Consequently, physicians are faced with new challenges in treatment, 

diagnosis, and prognosis as we continue to learn more about the epidemiology of the 

disease. Extensive research in the last few years has clearly shown that obesity is a condition 

of chronic and mild inflammation. The mechanism of obesity-induced inflammation is 

thought to originate in the adipose tissue, which accumulate and hypertrophy with higher 

energy intake and lack of exercise.9,10 This inflammation has also been associated with 

insulin resistance, the basis for the development of type 2 diabetes.10 In fact, 90% of patients 

with type 2 diabetes are considered overweight or obese.11

Health complications due to altered endocrine and inflammatory function open the door to a 

range of chronic diseases. Growing evidence suggests that, in addition to these metabolic 

abnormalities, and in some cases as a results of the abnormalities, excess adipose tissue is 

linked with poor musculoskeletal health. It is reported that obese women face higher 

fracture-related morbidity than nonobese women and that there is a greater fracture 

incidence among diabetic versus healthy subjects.12,13 Obesity also leads to skeletal muscle 

insulin resistance, alterations in muscle size and composition,14 and the decline of muscular 

function in the elderly.15 As the obese population ages, it is imperative that musculoskeletal 

tissue systems are maintained, as age-related complications (i.e., osteoporosis and 

sarcopenia) increasingly wear on the skeleton. The extent to which excess fat influences 

these tissues is an area of study that requires further investigation to obtain a complete 

understanding of the negative consequences obesity imposes on bone and muscle.

It is essential that appropriate treatments are available and employed in the clinic, as the 

number of people affected by obesity and type 2 diabetes continues to rise and the costs for 

treatment invariably grow. Pharmacological agents, surgical procedures, and lifestyle 

interventions targeting diet and activity level are all options that can be effective but have 

limitations. Bariatric surgery successfully reduces adipose tissue and improves type 2 

diabetes16 but is costly and invasive,17 making the procedure unfit for a large population. 

There are long-term and short-term U.S. Food and Drug Administration (FDA)-approved 

weight loss drugs, the majority of which are appetite suppressants,18 but these are often not 

void of side effects or do not maintain weight loss in the long term. Rosiglitazone is 

indicated for the treatment of type 2 diabetes and acts by sensitizing tissues to insulin; 

however, it has been associated with increased risk of cardiovascular disease, myocardial 

infarction, and heart failure.19,20. Other non-pharmacological interventions include dietary 

restrictions and increased physical activity; however, compliance is poor, and long-term 

weight loss is only achieved by a few.17 A low-cost, safe, and effective alternative that will 

be utilized by those with obesity remains an unmet need in the clinic. This review will focus 

on the impacts of obesity on bone and muscle tissues and the use of exercise and low-

magnitude mechanical signals as an alternative and/or complement to existing treatment 

methodologies.
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Impact of obesity on musculoskeletal tissue systems

Fat is an inhomogeneous tissue that contains a range of cell types, including adipocytes, 

fibroblasts, endothelial cells, immune cells, and adult stem cells (mesenchymal and 

hematopoietic) and their progenitors. In addition to storing energy, it is also an active 

endocrine organ that modulates adipokine (e.g., leptin, resistin, adiponectin) and 

inflammatory cytokine (e.g., TNFα, IL-6, TGF-β) release,21 affecting both local and 

systemic environments. Fat tissue plays a role in a range of physiological processes, 

including immune function,22 glucose homeostasis,23 and energy balance.24 Its signaling 

directly affects other tissue systems,25 including bone and muscle. Osteosarcopenic obesity 

syndrome (OSO), a recently defined condition, encompasses both the skeletal (osteoporosis) 

and muscular (sarcopenia) complications associated with excessive fat mass (obesity).26 

Although OSO has thus far been primarily relevant to the elderly population, the whole-

body impact of fat across age is important to consider. Not only does excess fat mass put 

increased physical loads on the musculoskeletal system, but its endocrine function also 

induces molecular challenges to bone and muscle. With greater research into the 

mechanisms of action on each system, we can work to develop preventative approaches to 

diseases, such as obesity, osteoporosis, diabetes, sarcopenia, and OSO.

Bone

It has been presumed that obesity would be associated with increased bone mass and 

concomitant protection against osteoporosis and fracture, achieved as an adaptive product of 

the increased skeletal loads imposed during locomotion.27,28. However, since non-load-

bearing bones also show a similar response to obesity, this suggests that increased secretion 

of hormones and adipokines might also contribute to changes in bone mineral density 

