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A general pharmacodynamic interaction model
identifies perpetrators and victims in drug
interactions
Sebastian G. Wicha1, Chunli Chen1, Oskar Clewe1 & Ulrika S.H. Simonsson1

Assessment of pharmacodynamic (PD) drug interactions is a cornerstone of the development

of combination drug therapies. To guide this venture, we derive a general pharmacodynamic

interaction (GPDI) model for ≥2 interacting drugs that is compatible with common additivity

criteria. We propose a PD interaction to be quantifiable as multidirectional shifts in drug

efficacy or potency and explicate the drugs’ role as victim, perpetrator or even both at the

same time. We evaluate the GPDI model against conventional approaches in a data set of

200 combination experiments in Saccharomyces cerevisiae: 22% interact additively, a minority

of the interactions (11%) are bidirectional antagonistic or synergistic, whereas the majority

(67%) are monodirectional, i.e., asymmetric with distinct perpetrators and victims, which is

not classifiable by conventional methods. The GPDI model excellently reflects the observed

interaction data, and hence represents an attractive approach for quantitative assessment of

novel combination therapies along the drug development process.
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Combination therapies are prevalent in many therapeutic
areas1, such as infectious diseases, oncology or neurology.
There is a strong focus in drug development programs to

early identify, quantify and evaluate pharmacokinetic (PK)
interactions. However, for pharmacodynamic (PD) interactions,
although at least equally important as PK, there is substantially
less focus. Reasons for neglecting PD interactions may lay in the
very heterogeneous methodological landscape2, statistical traps3,4,
but also a general difficulty to adapt current PD interaction
assessment methods to different stages of drug development.

Moreover, limitations of the current methodology landscape to
evaluate PD interactions are numerous: (i) graphical approaches
such as the isobologram method5, fractional inhibitory con-
centration (FIC) indices6 or the combination index7 are con-
ceptually straightforward and useful, but their results are difficult
to interpret when interactions are concentration dependent or
isoboles are “curvilinear”8, e.g., when a combination partner is a
partial agonist. (ii) Response surface approaches9 are a frequently
employed in such situations as they can elucidate concentration
dependencies in the interaction space but, as outlined above,
cannot be used for calculating an interaction score or parameter
such as FIC indices. As response surface analyses represent a pure
comparison between observed and additive response, they cannot
be used for longitudinal simulations of the observed interaction
pattern at (changing) concentrations over time (PK–PD simula-
tions). (iii) FIC indices, but also model-based approaches with a
single interaction parameter10,11 provide interaction scores for
statistical interaction assessment and can be compared, but the
single point estimate might not mirror the complexity of response
surfaces; model-based approaches with more interaction para-
meters, e.g., polynomials to describe the interaction surface12,
might be more flexible to fit to the data, but their interaction
polynomials are not interpretable. (iv) Most approaches are
limited to two interacting drugs2,10, (v) tied to a single underlying
additivity concept, or even no established additivity criterion12,13,
and (vi) cannot be adapted to the various complexity of infor-
mation obtained along the drug development process, i.e.,
reduced or more complex nested models of the same type can be
applied. Finally, (vii) we aimed to explore the roles of each drug
in PD interaction studies. Recent and current work is addressing
these limitations, e.g., through more efficient factorial designs14,
innovative mechanism-independent statistical models15, re-
scaling techniques to facilitate correct interaction scoring in
two16 and three drug combinations17,18. Moreover, the genetic
impact on drug interactions is also increasingly studied19 to assess
the genetic robustness of PD interactions.

Yet, all these efforts could be complemented by a general
pharmacodynamic interaction (GPDI) model overcoming all
limitations (i–vii). In addition, the GPDI model should (a) pro-
vide quantitatively interpretable interaction point estimates, (b)
not require knowledge on the precise mode of action, (c) be
flexible enough to adapt to multi-drug combination data of var-
ious complexity, (d) enable compatibility with established addi-
tivity criteria such as Loewe Additivity20 or Bliss Independence21,
(e) provide insight into perpetrators and victims in PD interac-
tion networks, (f) offer time-course prediction to avoid con-
founders arising from analysis of sole endpoint data22, and (g)
allow for computer simulations for therapeutic profiling, bridging
pre-clinical to clinical phase as well as clinical trial simulation.

In order to evaluate and compare the performance and inter-
action classification of the here newly derived GPDI approach
against conventional methods, we utilize a large-scale high-
throughput screening data set23. Isobole analysis5,23 and the
Greco model24 as methods derived from Loewe Additivity, as well
as an empiric Bliss Independence model23 are used as

conventional approaches and compared to the result of the GPDI
analyses.

Results
The general pharmacodynamic interaction model. Single drug
effects were characterized with the sigmoidal maximal effect
(Emax) model25,26, parameterized by PD parameters Emax
(maximal drug effect), EC50 (drug concentration stimulating 50%
of Emax, i.e., drug potency) and H (Hill factor for sigmoidicity).
The concept of the GPDI approach is simple: we propose a PD
interaction to be quantifiable as shift in Emax (allosteric type) or
EC50 (competitive type), which provides an intuitive, mechan-
istically motivated, quantitative, and statistically interpretable
(point) estimate of a PD interaction. A central aspect to the GPDI
model is its ability to define perpetrators and victims of a PD
interaction: a perpetrator alters the PD parameter of the victim
drug leading to a PD interaction, i.e., either synergy or antag-
onism. The interactions in the GPDI approach are directionally
quantified, i.e., the drug can take the role of perpetrator, victim, or
even both at the same time. This definition of perpetrator and
victim is to our best knowledge new in the context of PD inter-
actions, yet similar to the use of such terms in the context of PK
interactions, where, e.g., drug elimination of a victim drug is
reduced by a perpetrator drug27. To include PD interactions, we
extended the sigmoidal Emax model of the victim drug by a
perpetrator sigmoidal Emax term (“GPDI term”) to capture the
interaction effect on the level of the PD parameters. This concept
generalizes the idea behind receptor-based interaction as sug-
gested by Ariëns28. The PD interaction is parameterized by INT
(maximum fractional change of the victims PD parameter caused
by the perpetrator), EC50INT (interaction potency), and HINT

