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Abstract
Cellular senescence has emerged as a potent tumor suppression mechanism
that restrains proliferation of cells at risk for malignant transformation. Although
senescent cells have permanently exited the cell cycle, their presence can
have detrimental effects on the surrounding tissue, largely due to the
development of the senescence-associated secretory phenotype (SASP).
Here, we review the tumor-suppressive and tumor-promoting consequences of
the senescence response, focusing on the SASP as a key mediator of this
dichotomy. Accumulating evidence suggests that the persistence of senescent
cells can exacerbate the development of a pro-inflammatory,
immunosuppressive microenvironment that can favor tumorigenesis. Given that
senescence of tumor and stromal cells is a frequent outcome of anti-cancer
therapy, approaches that harness the growth inhibitory effects of senescence
while limiting its detrimental effects are likely to have great clinical potential.
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Introduction
Limiting the unrestrained proliferation of tumor cells is a  
primary goal of anti-cancer therapies. Decades of study on cell 
cycle control and cell cycle arrest have yielded great insight into 
normal checks on proliferation as well as their dysregulation  
during tumorigenesis. Cellular senescence has emerged as a  
multi-dimensional mechanism of proliferative arrest that has  
pleiotropic effects on a variety of physiological and pathological 
processes, including but not limited to tumorigenesis. It is now 
appreciated that senescent cells are beneficial in tissue remod-
eling during embryogenesis (reviewed in 1) and wound healing  
(2, reviewed in 3) and are capable of conferring senescent  
phenotypes on neighboring cells in a process termed bystander 
senescence4. Accumulation of non-proliferative cells over time  
also has implications for tissue homeostasis, and cellular senes-
cence is now understood to be an important driver of age-related 
pathologies (reviewed in 5).

The process of cellular senescence has long been recognized as 
an intrinsic mechanism that limits the proliferative life span of  
normal cells6. Senescence is a state of permanent cell cycle  
arrest in which cells remain viable and metabolically active but 
non-proliferative, even under mitogenic stimulation. Intrinsic, or  
replicative, senescence is a characteristic of all somatic cells and  
has been observed in many vertebrate species, including rodents, 
non-human primates, and humans5,7,8. Senescence was first 
described in human diploid cells as a response to prolonged  
culture6 and later during growth under high-oxygen conditions9, 
which initially raised the question of whether senescence was 
exclusively an in vitro phenomenon. To date, copious demonstra-
tions of senescence in vivo in both normal and diseased tissue 
have made clear that this process is biologically relevant. It is now 
understood that while senescence induction is a potent barrier to 
tumorigenesis in vivo, the presence and persistence of senescent 
cells can have deleterious effects that contribute to aging and  
age-related pathologies, particularly cancer5. This dual nature 
of the senescence response, often referred to as a ‘double-edged  
sword’, demands careful analysis of risks versus benefits of  
senescence as a goal of anti-cancer therapies.

Senescence stimuli and effector pathways
The senescence program can be activated in normal, pre- 
neoplastic, and malignant cells in response to a wide variety 
of stimuli. In proliferating somatic cells that lack telomerase 
expression, replicative senescence occurs as a result of pro-
gressive telomere attrition with each subsequent cell division. 
Critically short uncapped telomeres are recognized as DNA  
double-strand breaks, activating a classic DNA damage response 
(DDR)10–12. Senescence can also be induced independent of tel-
omere dysfunction in response to potentially oncogenic stresses. 
Genotoxic stress as a result of reactive oxygen species (ROS) 
generation or exposure to radiation or DNA-damaging agents can 
also induce the senescence program through the DDR or via p38  
MAPK/PRAK signaling13,14, thereby halting the proliferation  
of cells harboring mutations or genomic instability. While senes-
cent cells are known to be metabolically active, only recently 
have alterations in cellular metabolism been causally linked to 
the establishment of the senescent state. Accumulating evidence  

indicates that metabolic reprogramming occurs in cells undergo-
ing senescence in response to shortened telomeres (replicative 
senescence) or activated oncogenes (reviewed in 15). Oncogene- 
induced senescence (OIS) occurs in response to aberrant hyper-
proliferative signaling downstream of activated oncogenes  
(for example, RAS, BRAF, and MYC)16–19. OIS is a potent tumor 
suppression mechanism that prevents malignant transformation of 
pre-neoplastic cells, both in genetic mouse models and in human 
cancers. Perhaps the most well-studied example of OIS is the 
formation of benign cutaneous melanocytic nevi (moles), which 
are composed of senescent melanocytes harboring the oncogenic 
BRAFV600E/K mutation19. Malignant transformation of melanocytes 
requires additional mutations that either prevent or bypass OIS,  
further underscoring the importance of senescence as a potent 
tumor-suppressive barrier.