(BMD).29,30 Still, more recent evidence suggests that obesity might negatively affect BMD 

and promote fracture risk. When evaluating the influence of increasing body fat in elderly 

patients with obesity, it was found that greater adiposity and adipokine levels were 

associated with reduced lean mass, lower BMD, and increased fracture risk.31 A clinical 

study assessing 400 obese women in relation to BMI and fracture risk found that even obese 

women with almost normal BMD had an elevated risk of fracture compared with obese 

women with higher BMD scores,32, suggesting that BMI does not always relate to fracture 

risk. Whether BMD is a predictor of fracture risk is still debatable. A meta-analysis 

performed by De Laet and colleagues concluded that the relationship between BMI and 

fracture risk is nonlinear and is dependent on the level of BMI. This analysis demonstrated 

that there is a marked increase in fracture risk with low BMI, but the relative risk for people 

with obesity and high BMI in not as clear.33 Furthermore, there is growing evidence to 

indicate that the risks may also be site specific and mediated not only by BMD but also bone 

structure, geometry, and patterns of falling.34 A study by Hsu et al., which looked at a cohort 

of Chinese men and women, showed that non-spine fractures were higher in patients with a 

higher percentage of body fat.35 Similarly, while obesity is shown to be protective against 

hip and pelvic fractures, it increases the risk of fracture at other anatomical sites, such as the 

humerus.36,37
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In vivo rodent models have allowed for further examination of the complex relationship 

between bone and fat. Wei et al. showed that diet-induced obese mice that develop higher 

BMD compared with control regular diet–fed mice present with impaired bone remodeling 

characterized by decreased bone resorption, low bone turnover, and decreased insulin 

signaling in bone-forming osteoblasts.38. Some believe that the increased bone resorption 

overwhelms any positive effects that increased body weight may have, leading to eventual 

bone loss.39 Other studies in diet-induced obese mice showed that bone responds in two 

phases, with an initial positive response, in which visceral fat expansion leads to increased 

bone mass, followed by a second negative phase, where prolonged exposure to obesity 

results in impaired bone formation and bone metabolism.40 More specifically, deterioration 

of trabecular bone architecture occurs early and is followed by decreases in cortical bone 

density, suggesting that trabecular and cortical bone are differentially regulated in diet-

induced obese mice.41

In addition to bearing weight and providing structural support, bone tissue is an endocrine 

target in which certain processes and properties (e.g., bone remodeling, mass, and material 

properties) are regulated by adipokine release, such as leptin from fat tissue.42,43 Leptin 

secretion, determined by the amount of body fat, is differentially related to bone depending 

on whether it acts centrally or peripherally. Central effects of leptin have been shown to have 

negative impacts on bone formation,44 while peripheral leptin has been shown to promote 

osteoblastogenesis and suppress osteoclastogenesis.45,46 While increases in abdominal 

adiposity are in large part the primary contributors of adipokines and hormones to bone 

health in obesity, a rise in bone marrow adiposity, also seen in obesity, could potentially have 

more direct impacts, especially on trabecular bone health.47

Bone marrow niche

The bone marrow is a unique environment that modulates many systems, including bone and 

blood. It provides cellular niches that support the proliferation, self-renewal, and 

maintenance of stem cells, specifically hematopoietic (HSC) and mesenchymal (MSC) stem 

cells (Fig. 1).48 This dynamic environment also has access to a complex network of 

vasculature, allowing for exchange of endocrine signals and passage of cells into 

circulation,49 influencing the total body system. In the marrow there is a concentrated 

population of MSCs that has the potential to differentiate into bone, fat, skeletal muscle, and 

cartilage cell lineages,50 highlighting the therapeutic potential of these stem cells for tissue 

regeneration.51 Characterization of MSCs has been difficult owing to varying surface 

markers and differentiation potential, reliant upon species and strain of the host from which 

the cells are isolated.52 MSCs are even functionally different within the bone shaft itself, 

having distinct niches dependent on proximity to bone surfaces.53 Minimum characterization 

requirements include self-renewability, plastic adherence, and ability to differentiate into fat, 

bone, and cartilage lineages and are identified through a panel of cell surface markers: 

(CD105+ CD90+ CD73+ and CD45− CD34− CD11b− CD19− HLA-DR−).54 MSCs play 

critical roles in the marrow space, particularly in HSC homeostasis, expressing HSC 

maintenance genes and providing better homing capabilities for HSCs following lethal 

irradiation in mice.55 MSCs also regulate T cells56 and play a role in immunomodulation, 

influencing B-cells, natural killer cells, and dendritic cells.57 MSC function relies in part on 
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local cues from the marrow microenvironment,55 and, considering the important regulatory 

role of MSCs within the bone marrow space, disruption of the niche is likely to influence 

MSC lineage commitment and neighboring cell populations.

In the development of obesity, the expansion of fat depots is mediated through fat pad 

remodeling and adipocyte lineage commitment via MSC differentiation.58 Adipogenic 

differentiation is primarily driven by the expression of PPAR and C/EBP gene families59,60 

and can occur in non-adipose tissues, including the marrow space. MSC function in this 

niche can be influenced by both local and systemic adipokine release and from the physical 

encroachment of adipocytes.61 Concurrent with increases in total body and visceral 

adiposity, high-fat diet models of obesity in rodents show increased marrow fat,47,62 

increased commitment to adipogenesis, and alterations in MSC differentiation potential.63 

MSC differentiation is also regulated by the Wnt signaling pathway,64–66 and it is 

understood that osteoblastogenesis and adipogenesis in the marrow generally maintain an 

inverse relationship. Adipocyte commitment is often associated with reduced bone 

formation, as seen in models of microgravity,67,68 ovarian hormone depletion,69,70 and 

aging.71. Through Wnt signaling or other osteogenic signaling pathways, it is plausible that 

MSC commitment to adipogenesis in the obese state can be controlled.