(interaction sigmoidicity).
For example, for two drugs A and B with a competitive-type

interaction (EC50-level), the drug effects EA and EB are given by

EA ¼ EmaxA ´CHA
A

EC50A ´ 1þ INTAB ´C
HINT;AB
B

EC50
HINT;AB
INT;AB þC

HINT;AB
B

� �� �HA

þCHA
A

; ð1Þ

EB ¼ EmaxB ´CHB
B

EC50B ´ 1þ INTBA ´C
HINT;BA
A

EC50
HINT;BA
INT;BA þC

HINT;BA
A

� �� �HB

þCHB
B

; ð2Þ

INTAB represents the maximum fractional change of the EC50
of drug A (victim) caused by drug B (perpetrator), and vice versa
for INTBA. INT=0 indicates no interaction, −1< INT< 0
indicates a decrease of the EC50, and INT> 0 indicates an
increase of the EC50. If both INT values are negative, synergy,
and vice versa, antagonism is observed on the effect level. INT
values of different polarities indicate an asymmetric interaction
with concentration-dependent synergy and/or antagonism on the
effect level. In addition, potentiation (inactive drug potentiates an
active drug) or coalism (inactive drugs solely jointly active) can be
modeled by the GPDI approach. Implementation of the GPDI
model on EC50 leads to a competitive interaction behavior. An
interaction of allosteric type is considered when the GPDI model
is implemented on Emax. Note that the polarity of INT is
opposite when implemented on Emax instead of EC50.

EA and EB are directly compatible with common additivity
criteria to compute the combined effect including simple effect
addition29 (Ecomb = EA + EB), Bliss Independence21 (Ecomb = EA +
EB–EA·EB) or highest single agent2 (Ecomb =max(EA, EB)). The
GPDI model is also compatible with Loewe Additivity, however
solely for competitive-type interactions, as Loewe Additivity in its
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original definition20 requires a mutual maximum effect to exist:

1 ¼ CA

EC50A ´ 1þ INTAB ´C
HINT;AB
B

EC50
HINT;AB
INT;AB

þC
HINT;AB
B

 !
´ Ecomb

EmaxA�Ecomb

� �1=HA

þ CB

EC50B ´ 1þ INTBA ´C
HINT;BA
A

EC50
HINT;BA
INT;BA

þC
HINT;BA
A

 !
´ Ecomb

EmaxB�Ecomb

� �1=HB

; ð3Þ

Note that Loewe Additivity cannot be solved explicitly for
Ecomb when EC50A≠EC50B and/or HA≠HB, but implicitly by root
finding methods, as outlined in the Online methods.

Signature plots of the GPDI model using Bliss Independence
and Loewe Additivity are presented in Fig. 1 displaying the
flexibility of the GPDI approach as it can describe very different
types of PD interactions. The GPDI approach enables to describe
monodirectional interactions with a defined perpetrator drug
(Fig. 1b, c, h, i, n–p), bidirectional interactions with both drugs
being perpetrator on each other (Fig. 1d, e, f, j–l, q), interactions
with itself inactive drugs leading to allosteric interactions (Fig. 1n,

o), buffering (Fig. 1p) or coalism (Fig. 1q). We also confirmed the
structural identifiability of the GPDI model in a conventional 8 by
8 checkerboard design with log2-diluations typically done in, e.g.,
anti-infective PD interaction screening. Anticipated median
relative standard errors (10–90th percentile) were 8.2%
(2.8–29.8%) for INT and 20.6% (9.6–53.4%) for EC50INT
(Supplementary Fig. 1). A log2 dilution design is preferable over
a linear design. While still being identifiable, the anticipated
median relative standard errors were 30.0% (11.1–268%) for INT
and 52.4% (23.2–339%) for EC50INT in the linear design.

GPDI models for more than two interacting drugs follow the
same principle of quantifying the interaction on the level of the
PD parameter and solely require one additional GPDI term per
added drug to quantify a bidirectional interaction. If a third
interaction partner alters the interaction between two drugs, as
potentially observable in triple combinations, e.g., emergent
synergies17, the interaction becomes tri-directional, and another
interaction level (modulation) is added, i.e., a GPDI term on the
INT parameter. Details on formulating the GPDI approach for
more than two drugs are provided in the methods section.
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Fig. 1 Simulated response surfaces using the GPDI model. Combined effects (color gradient) were simulated of drugs A and B for Loewe Additivity (LA, a–
f) and Bliss Independence (BI, g–q) on EC50 level (a–l) or Emax level (m–q); Mono drug effects were parameterized with EmaxA= EmaxB= 1, EC50A=
EC50B= 50 µM, HA =HB= 4 leading to null interaction surface for LA (a), and BI (g); monodirectional interaction surfaces (b, c, h, i), were obtained if A as
perpetrator increased (b, h), or decreased (c, i), the EC50 of B; bidirectional interactions (d–f, j–l), were obtained if both drugs displayed the perpetrator
role on each other with a joint increase of the EC50 leading to antagonism (d, j), or decrease of the EC50 leading to synergy (e, k), bidirectional
asymmetric interactions (b, d), were obtained if A decreased EC50B and B increased EC50A leading to concentration-dependent synergy or antagonism;
the GPDI model approach within Bliss Independence is compatible with different Emax values for both drugs (m) and can describe effects of itself inactive
allosteric modulators (n, o), buffering (p), and coalism of two inactive drugs (q). The parameters of the GPDI model to generate scenarios are presented in
Supplementary Table 1
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In situations with less rich data, the full four-parameter GPDI
model can be reduced to adapt to these situations: a joint
interaction term, i.e., INT = INTAB = INTBA and/or interaction
potency set to the drugs potency, i.e., EC50INT = EC50, lead to a
reduced one-parameter GPDI interaction model. It should be
noted that the reduced GPDI models retain the interpretability of
the interaction parameter. The GPDI model is applicable to other
single drug exposure response models, e.g., slope or power effect
model. Details for reduced models and other single drug exposure
response models are provided in the Methods.