Disruption in higher-order chromatin structure or chromo-
some ploidy is capable of inducing senescence, including whole  
chromosome instability (W-CIN) and histone deacetylase  
inhibition20–22. Mitochondrial dysfunction was recently identi-
fied as a novel stimulus of senescence both in vitro and in vivo. In 
human IMR-90 fibroblasts, loss of mitochondrial sirtuins (SIRT3 
and SIRT5) triggers mitochondrial dysfunction-induced senes-
cence (MiDAS). In these cells, MiDAS is mediated through a  
NAD/AMPK/p53 axis that does not involve oxidative stress 
or nuclear DNA damage23. Furthermore, in a rodent model of  
mitochondrial dysfunction, POLGD257A mice harboring a mutation 
in the proofreading domain of mitochondrial DNA polymerase  
PolG accumulate senescent cells with a similar MiDAS  
phenotype23. It is important to note that while all senes-
cence stimuli induce irreversible cell cycle arrest, the effector  
pathways and resulting senescent cell phenotypes are highly  
context-dependent.

At the molecular level, senescence is regulated by a multitude 
of signaling pathways1 that are activated in response to distinct  
senescence stimuli. However, induction and maintenance of  
senescence ultimately impinge on two critical tumor suppressor 
pathways governed by p16INK4a/pRb and p53/p21. Sustained acti-
vation or overexpression of these cell cycle regulators or their 
downstream effectors induces senescence in experimental model 
systems24,25. The near ubiquitous disruption of these pathways 
in tumors and the increased cancer susceptibility arising from  
germline mutations in p53 and p16INK4a highlight the importance  
of senescence as a tumor suppression mechanism26–28.

While inhibition of proliferation early in senescence results  
from cell cycle checkpoint activation, the stable irreversibility 
of the senescent state appears to be due, in part, to changes in  
higher-order chromatin structure. Senescence-related chromatin 
structures are a feature of some, but not all, senescent cells, and 
the formation of each structure is likely to be influenced by cell 
type, species, and senescence stimulus. Senescence-associated  
heterochromatic foci (SAHFs) were first observed in senescent 
human fibroblasts in vitro and may function to lock proliferative 
genes into transcriptionally inactive constitutive heterochromatin29,30.  
SAHF formation requires a functional p16/Rb unit and is modu-
lated by the histone chaperone proteins histone repressor A 
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(HIRA) and anti-silencing factor 1a (ASF1a)31–33. More recently, 
senescence-associated distension of satellites (SADS) has been 
documented during both replicative senescence and OIS as well 
as in benign pancreatic intraepithelial neoplasia34. Stable chro-
matin changes in response to DDR-induced senescence have also 
been identified in ‘DNA segments with chromatin alterations  
reinforcing senescence’ (DNA-SCARS) that contribute to the 
maintenance of cell cycle arrest and secretion of the inflamma-
tory cytokine interleukin-6 (IL-6). These SCARS, which are  
conserved in human and mouse cells, may represent organiz-
ing centers of persistent DDR signaling that further reinforce the  
senescence response35.

The senescence-associated secretory phenotype 
and the double-edged sword of senescence
It is now appreciated that senescence is more multi-dimensional 
than simply permanent cell cycle arrest. During the establish-
ment of the senescent state, cells undergo complex and dynamic  
changes in morphology, metabolism, chromatin organiza-
tion, and transcription. In response to many, but not all, stimuli, 
senescent cells develop a senescence-associated secretory phe-
notype (SASP)36,37. Also known as the senescence-messaging  
secretome38, the SASP is composed of more than 40 secreted 
factors, including mitogens, immunomodulatory chemokines 
and cytokines, extracellular matrix (ECM)-remodeling pro-
teases (matrix metalloproteinases), and ECM/insoluble proteins  
(reviewed in 39). Not all SASP components are upregulated in 
every senescent cell, and the precise complement of SASP fac-
tors depends on both the cell type and nature of the senescence 
stimulus36,39. Upregulation of SASP gene expression is modulated 
by several factors, including nuclear factor kappa B (NF-κB),  
c/EBPβ, and GATA440–45. A mechanistic link between chro-
matin remodeling during senescence and induction of SASP 
genes was recently identified in human fibroblasts undergoing 
OIS in response to oncogenic HRAS46. Chromatin immunopre-
cipitation-sequencing (ChIP-Seq) analysis of proliferating, qui-
escent, or senescent IMR90 fibroblasts using H3K27Ac as a 
marker of active enhancers identified a subset of super-enhancers  
activated during senescence that correlate with a SASP transcrip-
tional profile46. Enrichment of the transcriptional co-activator  
BRD4 was both observed at senescence-activated enhancers and 
required for induction of the SASP during OIS46. As the complex 
nature of the SASP continues to be delineated, it is likely that  
additional mechanisms of crosstalk between effector pathways  
of senescence will be uncovered.