MSC populations also reside in tissues outside of the marrow72 and vary in functional 

capabilities depending on origin.73 However, MSCs derived from bone marrow and adipose 

tissue have been shown to share similar gene profiles and phenotypes, in both humans and 

mice.73,74. Bone marrow–derived MSCs can migrate and engraft in tissues outside of the 

bone and differentiate into tissue-specific cell types (e.g., myoblasts and adipocytes) under 

physiological conditions or if these cell populations solely originate from resident 

progenitors. Work in animal models has demonstrated bone marrow cell migration that is 

also influenced by both diabetes and rosiglitazone.75,76. Similarly, Ryden et al. showed that 

the obese condition influences bone marrow cell migration and behavior in humans. 

Following bone marrow and blood stem cell transplantations, there was increased donor cell 

engraftment in the fat pads of obese individuals compared with nonobese subjects.77 This 

work suggests that fat pad––and perhaps other tissue––formation and function is not derived 

solely from local progenitor pools and that bone marrow–derived cells and/or bone marrow–

derived MSCs play a role in these tissues.

Obesity-induced MSC differentiation toward the adipogenic lineage leads to characteristic 

fat depots in the marrow cavity. Bone marrow adipose tissue (MAT) is distinct in 

comparison to white and brown fat depots.78 While development of a fatty marrow is a 

known consequence of aging and osteoporosis, the obese condition accelerates the fatty 

marrow phenotype, as has been demonstrated in both rodent and human marrow.79,80 A 

plausible reason for MAT deposition is an abnormally high commitment of MSCs into 

adipocytes due to biased lineage commitment towards adipogenesis and the inability to 

differentiate into other cell types, such as the osteoblastogenic lineage. This inverse bone 

and fat relationship has been seen in models of osteoporosis81 but is not so clear in obesity 

models. Nevertheless, high levels of MAT observed in the aged population,82,83 obesity,84 

and postmenopausal women80 have the potential to alter marrow homeostasis and crowd 

resident marrow cell populations, including immune and stem cells, and may have negative 
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effects on hematopoiesis resulting from paracrine signaling.81 This is an area of heavy 

research as we continue to learn more about the role of MAT in the pathogenesis of obesity.

Bone marrow hematopoietic stem cells give rise to all blood cells in the body and have been 

largely studied in the context of metabolic disorders owing to the impacts on the immune 

system. People with obesity have an increased risk and greater severity of various infections 

and illnesses, suggesting an immune system that is inferior to that of people without 

obesity.85,86. To a degree, this is a result of the development of chronic systemic 

inflammation, releasing increased proinflammatory cytokines into circulation, such as IL-1, 

IL-6 and TNF-α, that then promote a cascade of immune cell responses.87 Similar changes, 

including inflammation and compromised stem cell populations, can also be seen within the 

bone marrow niche as fat encroaches into that space.87–89

Rodent models of obesity, including diet-induced, leptin/leptin receptor knockout, and 

estrogen-deficient models, have expanded our understanding of the impacts of excess fat on 

immune systems, specifically hematopoiesis and bone marrow HSCs. Studies have shown 

that 16 weeks on a 60% kcal high-fat diet as well as in the ob/ob mouse leads to increased 

HSC progenitor populations concurrent with increased leukocytosis.90,91 Interestingly, 

short-term, 1-week exposure to the same diet results in a transient reduction in primitive 

HSCs followed by a later increase.91 Several studies also reported on the imbalance of 

mature leukocyte (i.e., blood cell) populations caused by obesity. For example, some 

reported that long-term exposure to high-fat diet leads to aging of the thymus concurrent 

with defective T cell production.83 Similarly, a different study showed a suppression of bone 

marrow B lymphopoiesis concurrent with deterioration of trabecular bone mass in obese 

mice.82 Other studies with diet-induced obesity have shown expansion of circulating and 

marrow leukocytes, including lymphocytes, data that are more consistent with reports of 

circulating leukocytes in obese humans.92,93 The collective literature on the adaptive 

immune cell populations in obesity are, however, inconsistent and warrant further research. 

Nevertheless, the general consensus is that white adipose tissues in obesity are permissive 

and recruit macrophages from the circulation and bone marrow, fueling the chronic 

inflammatory state.90,94

It is believed that obesity might also influence immunity through direct alterations to the 

HSC and HSC progenitors that maintain the mature immune populations. In fact, HSC 

behavior has been shown to be primed by states of obesity-induced chronic inflammation to 

bias lineage commitment and their proliferative and self-renewal capabilities. More 

specifically, LSK+ HSCs from mice on a 45% kcal high-fat diet show reduced proliferation 

when removed from their obese in vivo environments. When these same obese HSCs were 

transplanted into a lean animal, they exhibited reduced reconstitution capabilities.95 

Additionally, when repopulating a lean, irradiated animal, obese HSCs have a biased 

differentiation towards myeloid cell types.91 These studies suggest that, once the HSC 

and/or HSC progenitor is primed by the disease state, its altered behavior cannot be 

reversed, even when transplanted into a lean host environment. Thus, considering the 

complex signaling cascades initiated by adipose tissue and obesity-related factors (e.g., 

cytokines, hormones), the obese condition may alter bone marrow stem cell behavior, 

Frechette et al. Page 6

Ann N Y Acad Sci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including their migration and contributions of bone marrow–derived cells to tissues outside 

of the bone.