Application of GPDI and comparison to conventional meth-
ods. To evaluate the GPDI approach against conventional
approaches, we used a pre-clinical study by Cokol et al.23, who
recorded the 24 h time-courses of fungal growth under pertur-
bation of 200 antifungal and non-antifungal drug combinations.
We fitted the Loewe Additivity- (Eq. (3)) and Bliss Independence-
based GPDI models (Ecomb = EA + EB-EA·EB with EA and EB given
in Eq. (1) and Eq. (2)). Model building started with a reduced

GPDI model with a single interaction parameter INT and was
extended to the full four-parameter GPDI model, which was
significant (α = 0.05, likelihood ratio test) in 152/200 scenarios
(Loewe Additivity) or 167/200 (Bliss Independence). No inter-
action sigmoidicites (HINT) were estimated. For the conventional
models, we evaluated the isobole analysis5,23 and the Greco
model24 as approaches based on Loewe Additivity, and an
empiric Bliss Independence model23. The two different GPDI
models provided an excellent performance to describe the
observed time-courses of the (combined) effects, and were highly
superior to the alternative models which did not describe the
observed data well (Fig. 2, see Supplementary Data 1 for all
evaluated 200 combination scenarios). This could also be objec-
tified by assessing the respective distributions of the Akaike
information criterion (AIC) (lower value indicates better model
fit): AIC was in median (10–90th percentile) −29901.71
(−36805.3; −23776.7) for the Loewe Additivity-based GPDI
model and −30377.43 (−37751.6; −24823.2) for Bliss
Independence-based GPDI model. Hence, the Loewe Additivity-
and Bliss Independence-based GPDI models described the
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Fig. 2 Individual model fit examples. The estimated parameters of the GPDI model were used for simulation (red) and compared to observed time-courses
(black) exemplified in a–d for 1 out of the analyzed 200 combination scenarios; the combination of Bromopyruvate (Bro, drug A) and Staurosporine (Sta,
drug B) (a–d), at concentrations AxBx (relative minimal inhibitory concentration23); The Loewe Additivity (a), and Bliss Independence-based (b), GPDI
models described the 64 experiments of this combination scenario very well, the monodirectional nature of this interaction was indicated by the INT
parameter values (fractional change of victim EC50) at the perpetrator EC50 that identified Bro as sole perpetrator drug in this combination; the empiric
Loewe Additivity-based Greco (c), and empiric Bliss Independence (d), model solely quantified antagonism, but did not describe the data well, with
prevalent with over- and underprediction; Predicted vs. observed fungal load for all 1.23 million observations from all 200 combination scenarios indicated
superior predictive performance of the GPDI models (e, f), compared to the Greco and empiric Bliss model (g, h)
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experimental data similarly well and were superior over the Greco
model and the empiric Bliss Independence model which provided
median AIC of −26989.4 (−35033.9; −17586.3) and −26152.5
(−33856.2; −18616.7), respectively. The modeled vs. observed
time-courses of the PD interactions of all 200 scenarios for the
GPDI and the conventional methods are provided in Supple-
mentary Data 1. It should be noted that the conventional models
solely have a single interaction parameter while the GPDI
approach has up to four, but the high rate of statistical sig-
nificance of the four parameter GPDI model in conjunction with
the lower AIC values indicate that the additional parameters are
highly supported. We did not evaluate allosteric-type interactions
in the Cokol data set, as the “true” maximum antifungal effect
may be fungicidal and hence beyond the turbidity threshold
indicative merely for fungistasis.

For both Loewe Additivity and Bliss Independence-based
GPDI models, in 199/200 scenarios, at least one statistically
significant INT parameter was indicated by the likelihood ratio
test. The full GPDI model was identified in ≥152/200 scenarios.
As pure statistical significance can be misleading in rich-scale
data, and to account for experimental variability in the data set,
we used 25 sham combination experiments (drug A = drug B) in
the Cokol data set to define an additivity margin for INT to
conclude if significant antagonism or synergy was quantified: For
the Loewe Additivity-based GPDI model, INT at the EC50 of the
perpetrator was in median 0.025 (10–90th percentile: −0.47 to
0.5). Hence, the additivity margin was defined to lay within a

57–150% change of the victim EC50 at the EC50 of the
perpetrator drug. For simplicity, we set the additivity margin to
−0.5 to 0.5 for our analysis (cf. square in Fig. 3a–d). We used the
same additivity margin in the Bliss Independence-based GPDI
analysis due to the identical nature of the INT parameter, since
there was a tendency to synergy of the INT values in the sham
combinations with Bliss Independence (median: −0.378, 10–90th
percentile: −0.639, 0.452). Self-synergy is an expected property of
the Bliss Independence criterion as a drug’s action cannot be
independent from itself10. For the conventional methods, the
interaction parameter α of the Greco model for the sham
combinations was in median 0.23 and the 10–90th percentile
(−0.45, 0.82) was used as additivity margin. For the empiric Bliss
model, the interaction parameter β of the sham combinations and
hence the additivity margin ranged from −14,836 to 1.49
(10–90th percentile) and was −42.2 in median, hence as expected
also displayed a tendency to self-synergy.