The ability of the SASP to exert paracrine effects on neighbor-
ing cells is central to the dual nature of senescence. Whether  
these effects are beneficial or detrimental is highly context- 
dependent, influenced by the nature of the senescence stimulus,  
cellular context, and duration and composition of the SASP 
response. Autocrine reinforcement of the senescent growth 
arrest is accomplished through the activities of multiple SASP  
components47–49 as well as through the activation of inflamma-
tory networks and chemokine signaling45,50. The SASP can exert 
its tumor-suppressive effects in a non-cell-autonomous manner 
by attracting and activating immune cells to generate both an 
innate and adaptive anti-tumor immune response. Recruitment and  

activation of T cells and natural killer (NK) cells to the tumor 
microenvironment or altered polarization of macrophages results 
in elimination of senescent or damaged cells47,51–53 in a process  
termed ‘senescence surveillance’. Senescence surveillance of 
tumor cells has been shown to restrain tumorigenesis in a mouse  
model of hepatocellular carcinoma. Secretion of cytokines by 
senescent pre-malignant hepatocytes driven to OIS by NRASG12V 
expression resulted in immune clearance of senescent cells,  
dependent upon antigen-specific CD4+ T cells48. Furthermore, 
disabling immune surveillance of senescent hepatocytes in 
severe combined immunodeficient (SCID) mice was sufficient to  
promote development of liver cancer48.

The pro-tumorigenic effects of senescence are believed to 
be largely due to deleterious influences of the SASP on  
pre-malignant cells as well as on the tumor microenvironment. 
Senescent stromal cells are a rich source of secreted growth  
factors that can stimulate the proliferation of nearby parenchy-
mal cells. Senescent fibroblasts have been shown to promote 
growth of pre-malignant and malignant breast epithelial cells,  
prostate epithelial cells, keratinocytes, and melanocytes36,54. 
While the SASP is known to have beneficial roles in facilitating 
tissue repair through the activity of ECM-degrading proteases55,  
remodeling of the ECM can relax the structure of the tumor 
microenvironment, potentially favoring tumor cell motility, inva-
sion, and metastasis. In addition to enhancing the invasiveness of  
epithelial cell types through the secretion of chemokines and  
matrix-degrading proteases, senescent stromal cells can induce 
an epithelial-to-mesenchymal transition that is classically associ-
ated with neoplastic progression56,57. Induction of the SASP has 
also been shown to promote metastasis of breast cancer cells to 
the bone58. Using the fibroblasts accelerate stromal-supported  
tumorigenesis (FASST) mouse model, in which tamoxifen- 
inducible Cre is used to conditionally drive p27KIP1-dependent 
senescence under the control of tissue-specific promoters, Luo 
et al. demonstrated that senescent osteoblasts created a favorable 
microenvironment for seeding of murine breast tumor cells, thus 
enhancing their metastasis to the bone58. Tumor cell dissemina-
tion required the SASP factor IL-6, as intracardiac injection of  
IL-6-neutralizing antibodies resulted in a striking reduction in  
metastatic tumor burden58.