Skeletal muscle

Fatty infiltration of muscle tissue (myosteatosis) is a strong indicator of decreased muscular 

function and mobility96 and is likely to be accelerated by a systemic fat insult. Changes in 

muscular composition, specifically increased non-contractile tissue, directly affect the 

muscle tissue97 and significantly alter overall functional capabilities of muscle. 

Intramyocellular lipid and ectopic adipocytes are found in a range of conditions with 

decreased muscle mass and strength, including aged muscle,98 disuse,99 and muscular 

dystrophies, such as Duchene muscular dystrophy (DMD).100 Fatty muscle has also been 

identified in the pathogenesis of obesity101 and linked to poor muscular mechanical 

properties102 and insulin resistance.103 Importantly, myosteatosis accelerates with age, and 

fatty infiltration in the thigh muscle is associated with increased risk of hip fracture in the 

elderly.104 Diet-induced obesity in the mouse has also led to impaired muscular regenerative 

capabilities following injury, specifically impaired satellite cell function and delayed 

myogenic gene expression.105

Intermuscular adipocytes likely originate from fibro/adipogenic progenitors (FAPs), which 

readily differentiate into adipocytes, lack myogenic potential, and are influenced by cues in 

the muscular niche.106,107 Mesenchymal progenitors,73 pericytes,108 satellite cells,109,110 

and PDGFRα+ PW1+ interstitial cells (PICs)111 have also been identified as muscular stem 

cell populations having adipogenic potential. Local increases in adipogenesis and alterations 

in the muscular niche could negatively regulate muscle regeneration through altering stem 

cell function, proliferation, or differentiation. Controlling adipogenic differentiation in 

skeletal muscle may be achievable through upregulation of the Wnt signaling 

pathway,112,113 similar to mechanisms occurring within the bone marrow cavity.114

The accumulation of fat metabolites within the muscle results in metabolic abnormalities, 

including interrupted insulin signaling96 and glucose transport activity.115 Elevated levels of 

intramyocellular lipids are a direct indication of insulin sensitivity and/or resistance,116 

which is commonly seen in obesity and can lead to type 2 diabetes. Insulin resistance has 

long been thought to develop via increased fatty oxidation leading to inactivation of pyruvate 

dehydrogenase activity and reduced glucose oxidation.117 However, a recent hypothesis 

suggests that muscular insulin resistance results from the accumulation of lipids within the 

muscle cells and activation of the θ isoform of protein kinase C (PKC-θ),118,119 inhibiting 

insulin signaling and glycogen synthesis. The metabolite responsible for the activation of the 

PKC-θ pathway is believed to be diacylglycerol (DAG), a fat intermediate that is a precursor 

to triglycerides. Previous studies showed transient increases in DAG due to lipid infusion in 

the skeletal muscle of both rats120 and humans,121 and elevated DAG concentrations were 

found in humans that are obese and have type 2 diabetes.121 While data suggest that DAG 

leads to insulin resistance, it should be noted that DAG plays a complex role in the muscle, 

and higher concentrations of this metabolite do not necessarily translate to impaired insulin 

signaling. For example, total myocellular DAG content was found to be greater in well-

trained athletes who also had higher insulin sensitivity compared with obese, sedentary 
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adults.122 This echoes the “athlete’s paradox:” well-trained endurance athletes often have 

higher levels of skeletal muscle adiposity in the form of triglycerides.123

Combating obesity with mechanical signals

Exercise as a treatment modality

Exercise is a desirable treatment modality for obesity and type 2 diabetes because it is a non-

pharmacological means of catabolizing fat tissue and building muscle and bone. A strong 

musculoskeletal system is imperative for preventing falls and fractures, particularly in the 

elderly and for maintaining quality of life. The public health recommendation of physical 

activity for adults is to perform a minimum of 150 min of moderate-intensity aerobic 

exercise per week (or other variations) to achieve health benefits.124. Various exercise 

regimes, from walking to high-intensity exercise, have been clinically shown to provide 

health benefits related to the prevention or treatment of obesity and type 2 diabetes and 

building muscle and bone tissues.125–127

Nevertheless, exercise is often not effective as a weight loss intervention. While short-term 

weight loss may be achieved through exercise, patients often relapse and regain the weight 

that was lost. Importantly, regular physical activity is critical for maintaining long-term 

weight loss,128 which will in turn prevent the recurrence of obesity-related health 

complications. Compliance with exercise intervention is a major concern,89 and it is often 

the case that this intervention is considered too strenuous or time-consuming for patients to 

incorporate this type of treatment into a permanent lifestyle change. Lastly, successful 

exercise interventions in the clinic are often coupled with dietary restrictions,129 making it 

difficult to tease apart the benefits of exercise from diet. While exercise is seemingly 

effective in catabolizing fat and building muscle and bone, its effectiveness in long-term 

weight maintenance is likely to require a simultaneous healthy diet.