In the Cokol data set, 175 of the 200 scenarios comprised “true”
combination experiments. For the Loewe Additivity-based GPDI
analysis, the following scenarios were quantified: Additive
interactions, i.e., both INT parameters within the additivity
margin, were observed in 38/175 of the scenarios.

Two types of symmetric interactions were observed in 19/
175 scenarios: (i) bidirectional synergy, where both INT
parameters indicated synergy (< −0.5), i.e., both drugs were
perpetrator and victim at the same time reducing each the others’
EC50 values were found in 6/175 scenarios, and (ii) bidirectional
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antagonism: Both INT parameters indicated antagonism (>0.5),
i.e., both drugs are perpetrator and victim at the same time
increasing each the others’ EC50 values were found in 13/
175 scenarios.

Three types of asymmetric interactions were observed in 118/
175 scenarios: (i) monodirectional synergy, where one INT
parameter indicated synergy (< −0.5), i.e., there was one
perpetrator reducing the EC50 of the victim, while the other
INT parameter was within the additivity margin, was observed in
20/175 scenarios, (ii) monodirectional antagonism, where one
INT parameter indicated antagonism (>0.5), i.e., there was one
perpetrator increasing the EC50 of the victim, while the other
parameter was within the additivity margin, was observed in 76/
175 scenarios, (iii) bidirectional asymmetric interactions, where
both INT parameters were outside the additivity margin, but of
opposite polarity, i.e., both drugs were perpetrator and victim at
the same time increasing or decreasing each other’s EC50 values
leading to concentration-dependent antagonism or synergy, was
observed in 22/175 scenarios.

While the overall conclusions on antagonism and synergy were
in general agreement with the Loewe-based original isobole
analysis of Cokol et al.23 (Fig. 3a) and the result of the Greco
model (Fig. 3c), it is evident that the direction of the interaction,
i.e., the perpetrator–victim properties and the bidirectional
asymmetric type interaction (cf. Fig. 1f) could not be classified
with the conventional methods. 6 of these bidirectional asym-
metric interaction were (wrongly) classified as additive, 14 as
synergistic and 2 as antagonistic. Agreement between the Greco
model and the isobole analysis was high and the approaches
resulted in the same classification in 82% of the scenarios.

For the Bliss Independence-based GPDI analysis, a substan-
tially higher synergy rate was found (monodirectional synergy:
30/175, bidirectional synergy: 14/175). Also, a higher rate of
additive interactions was observed (79/175), 31/175 displayed
monodirectional antagonism and only 2/175 interactions dis-
played bidirectional antagonism. 19/175 scenarios displayed
bidirectional asymmetric interactions. The tendency to estimate
a higher synergy rate with Bliss Independence is also apparent in
Supplementary Fig. 2 when the estimated interaction parameters
of Loewe Additivity and Bliss Independence-based GPDI models
were compared. The Bliss Independence-based GPDI model did
not agree with the isobole analysis, due to the different underlying
additivity criterion (Fig. 3b). It agreed with the empiric Bliss
Independence model (Fig. 3d) only when INT terms were of same
polarity, but the empiric Bliss model was much less sensitive to
detect interactions as indicated by the large number of

misclassified additive interactions. The parameter values of the
GPDI models as well as for the alternative models are visualized
and compared in Fig. 4. A re-analysis of the Cokol data set30

revealed 61 suppressive interaction, i.e., strong antagonistic
interactions with responses below one of either or both single
agents. While a screen for suppressive interactions on the effect
level using the GPDI approach is similar to the approach chosen
by Cokol30 (comparison of the combined effects with the single
drug effects), the GPDI approach can enhance suppressive
interactions with model-based estimates of perpetrator–victim
information guided by the INT parameter. 66% of manually
derived directions (assuming that the less potent drug antagonizes
the more potent drug in these suppressive interactions30) were in
agreement with the GPDI analysis, while in the remaining cases
different and/or additional directions of the PD interactions were
quantified (Supplementary Table 2). This indicates that the
assumption that the less potent drug is the causative agent of
suppression on the effect level is often, but not always true.

