Skip to main content
. 2015 Sep 25;2(4):224–232. doi: 10.1016/j.ajur.2015.08.007

Table 3.

Multivariate logistic regression models predicting PCa in patients undergoing biopsy.

Model Covariates B SE OR 95%CI of OR
p-Value
INF SUP
A Age 0.055 0.013 1.056 1.030 1.084 <0.0001
CII −1.693 0.295 0.184 0.103 0.328 <0.0001
Intercept −3.478 0.867 0.031 <0.0001
B Age 0.058 0.13 1.060 1.033 1.088 <0.0001
CII × age −0.025 0.04 0.975 0.967 0.984 <0.0001
Intercept −3.714 0.870 0.024 <0.0001
C PSA 0.086 0.029 1.090 1.030 1.153 0.003
CII −1.666 0.293 0.189 0.106 0.336 <0.0001
Intercept −0.447 0.220 0.639 0.042
D PSA 0.118 0.032 1.125 1.056 1.198 <0.0001
CII × PSA −0.188 0.038 0.829 0.769 0.893 <0.0001
Intercept −0.714 0.231 0.489 0.002
E PV −0.050 0.007 0.952 0.938 0.966 <0.0001
CII −1.581 0.305 0.206 0.113 0.374 <0.0001
Intercept 2.068 0.302 7.913 <0.0001
F PV −0.045 0.007 0.956 0.943 0.970 <0.0001
CII × PV −0.037 0.008 0.964 0.948 0.980 <0.0001
Intercept 1.839 0.293 6.285 <0.0001

PCa, prostate cancer; PSA, prostate specific antigen; PV, prostate volume; CII, chronic inflammatory infiltrate; B, regression coefficient; SE, standard error; OR, odds ratio.