Epidemiological studies have shown that exercise can prevent and improve obesity and 

related complications, including diabetes. A study by Helmrich et al. showed that, among 

5990 male students, the risk of developing diabetes was reduced by 6% for every 500-kcal 

increase in weekly exercise over a period of 14 years.130 Exercise also protects from 

cardiovascular disease, reduces blood pressure and bad cholesterol, improves insulin 

sensitivity,131 and protects from non-alcoholic fatty liver disease,132 which are all 

complications associated with obesity. Interestingly, weight loss interventions, including 

diet-induced interventions or bariatric surgery, have been shown to induce bone loss in 

overweight and obese patients.133,134. It should be noted that the inclusion of exercise 

training with these weight loss programs significantly ameliorated bone loss in this 

population.135

The influence of exercise on bone has been extensively shown in both rodent and human 

models to improve skeletal outcomes that are affected by obesity and diabetes, including 

bone mineral density and structural, material, and biomechanical properties.136,137 More 

recently, voluntary exercise has been shown to influence the bone marrow microenvironment 

in diet-induced obese mice, mainly by reducing fat accumulation in the bone marrow.62 

Interestingly, while exercise reduced MAT in these obese mice, it simultaneously increased 
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bone mass. When challenged by PPAR-γ agonists, such as rosiglitazone, which induces 

MAT in mice, exercise was also able to suppress MAT and induce bone formation.138 This 

was also observed in ovariectomized rats given access to treadmill running: a reduction in 

MAT and prevention of bone loss.139 While this inverse bone-to-fat relationship has been 

observed in several models, it is not always the case, as evidenced in certain mouse strains, 

such as C3H mice, which experience an increase in both bone and MAT.78,140 However, 

while there was a suppression of PPAR-γ, master regulator of adipogenesis, they did not 

observe an increase in RUNX2, master regulator of osteoblastogenesis, indicating that this 

relationship might not always be one-to-one. These data suggest that marrow health can be 

mitigated by exercise when challenged not only by diet but also by hormonal and 

pharmacological insults.

The effects of exercise on bone marrow stem cells in obesity are, however, not fully 

understood. A recent study reported that exercised lean mice exhibit increased bone marrow 

MSCs concurrent with enhanced osteogenic differentiation potential and inhibition of 

adipogenic properties.141 Similarly, MSCs isolated from lean mice that underwent climbing 

exercise had limited adipocyte differentiation and increased osteogenic potential.142 One 

study investigated the response of obese bone marrow hematopoietic cells to exercise and 

have found that obese animals have a suppressed immune response to high-intensity bouts of 

exercise compared with lean animals; however, the effects on HSCs are still not 

understood.143 With greater knowledge of the exact influence of fat burden on these bone 

marrow stem cells, we can begin to ask more questions about how exercise might be used to 

change their behavior, particularly in the obese condition.

The effects of exercise on skeletal muscle are also well-established, benefiting muscular 

composition and glucose metabolism. Exercise is anabolic to muscle144 and reduces both 

muscular fat content in humans101,145 and muscle triglycerides in animal models of high-fat 

diet.146 Importantly, the reduction of ectopic lipid is associated with improved insulin 

resistance,145 which aids in curbing the progression of glucose intolerance. Aerobic exercise 

combined with weight loss was effective in reducing lipid in the thigh muscle and improving 

glucose tolerance in aged men.147 Duncan et al. also demonstrated that improved insulin 

sensitivity in humans can be achieved through exercise without any weight loss.148 

Additionally, a lack of physical activity is associated with increased intermuscular adipose 

tissue in humans with type 2 diabetes,149 emphasizing the importance of exercise at any 

level in maintaining musculoskeletal health and preventing the onset of type 2 diabetes. In 

addition to muscle and bone, exercise can have profound impacts on other load-bearing 

tissues. Exercise is commonly prescribed by clinicians to alleviate the symptoms of 

osteoarthritis;150 however, the intensity of the exercise can be a concern, because extreme 

loads can have detrimental consequences on cartilage health.151 Strenuous treadmill running 

in rats and cyclic loading of tibias in mice, for example, have been shown to induce cartilage 

degeneration in the knee.152,153 Likewise, the absence of mechanical stimulation, such as in 

cases of extended bedrest, has been shown to induce cartilage thinning.154 Moderate 

exercise, however, in the form of cycling, rope skipping, and light jogging, has been shown 

to improve knee cartilage glycosaminoglycan content in patients at high risk of developing 

knee OA.155 As with bone and muscle, previous research suggests that obesity induces 

degenerative changes in cartilage tissue. Although the mechanism by which obesity induces 
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cartilage degeneration is still unclear, research suggests that altered joint biomechanics and 

elevated secretion of proinflammatory cytokines and adipokines contribute to increased 

osteoarthritis risk.156 With regard to using exercise as an intervention, wheel running was 

shown to reduce the progression of osteoarthritis in obese mice while also disrupting the 

clustering of inflammatory cytokine expression compared with sedentary animals fed a high-

fat diet.157

Low-intensity vibration as an exercise surrogate or adjunct therapy

While exercise may in many cases be a desirable method for treating metabolic disorders, 

certain groups of people may require safer or less strenuous alternatives. The elderly or 

those with osteopenia, sarcopenia, or osteoporosis are at great risk of falls158 and 

fracture.159. The recommended moderate-intensity exercise may be undesirable as it may 

precipitate a fall and fracture, and such events in the elderly population can significantly 

reduce quality of life, both socially and physically.159,160 Those who suffer from motion-

restricting musculoskeletal disorders or severe musculoskeletal pain may find a less 

intensive alternative to exercise attractive, and patients who are morbidly obese may be 

bedridden or otherwise physically incapable of exercise owing to physical limitations.