Perpetrators and victims in a drug interaction network. In
order not to bias ourselves towards a single additivity criterion,
we exclusively joined the result of the Loewe-Additivity and Bliss-
Independence-based GPDI models for the network analysis, i.e.,
included solely interactions that were significant under both
Loewe-Additivity and Bliss-Independence, which is displayed in
Fig. 5a. The unjoined networks are presented in Supplementary
Fig. 3. In the joined data set, 90 interactions (edges of the net-
work) were observed where 54 of the interactions were mono-
directional with one combination partner being perpetrator and
the other being victim drug. 36 interactions were bidirectional, in
which both combination partners were perpetrator and victim
drug at the same time, and 12 out of the bidirectional interactions
displayed INT values of joint polarity. 10 of these 12 were
bidirectional synergies, e.g., as observed with the drugs Fen and
Cal. 2 of these 12 were bidirectional antagonistic interactions
(Cyc-Rad) and 24 interactions were bidirectional asymmetric
interactions, e.g., drug Ben was antagonistic on drug Tac, but Tac
potentiated the effect of Ben and concentration-dependent
antagonism or synergy is observed (Supplementary Fig. 4).
Another example is the drug Ter, which is part of a larger number
of synergies. It has been speculated that Ter mediates synergy
through its cell-wall disrupting effect which in turn might
enhance the uptake of other drugs23. When comparing the GPDI
parameters of interactions where Ter was involved, diverse
interactions were observed (Supplementary Table 3). Yet, in the
majority of the scenarios (5/11), Ter decreased the EC50 or did
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not significantly affect the combination partners (4/11), which
might corroborate the proposed mechanism, but also indicates
that further yet unknown processes are affected which also alter
the EC50 of Ter. Through its effect in the ergosterol pathway, Ter
can also mediate monodirectional antagonism, e.g., as perpetrator
on AmB, for which the INT value of 3.32 suggested an increase in
EC50 to 432% ((1 + 3.32)*100%) at the EC50 of Ter, while the
EC50 of Ter was not significantly altered. AmB binds ergosterol
in the cell wall; it has been proposed that AmB might lose its
target when ergosterol synthesis is inhibited31, which would be in
agreement with the observed INT values and the identified per-
petrator role of Ter from the GPDI analysis. Of the mono-
directional interactions, drugs Bro, Cis, Hyg, Met and Qnn were
sole perpetrators being all antagonistic on their combination
partners, but never took the victim role. For Bro, there is evidence
that the antagonistic interactions observed with Bro are mediated
by its acidity unrelated to its precise mode of action30. This
distinct pattern is also found in the GPDI parameters: Bro
increased the EC50 of its combination partners in 9/10 cases as
perpetrator, while it was never affected itself, i.e., Bro mediated
solely monodirectional antagonistic interactions (Supplementary
Table 4). This indicates that the effects mediated by Bro itself
might not be affected by the combination partners. Drugs Qmy,
Tun, Rap, Myr and C3P were sole victim drugs, but never took
the perpetrator role. Drug Tac was the most prevalent perpetrator
for potentiation in 11 interactions, but 5 of those were antag-
onistically “counteracted” by the victim. Drug Tac was also the
most prevalent victim for antagonism in 9 interactions. For a
large number of these interactions in the Cokol data set, the
underlying mechanism of interaction remains to be elucidated.
Further research is required to elucidate the molecular interaction

mechanisms to which the GPDI model might contribute by
adding quantitative measures of EC50 shifts and
perpetrator–victim information in order to profile the behavior of
the drugs in interaction networks (Fig. 5b–e).

Discussion
Accurate characterization of PD interactions is of key importance
for defining rational combination therapies. In this paper, we
derive the novel GPDI approach for this purpose. When para-
meterizing the GPDI model parameters from the experimental
data, the GPDI approach is complex enough to provide “spot-on”
description of the observed time-courses of PD interactions in a
data set of 200 combination experiments, including
concentration-dependent interactions, but thereby still providing
intuitive interaction parameters as fractional changes of the PD
parameters and interaction potencies. For example, as illustrated
in Fig. 2a, b, INTAB was determined to −0.02, i.e, the EC50 of
drug A (Bro, bromopyruvate) was only marginally affected.
Instead, INTBA was determined to 15.92, i.e., in combination the
EC50 of drug B (Sta, staurosporine) was increased to 1692% ((1 +
15.92)*100%) at the EC50 of Bro. It is obvious, that the parameter
α and β of the conventional models (Fig. 2c, d) cannot be
quantitatively interpreted in a similar way.

As the inferences are drawn on the level of the model para-
meters and from all available scenarios of the checkerboard at the
same time, no re-scaling on the effect level16–18 is required, which
is yet a helpful technique to score and detect interactions in
individual scenarios. The GPDI approach revealed that the
majority of up to 67% of the interactions in this data set were of
asymmetric nature where distinct perpetrator and victim infor-
mation in the PD interactions was quantified, i.e.,
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monodirectional synergism, monodirectional antagonism, and
asymmetric bidirectional interactions where synergism or
antagonism depends on the concentration ratio of the drugs. This
could not at all be classified by the conventional approaches5,10,23

(Fig. 3). Concentration dependence in the PD interactions has
also been a challenge in a recent study, that labeled these as
“inconclusive”32. Moreover, the effect of itself inactive drugs on
other active drugs could not be evaluated with conventional
methods23, which is possible with the GPDI approach.

The GPDI approach elicits the roles of perpetrator and victim
in PD interactions and hence provided directed interaction net-
works as seen in Fig. 5. Such a directed interaction network opens
up pivotal opportunities for cluster analyses to detect similarities
of the drug’s roles in large-scale interaction networks32,33. A
recent study also addressed this important aspect of considering a
direction in PD interactions34 employing a two-parameter model.
Yet, the approach they used is less versatile than the GPDI
approach, as (i) they do not quantify an interaction on the level of
the PD parameters, (ii) no modulation can be considered (cf.
Eq. 12), (iii) their interaction parameter is not as easily inter-
pretable, (iv) their approach is implemented solely in Bliss
Independence, and (v) there model is likely less flexible than the
GPDI approach which can use from one to four GPDI model
parameters depending on the richness of the data. Higher-order
combinations with three or more interacting drugs are not part of
this work, but have been successfully modeled by statistical
models15. Emergent synergies, i.e., synergistic effect only being
present in three drug combination, but not in either dual com-
bination35, have been discovered recently. The GPDI model also
can account for such “emergent interactions” through the
modulator-term (Eqs. (11) and (12)). Recently, the presented
GPDI model approach was applied in four drugs combinations in
tuberculosis in vitro36 and in vivo studies37, where such inter-
actions were also present and quantified by the GPDI model.

The GPDI approach advances receptor-based competitive or
allosteric interaction models to the next evolutionary step by
adding estimable interaction parameters for fractional change of
the PD parameter and interaction potency, thereby being in
accordance with the criteria for an ideal PD interaction model12.
Moreover, the GPDI approach within Bliss Independence also
covers scenarios which cannot be quantitatively modeled by
conventional methodology such as pure potentiation or intertism,
i.e., when solely one drug is active and its effect is or is not altered
by an itself inactive drug, or coalism, i.e., when neither drug is
active alone, but a combined effect is observed.

There is a controversy on which additivity criterion to use in
PD interaction studies. Loewe Additivity10,20 assumes that two
drugs act through a similar mode of action, leading to the con-
ception of “dose substitution”, i.e., a fraction of drug A can be
replaced by drug B leading to the same effect. Bliss Indepen-
dence10,21, however, assumes that drugs act independently
through distinct mechanisms. The GPDI approach solves this
controversy by unifying the interpretation of deviation from all
these additivity criteria in a model-based framework. Our analysis
of 200 combination experiments displayed that using Loewe
Additivity or Bliss Independence can lead to different conclusions
regarding synergy or antagonism on the observed interaction, yet
by providing similar descriptive performance. With the GPDI
approach, the analyst can decide on the most suitable interaction
criterion for the present data, or as in the present work exclusively
join the result of the modeling activities to select “strong” inter-
actions that stick out under both additivity criteria. Yet, it should
be noted that both the Loewe- and Bliss-based GPDI models
described the observed data equally well. Hence, both would be
suitable for performance of computer simulations, e.g., for ther-
apeutic profiling of the PD interactions38 from pre-clinical to

clinical phase or for clinical trial simulations, irrespective of the
“true” underlying system. We also demonstrated that the inves-
tigated conventional approaches were not suitable to describe the
data well and hence may not provide unbiased simulations if
these models were used in translational predictions or combined
dose finding.

The GPDI approach considers that PD might not be as simple
as only synergism or antagonism, but the fact that PD interac-
tions are a function of concentration and might be multi-
dimensional, i.e., that the interaction changes in the concentra-
tion space. Moreover, the GPDI approach comes with further
numerous advantages over existing approaches, which comprise
quantitatively interpretable interaction point estimates across
Loewe Additivity and Bliss Independence, no requirement of
prior knowledge on the precise mode of (inter-)action, flexibility
to adapt to multi-drug combination data of various complexity,
compatibility with established additivity criteria, provision of
insight into perpetrators and victims in PD interaction networks,
and the possibility to describe time-courses of the interaction.
Future studies should also evaluate the utility of the GPDI
approach at other EC levels or the stationary concentration39 as
potency markers. Utilization of the GPDI approach in drug
development opens up new perspectives for modeling, inter-
pretation, quantitative decision marking and hypothesis genera-
tion in development of novel combination therapies.

Methods
The general pharmacodynamic interaction model. We used the sigmoidal
maximum effect model25,26 for quantifying single drug effects. This model
describes the drug effect E as function of its concentration C and the model
parameters Emax (maximal drug effect), EC50 (drug concentration stimulating
50% of Emax, i.e., drug potency) and H (Hill factor for sigmoidicity):

E Cð Þ ¼ Emax ´CH

EC50H þ CH
: ð4Þ

The GPDI approach evolved from receptor-based models such as the
competitive inhibition model, as proposed by Ariëns28

EA CA;CIð Þ ¼ EmaxA ´CA

Kd ´ 1þ CI
KI

� �� �
þ CA

; ð5Þ

expressing the induced effect EA of drug A at a concentration CA with a
drug–receptor dissociation constant Kd and an inhibitor I at a concentration CI and
the inhibitor-receptor dissociation constant KI. The GPDI model generalized the
interaction term (1 + CI/KI) using a maximum effect model with estimable
interaction parameters (the “GPDI term”) which allows both positive and negative
shift of the PD parameter. The GPDI term is a function of the perpetrator drug
concentration, which perturbs a PD parameter θ of the victim drug. The GPDI
model is parameterized by INT representing the maximum possible fractional
change of the PD parameter θ, EC50INT which quantifies the potency of the
perpetrator and HINT, the sigmoidicity of the interaction effect.

θ ´ 1þ INT ´CHINT

EC50HINT
INT þ CHINT

 !
: ð6Þ

The GPDI model considers that two drugs can potentially be both perpetrator
and victim drug at the same time, hence quantifies bidirectional interactions. For
two interaction partners with an interaction on the PD parameter EC50, the GPDI
model is given by:

EA ¼ EmaxA ´CHA
A

EC50A ´ 1þ INTAB ´C
HINT;AB
B

EC50
HINT;AB
INT;AB þC

HINT;AB
B

� �� �HA

þCHA
A

; ð7Þ

EB ¼ EmaxB ´CHB
B

EC50B ´ 1þ INTBA ´C
HINT;BA
A

EC50
HINT;BA
INT;BA þC

HINT;BA
A

� �� �HB

þCHB
B

; ð8Þ

INT can take values between −1 and ∞ and guides the direction of the PD
interaction: zero indicates no interaction, a negative value between −1 and 0
indicates potentiation and a positive value between 0 and ∞ indicates inhibitory
behavior of the perpetrator. If both INT values are between −1 and 0, synergy is
observed. Also potentiation (one drug active) or coalism (inactive drugs solely
jointly active) can be modeled by the GPDI approach. If both INT values are
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positive, antagonism is observed. Implementation of the GPDI model on EC50
leads to a competitive interaction behavior. An interaction of allosteric type is
considered when the GPDI model is implemented on Emax. Note that the polarity
of INT is opposite when implemented on Emax instead of EC50.