Although mechanical signals delivered through high-impact (strains > 1000 με, or 0.1% 

strain) exercises with fewer cycles (< 1000 cycles per day), such as resistance training, are 

anabolic to the skeleton, studies show that low-impact signals (strains < 100 με) delivered 

over many repeating cycles (>1 × 105) might also impart similar benefits.161 Low-intensity 

vibration (LIV) is a low-magnitude (< 1 g where g is earth’s gravitational field at 9.81 m/s2), 

high-frequency (30–90 Hz) mechanical signal typically delivered through the lower 

extremities that gets transmitted through the skeleton. LIV biases stem cell differentiation 

toward osteoblastogenesis and away from adipogenesis, making this intervention a 

noninvasive means of building bone and muscle and preventing the formation of fat––and 

giving it the potential to be used as a surrogate for exercise. Compared with many exercise 

regimes, LIV can be less time-consuming and easier to use and has the potential to increase 

compliance. LIV is typically delivered in brief (< 30 min) bouts five to seven days a week 

and only requires a person to stand on the plate for the duration of the treatment. Most 

importantly, the delivery of LIV is safe for up to several hours of use each day, as designated 

by the International Standards Organization.162 LIV does not put people at risk of fracture in 

the same way that moderate-intensity exercise may, and, unlike high-intensity vibration, LIV 

is not damaging to the skeleton nor does it cause musculoskeletal pain.

In humans, LIV has been an effective therapeutic intervention for a variety of 

musculoskeletal disorders, including building trabecular bone in the tibia of children with 

Duchenne muscular dystrophy,163 reducing low back pain,164 preventing bone loss165 and 

increasing muscular strength and function166,167 in postmenopausal women, improving 

balance168 in patients who underwent bed rest, and increasing both muscle and bone mass in 

young women with low bone mineral density.169 These clinical trials successfully utilized 

LIV intervention without any severe adverse events and targeted a range of musculoskeletal 

conditions in different age groups. The anabolic potential of LIV has also been demonstrated 

in animal models through increasing the cross-sectional area of muscle fibers,170 preserving 
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trabecular bone loss,171,172, and biasing MSC differentiation toward osteoblastogenesis.173 

Considering bone, fat, and muscle tissues all arise from a common progenitor, these studies 

support the idea that LIV can be utilized as a protection mechanism in the presence of a 

high-fat environment through promoting bone and muscle anabolism and preventing 

adipogenesis.

LIV in models of obesity

The influence of whole-body vibration on MSCs and its ability to bias the stem cell away 

from adipogenesis provides the foundation for a new focus of investigation involving the 

prevention of obesity and type 2 diabetes.173 While still a relatively new area of research, 

much of the literature has largely focused on in vitro and rodent models. There are currently 

a variety of vibration protocols with different frequencies, magnitudes, and durations being 

tested for medical applications; however, our focus here is on the use of lower-intensity 

vibration protocols utilizing low magnitudes and high frequencies for short exposure 

durations.

One of the earliest reports of LIV’s influence on obesity used a high-fat diet–induced 

obesity model in C57BL/6 mice to show that 12 weeks of LIV (0.2 × g, 90 Hz, 15 min/day) 

treatment reduced subcutaneous and visceral fat in the obese animals concurrent with 

increased bone marrow MSCs with decreased adipogenic differentiation capability.173 

Further testing in a similar animal model was able to show that LIV (0.2 × g, 90 Hz, 15 min/

day) had the ability to restore bone mass and bone marrow and peripheral immune 

populations (B and T cells) that were initially depleted by the high-fat diet.82 More recently, 

evaluation of bone, muscle, and fat systems with vibration was performed in an 

ovariectomized mouse model, which displayed both a systemic fat burden and osteopenia. 

These studies showed that LIV (0.2–0.3 × g, 90Hz, 15–30 min/day) was able to partially 

protect against estrogen-deficient bone loss and reduce the presence of adipocytes or 

adipogenic gene expression in bone marrow and muscle tissues.70,174

Whole-body vibration of different intensity but relatively low magnitude (0.13–0.68 × g, 

5.6–13 Hz) was shown to improve exercise performance and fatigue while also preventing 

fat accumulation in obese mice.175 Vibration treatment was also tested and proved positive 

in a more severe obesity model. Application of vibration (0.5 × g, 45 Hz, 60 min/day) for 12 

weeks in female db/db mice ameliorated insulin resistance, showing the potential for the 

treatment of type 2 diabetes.176 In male db/db mice, McGee-Lawrence et al. showed that 3 

months of whole-body vibration is comparable to the effects of treadmill exercise for that 

same duration, specifically in mitigating adipocyte hypertrophy in visceral fat pads, 

attenuating insulin resistance, and increasing skeletal muscle fiber diameter and serum 

osteocalcin levels.177 A recent clinical evaluation of overweight prepubertal boys 

demonstrated that 10 weeks of whole-body vibration (1.9–6.2 × g, 30–40 Hz, 3–20 min/day) 

with dynamic lower and upper body training improved their bone mineral content and bone 

mineral density through a reduction in bone-resorptive activity.178 These studies highlight 

the potential of low-intensity whole-body vibration for treatment of obesity-related 

complications; however, they also highlight the considerable uncertainties regarding the 
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mechanisms of these mechanical signals, especially in the complicated pathogenesis of 

obesity.