The GPDI model is also applicable when the drug effect is described by a linear
slope model (E = SLOPE·C) or power model (E = SLOPE·CH), which are identified
if the highest studied concentration is well below the EC50. As SLOPE represents
Emax/EC50, the GPDI term is both valid in numerator or denominator.
Depending on this choice, the INT value will have the same interpretation as
fractional change of EC50 (denominator) or Emax (numerator) for the slope
model. For the power model, the implementation in the denominator will only
approximate the fractional change of EC50, as in the power model the slope
represents Emax/EC50H.

Given that the GPDI model quantifies PD interactions at the level of the PD
parameters, it is compatible with commonly used additivity criteria, such as Loewe
Additivity20, Bliss Independence21 or simple effect addition2. The equations for the
GPDI terms in the different additivity criteria are provided below in the application
study section.

The GPDI model for multiple interaction partners. The GPDI model can be
extended to quantify drug interactions between drugs A to n by additional GPDI
model terms for each additional drug on each PD parameter θA,…,m (interaction
sigmoidicities HINT not displayed to ease readability):

θA;¼ ;m ´
Yn
i¼1

1þ INTA;n ´Cn

EC50INT;A;n þ Cn

� �
: ð9Þ

Hence, for three drugs A, B and C, the bi-directional GPDI model for EA is
formulated as follows:

EA ¼ EmaxA ´CHA
A

EC50A ´ 1þ INTAB ´CB
EC50INT;ABþCB

� �
´ 1þ INTAC ´CC

EC50INT;ACþCC

� �� �HAþCHA
A

: ð10Þ

If a drug modulates the interaction between two other drugs, another level of
interaction (modulation) using the GPDI model can be implemented. If drug C
modulates the interaction between A and B, the effect of drug A in presence of B
and C can be formulated as follows:

EA ¼ EmaxA ´CHA
A

EC50A ´ 1þ
INTAB ´ 1þ INTABjC ´CC

EC50INT;ABjCþCC

� �
´CB

EC50INT;ABþCB

0
@

1
A ´ 1þ INTAC ´CC

EC50INT;ACþCC

� �0
@

1
A

HA

þCHA
A

:

ð11Þ
The quantitative interpretation of the modulation parameter INTAB|C is

comparable to the interpretation of INTAB: a value of zero indicates no modulation,
a negative value between −1 and 0 indicates a positive modulation, and a value
between 0 and ∞ indicates and negative modulation of the interaction between A
and B.

One modulation level can be added for each additional drug, e.g., in our
example an additional GPDI model term of a fourth drug D on INTAB|C:

EA ¼ EmaxA ´CHA
A

EC50A ´ 1þ
INTAB ´ 1þ

INTABjC 1þ
INT ABjCð ÞjD ´CD

EC50INT; ABjCð ÞjDþCD

� �
´CC

EC50INT;ABjCþCC

0
@

1
A ´CB

EC50INT;ABþCB

0
BBBBB@

1
CCCCCA ´ ¼

0
BBBBBB@

1
CCCCCCA

HA

þCHA
A

:

ð12Þ

Parameterization of the GPDI model from experimental data. For estimation of
the GPDI model parameters from PD drug interaction studies, we propose the
following stepwise regression approach using, e.g., maximum likelihood estimation:
in the first step, the combination data is excluded from the analysis and solely the
single drug effects are characterized by Emax, EC50, and H.

In the second step, the single drug effect parameters are fixed and solely the duo
combination data is analyzed. A reduced GPDI model with a single interaction
parameter INT = INTAB = INTBA and EC50INT = EC50 is evaluated first. The
evolution from the reduced to the full GPDI model with all interaction parameters
is guided by goodness-of-fit evaluation and statistical significance. As reduced
GPDI models are nested within the full GPDI model, in maximum likelihood
estimation, the likelihood ratio test can guide if an additional GPDI parameter is
significant; i.e., a 3.84 drop in the objective function value is required to support
inclusion of an additional parameter at α = 0.05. For duo combination data, the
final mathematical model is obtained at this stage.

In the third step, if trio combinations are available, the parameters of the single
drug effects and the GPDI parameters from step two are fixed and modulator terms
(e.g., INTAB|C) are tested on the trio data. Inclusion of modulator parameters is
again guided by goodness-of-fit evaluation and statistical significance. Step three is
repeated for each additional drug that to estimate further modulator terms. In each

step, a reduced GPDI model, as outlined in step two, is tested first and expanded in
a stepwise manner.

In the final step, the parameters of the mathematical model identified in the
previous step are all unfixed and estimated to determine parameter precision.

Identifiability analysis of the GPDI model. To assess the structural identifiability
of the GPDI model parameters, we performed 1000 computer simulations in an 8
by 8 checkerboard design with concentration tiers ranging from 0 to 8 (arbitrary
concentration unit) in base 2 logarithmic steps. Model parameters of the Bliss
Independence-based GPDI model were randomly sampled from uniform dis-
tributions with Emax ∈ {0.5, 1.0}, EC50 ∈ {0.5, 2.0}, H ∈ {1.0, 4.0}, INT ∈ {−0.9,
−0.5} ∪ {0.5, 20}, and EC50INT ∈ {0.1, 1.0}. The standard deviation on effect level
was set to 0.03 resembling a typical variability observed as, e.g., in in vitro PD
interaction studies with antibiotics9. A linear dilution scheme was also assessed
where the EC50 values where placed in the 40–60% range of the highest con-
centration studied, while all other parameters were as described above. Anticipated
relative standard errors of the GPDI model parameters were calculated from the
expected Fisher information matrix FIM:

FIM ¼ 1
σ2

J � JT� �
; ð13Þ

where σ2 is the residual variance and J is the Jacobian, i.e., the matrix of first-order
derivatives with respect to the GPDI model parameters. Anticipated standard
errors were calculated from the square root of the diagonal elements of the inverse
FIM and normalized by the parameter value to obtain relative standard errors.