Preliminary data in our lab has shown that low-intensity vibration stimulates increased 

cartilage thickness in high-fat animals compared to high-fat diet controls, presumably 

leaving these animals better equipped to endure the potential onset of obesity-induced 

osteoarthritis.179 Our results contrast with recent research that reports that repeated exposure 

to low-intensity vibration induced marked degeneration of murine knee joints, including 

meniscal tears and focal damage to the cartilage surface within the medial joint 

compartment.180 Of the numerous small animal models70,82,171,174,181,182 and human 

studies164,168,183–185 that have utilized LIV, no damage to connective tissues, including 

bone, cartilage, tendon, intervertebral disc, muscle, or ligament, has been observed. It is 

important to note that CD-1 mice were used in this study, and when repeated in the C57BL/6 

strain, no joint degeneration due to LIV was observed.186 Therefore, genetic differences may 

be a source of contrasting results and warrant further investigation.

While recent evidence is promising, LIV is a subtle signal that is not always effective in 

improving or maintaining the musculoskeletal system. Whole-body vibration treatment 

given to an elderly (> 80years) population resulted in no reversal of poor bone mineral 

density,187 and mechanical intervention in general is thought to be less effective in older 

populations owing to the decreased number and responsiveness of stem cells to mechanical 

signals. Slatkovska et al. also saw no improvement in bone outcomes in postmenopausal 

women subject to vibration treatment for 12 months;188 however, these subjects did not all 

have osteoporotic bone at the start of the study. Severe systemic burdens, such as menopause 

or obesity, may alter cell responsiveness to mechanical signals and thus the ability of LIV to 

bias stem cell differentiation away from adipogenesis.

It should also be noted that animal models of obesity, especially in the mouse, vary 

significantly and are likely to lead to inclusive findings regarding the effectiveness of 

vibration. There are a range of mutations and dietary models that affect metabolism and the 

musculoskeletal system differently, all which are limited when modeling obesity after 

humans. Two of the most common and robust genetic strains include mutations in the leptin 

hormone (ob) and leptin receptor (db) genes. There are a range of other transgenic models 

targeting the tubby, Carboxypeptidase E, Mc3r, Mc4r, and Pomc genes, among others, and 

obesity can also be induced via pharmacological agents (e.g., gold thioglucose model). 

Dietary approaches typically include diets high in carbohydrates or fat, which can originate 

from various sources (e.g., animal lard, plant oils, beef tallow, coconut fat, fish oil) and vary 

in fat fraction (20–60%).189 High-fat diets in the range of 40–60% kcal from fat are 

commonly used models and mimic the progression of insulin resistance and glucose 

intolerance seen in humans.190 Data from transgenic strains or mutation models must be 

interpreted with care, since it may be unclear whether the cause was the genetic background 

or the obese phenotype, and there is certainly a difference between the effects of diet versus 

the effects of obesity on the body system. The effectiveness of vibration treatment in 

improving bone and muscle maybe reliant on the initial condition of the subjects, chosen 

animal models, or methods of analysis, and LIV may be more effective in humans and 

animals that have a pre-existing detriment.
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Summary: mechanism of LIV and implications

While it is understood that a mechanical signal of low magnitude (< 1×g) is necessary for 

the safe application of vibration, there is currently no consensus on the signal parameters 

that are most beneficial in improving bone or muscle tissues or biasing stem cell 

differentiation. It is likely that the frequency, magnitude, and duration of exposure is specific 

to the target tissue––the signal most anabolic to bone in postmenopausal osteoporosis may 

differ from the signal most anabolic to muscle in the obese condition. The incorporation of a 

refractory period is a parameter of recent interest that may be more important in influencing 

cellular outcomes than the signal magnitude, frequency, or total duration of exposure. 

Previous work in rats shows that a refractory period incorporated between bouts of the 

dynamic loading of bone allows for the restoration of mechanosensitivity and ultimately 

leads to increased bone formation.191 Other groups also found that incorporating a rest 

period between loads resulted in a heightened cellular response.192,193 Work by Sen et al. 
demonstrated that a 3-h refractory period was more successful in suppressing MSC 

adipogenesis in vitro than either a 1-h period or the absence of a refractory period.194 

Allowing a period of rest may enable appropriate cellular adaptations to become more 

sensitive to or more primed for responding to the mechanical signal. This idea can also be 

translated to exercise in humans––when you exercise rather than how you exercise may be a 

determining factor in your body response.