Comparison to conventional methods. A published data set by Cokol et al.23 was
used to evaluate the performance of the GPDI model and conventional methods.
The different models were fitted to the data set, the performance was evaluated by
goodness-of-fit (modeled vs. observed time-courses of the (combined) drug
effects), and the conclusions from the GPDI and conventional approaches were
compared.

The Cokol data set comprises 200 drug–drug combination scenarios evaluating
the growth of Saccharomyces cerevisiae under (joint) drug exposure of various
drugs in an 8 by 8 checkerboard fashion. A longitudinal growth model40 was
formulated as ordinary differential equation system and used to describe fungal
growth (measured by optical density (OD) at 600 nm, with OD=S1 + S2) over time
with klag, the delay rate constant to quantify lag of onset of fungal growth, kgrowth,
the rate constant for fungal growth being limited by the carrying capacity Bmax and
inhibited by the (joint) drug effect E:

dS1
dt

¼ �S1 ´ klag; ð14Þ

dS2
dt

¼ S1 ´ klag þ S2 ´ kgrowth ´ 1� S2
Bmax

� �
´ 1� Ecombð Þ: ð15Þ

The (joint) drug effect E was computed by the GPDI model implemented into
either Bliss Independence (Ecomb = EA+EB–EA·EB with EA and EB given in Eq. (1)
and Eq. (2)) or Loewe Additivity (Eq. (4)). PD interactions between the drugs in
the data set were captured using the competitive-type GPDI approach with
interaction parameters on the level of EC50 (Eq. (9)). Given that the read-out for
the antifungal effect was optical density, no alteration of the maximum effect was
visible as it occurred beyond the turbidity threshold; hence Emax was set to 1 ( =
full inhibition of growth) in the analysis of the Cokol data set and no allosteric
interactions could be evaluated.

Conventional approaches derived from Loewe Additivity and Bliss
Independence were also evaluated: The Greco model,24

1 ¼ CA

EC50A ´ E
EmaxA�E

� �1=HA
þ CB

EC50B ´ E
EmaxB�E

� �1=HB
;

þ / ´CA ´CB

EC50A ´EC50B ´ E
Emax�Eð Þ 1

2HA
þ 1
2HB

ð Þ
ð16Þ

in which PD interactions were quantified by an empirical factor α, in which α=0
indicated Loewe Additivity, α< 0 antagonism and α> 0 synergy, and

an empiric Bliss interaction model,23

E ¼ EA þ EB � β ´EA ´EB; ð17Þ

in which β=1 indicated Bliss Independence and β> 1 antagonism and β< 1
synergy were utilized, and EA and EB represent ordinary sigmoidal maximum effect
models.

Moreover, we compared the GPDI results against the Loewe Additivity-based
isobole analysis method performed in the original study23. In an isobole analysis,
the shape of an isobole, i.e., a line of the same effect, is analyzed. A linear isobole
indicates Loewe Additivity, an isobole bent towards the origin indicates synergy,
and vice versa antagonism. This curvature was quantified by a score parameter γ on
the longest isophenotypic curve on the checkerboard that used the area under the
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time-kill curve, normalized by the area of the growth curve as effect metric, with

γ ¼ log
x

1� x

� �
� log

y
1� y

� �
; ð18Þ

where x and y are MIC-normalized drug concentration and γ described the bend
of the isobole. γ=0 indicated linear isoboles, i.e., Loewe Additivity, and for γ< 0 or
γ> 0, synergy or antagonism, respectively, was determined.

Parameter estimation and data processing was performed in “R” (version 3.2.4,
R Foundation for Statistical Computing, Vienna, Austria). Differential equations
were solved using the “deSolve” package41,42 (version 1.13). To increase
performance, differential equations were encoded in C, compiled as dynamically
linked library (.dll) and linked to the “deSolve” interface. Model parameters were
estimated with “optim” from “stats” (version 3.2.4) using maximum likelihood
estimation. The GNU scientific library for C43 was used to provide root finding
functionality within the ODE system for the Loewe Additivity models.

The results of the GPDI models and conventional models were compared
regarding their performance by comparing modeled vs. observed time-courses of
the anti-fungal effects. The AIC was calculated as an objective measure of model fit.
Moreover, the classification result of the GPDI models and conventional models,
i.e., if an interaction was additive, antagonistic or synergistic was assessed.
Therefore, the result of estimated interaction parameters INTAB and INTBA were
plotted normalized to the EC50 of the perpetrator drug. Positive INT values
indicated antagonism; negative INT values indicated synergy and INT parameters
are of opposite polarity indicated asymmetric PD interactions where the apparent
synergy or antagonism is a function of the concentration. The classification result
of the conventional approaches was mapped to this INTAB–INTBA plot by color
coding.

Network analysis. For visualization of the interactions, we chose a network plot
with vertices being the drugs and the directed edges representing the detected
directed interactions in the data set. In order to focus on the important interac-
tions, the INT values of the victim drug at EC50 of the perpetrator drug being
outside the additivity margin from both the Loewe-Additivity- and Bliss-
Independence-based GPDI analysis were exclusively joined, i.e., only the interac-
tion sticking out from both additivity criteria were displayed. The “igraph”-pack-
age44 (version 1.0.1) in “R” was used for creating this network. The drugs were
profiled for perpetrator and victim behavior.

Code availability. The model code of the GPDI model in the “R” language is
provided as Supplementary Software 1.

Data availability. The utilized data set in the present work has been previously
published by Cokol et al.23 and can be accessed in the supplement of their
publication.
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