While the mechanism by which LIV influences bone, muscle, and fat is not completely 

understood, biased differentiation towards the osteoblastic lineage resulting from mechanical 

stimulation is thought to come at the expense of MSC differentiation towards adipogenesis 

(Table 1).173,195,196 Recent work regarding the understanding of how MSCs recognize a 

low-magnitude mechanical cue and transform the signal into a behavioral adaptation has 

shown that the signal elicits an acute cellular response and reorganization of focal adhesions 

and the cytoskeleton.197,198 Uzer and colleagues showed that LIV activates a coupling 

between the cell nucleus and cytoskeleton (termed the LINC complex) that initiates 

intracellular signaling.198 Recent studies also suggest that LIV may bias stem cell 

differentiation through sclerostin (SOST), which regulates adipogenesis through inhibiting 

Wnt signaling.66 Vibration has been shown to suppress SOST both in culture and in 
vivo.199,200 Additional research is needed to gain a complete understanding of the 

mechanosensitive signaling pathways triggered by LIV and the consequential stem cell 

behavior. Understanding the mechanism of LIV-biased stem cell differentiation and the 

implications of the signal parameters––whether it is magnitude, frequency, duration of 

exposure, or incorporation of a refractory period–– will allow for optimized treatment and 

the development of targeted therapies.

In summary, low-magnitude mechanical signals show potential to be used as an adjunct 

therapy or alternative to more expensive, invasive, or strenuous treatment methods. 

Importantly, the use of this exercise surrogate is particularly valuable for patients that suffer 

from musculoskeletal pain, frailty, or physical limitations due to obesity. Through biasing 

MSC differentiation and influencing the bone marrow space, LIV can alter obesity related 

complications, including impaired immunity, ectopic fat formation in muscle and bone 
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tissues, and insulin resistance, ultimately delaying the onset of type 2 diabetes or even 

improving the existing condition.
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Figure 1. 
Schematic (adapted from Ref. 49) depicts the bone marrow cellular niche (right) and muscle 

cellular niche (left). The bone marrow is a dynamic heterogeneous environment and home to 

mesenchymal and hematopoietic stem cells. Mesenchymal stem cells regulate bone and fat 

systems in the marrow and support the hematopoietic niche. Hematopoietic stem cells 

regulate blood and immune cells, which can be compromised by obesity. The skeletal 

muscle microenvironment comprises multinucleated myofibers and stem cells, including 

satellite cells, mesenchymal progenitors, and fibro/adipogenic progenitors. Obesity results in 

increased intramyocellular lipid accumulation within myofibers and increased local 

adipocytes, likely through mesenchymal or fibro/adipogenic progenitor differentiation. This 

change is paralleled in the marrow, where increased marrow adipose tissue is characteristic 

of conditions with excess adiposity. Maintaining healthy levels of fat in bone and muscle 

may be achieved through mechanical stimulation intervention and biasing stem cell 

differentiation away from adipogenesis.
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Table 1

Summary of the bone, muscle, and marrow systems in response to obesity and the impacts of exercise and LIV 

in the presence of excess fat

Obesity/adipose burden Exercise LIV

Bone

- Decreases bone resorption38

- Leads to low bone turnover38

- Short-term diet-induced obesity (DIO) leads to 
increased bone mass40

- Long-term DIO leads to impaired bone 
formation40

- Trabecular bone deterioration occurs before 
cortical bone41

- Peripheral leptin promotes osteoblastogenesis 
and suppresses ostecolastogenesis45,46

- Central leptin negatively affects bone 
formation44

- Improves bone mineral density, 
bone structure, and biomechanics 
in rodents and humans136,137

- Ameliorates bone loss in 
patients who have undergone 
bariatric surgery or other weight 
loss135

- Restores bone mass in DIO82

- Protects from bone loss in 
OVX174,70

- Reduces bone-resorptive 
activity177

- 10 weeks of vibration treatment 
improved bone mineral density and 
bone mineral content in overweight 
prepubertal boys178

- Whole-body vibration treatment 
showed no improvement in bone in 
elderly population and 
postmenopausal women187,188

Muscle

- Myosteatosis is an indication of decreased 
muscular function and mobility96, 97

- Fatty muscle is linked to poor mechanical 
properties and insulin resistance102,103

- DIO in the mouse impairs muscular 
regenerative capabilities following injury105

- Reduces muscular fat content in 
humans101,145

- Reduces thigh muscle lipid 
content and improves glucose 
tolerance in humans when 
combined with weight loss147

- Improves insulin sensitivity148

- Reduces muscle triglycerides in 
high-fat diet animal models146

- Anabolic to muscle in obese 
adults144

- Increases muscular strength and 
function in postmenopausal 
women166,167

- Increases cross-sectional area of 
muscle fibers in mice170

- Reduces adipogenic gene 
expression in the muscle of OVX 
mice174

- Improves insulin resistance in 
db/db mice176,177

- Increases fiber diameter in db/db 
mice177

Bone marrow

- Increases marrow adipose tissue62,47,79,80,82–84

- Long-term DIO leads to increased HSC 
progenitors90,91

- Short-term DIO leads to transient reduction 
followed by increase in HSC progenitors91

- Decreases and/or increases in B and T 
cells82,87, 92,93

- Increases recruitment of BM macrophages to 
white adipose tissue90, 94

- Primes BM HSCs to promote inflammation91

- Reduces MAT in DIO62,139

- Reduces PPAR-γ expression136

- Increases BM MSCs with 
increased osteogenic potential in 
DIO141

- MSCs from exercised mice have 
limited adipocyte 
differentiation142

- Increases BM MSCs with 
decreased adipogenic potential in 
DIO173

- Restores BM B and T cells in 
DIO82
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