As discussed above, secretion of inflammatory cytokines and 
immune modulatory SASP components by senescent cells is 
central to the immune surveillance branch of tumor suppression.  
However, cytokines released by senescent cells can also contribute 
to the generation of an immunosuppressive microenvironment that 
favors tumor outgrowth. Mice exhibiting conditional Pten loss 
in the prostatic compartment develop invasive adenocarcinoma  
despite the induction of a strong senescence response59. Although 
the Pten loss-induced cellular senescence was accompanied  
by a SASP that included chemoattractant cytokines, the result-
ing tumors exhibited infiltration by CD11b+Gr1+ myeloid-derived  
suppressor cells that inhibited proliferation of CD8+ cytotoxic 
T cells and activation of NK cells, thus creating an immunosup-
pressive, pro-tumorigenic microenvironment59. Using the FASST 
mouse model to drive p27KIP1-dependent senescence in the  
stromal compartment of the skin, Ruhland et al. demonstrated that 
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senescent stromal cells drive inflammation, consistent with the 
development of a pro-inflammatory/SASP gene expression profile, 
likely through enhanced infiltration of immunosuppressive  
myeloid cells and reduced cytolytic CD8+ T cell responsiveness60. 
The resulting immunosuppressive microenvironment was shown 
to promote tumor cell growth, dependent upon the production of  
IL-6 by the senescent stroma60.

It is important to note that the immunosuppressive effects of  
senescence are not limited to senescent tumor or stromal cells. 
Accumulating evidence indicates that immune cell senescence 
contributes to suppression of anti-tumor immunity, thus facili-
tating immune escape. Senescence of responder naïve/effector  
T lymphocytes can be induced in vitro by regulatory T cells  
(Tregs) as well as tumor cell lines and primary tumor cells61,62. 
At the molecular level, induction of T cell senescence by Tregs 
is governed by the p38 and ERK1/2 branches of the MAPK  
signaling pathway61, while tumor cells can elicit a senescent  
phenotype in naïve/effector T cells through intercellular transfer  
of cAMP which can be inhibited via ILR8 signaling62. Thus,  
while senescence is intrinsically growth-suppressive as a result 
of permanent mitotic exit, in many cases immune suppression,  
whether driven by the SASP, immune cells, or tumor cells, may 
prime the tumor microenvironment to promote the outgrowth of 
increasingly malignant cells.

Therapy-induced senescence: friend or foe?
Senescence can suppress tumorigenesis not only by limiting 
the malignant transformation of pre-neoplastic cells but also by 
halting the proliferation of tumor cells. In addition to apoptosis,  
senescence of tumor (and stromal) cells is induced by many  
therapeutic approaches, including radiation, chemotherapeutics, 
and small-molecule inhibitors. Strategies for therapy-induced 
senescence (TIS) can be divided into three broad categories:  
(a) activation of DDR-related senescence by radiation or genotoxic  
chemotherapeutics, (b) re-activation of senescence-mediated  
tumor suppressor genes, and (c) cytokine-induced senescence 
(CIS).

DNA-damaging agents are well known to induce senescence 
in tumor cells; however, most standard genotoxic chemothera-
peutic regimens have proven unsuccessful in curing patients  
of their disease. While increased mutational load in tumor cells  
surviving genotoxic chemotherapy may contribute to chemore-
sistance, accumulating evidence suggests that chemotherapy- 
induced DNA damage can have unintended tumor-promoting  
consequences related to DDR-induced senescence and stromal 
effects of chemotherapy. The SASP was first defined as essen-
tially a DDR response36; therefore, it is plausible that standard  
chemotherapies could induce a potentially deleterious SASP. 
Using the Eμ-myc model of Burkitt’s lymphoma, Gilbert and 
Hemann showed that doxorubicin induced a senescence response 
in the thymic stroma accompanied by an acute increase in thymic 
IL-6 levels in non-tumor-bearing mice and lymphoma-bearing  
mice63. Moreover, doxorubicin-induced IL-6 secretion was found 
to be chemoprotective in hepatocellular carcinoma cells, and  
chemoprotection could be ameliorated by inhibition of Jak2/3  
signaling downstream of IL-663.

Numerous genetic mouse models have been used to achieve tumor 
regression by activating senescence mediators or de-activating 
oncogenes (reviewed in 64). Tumor cell senescence can be induced  
by re-activation or re-expression of p53, inactivation of Myc or  
Bcr-Abl, and Pten inhibition59,65,66, all of which have been shown 
to potentiate growth inhibition or tumor regression. Given the 
frequency with which the p16INK4a/pRb and ARF/p53 functional 
units are disrupted in tumor cells, pharmacological inhibition 
of upstream negative regulators of pRb and p53 is an attractive  
therapeutic approach. The last several years have seen the advent 
of targeted cyclin-dependent kinase 4 and 6 (cdk4/6) inhibi-
tors. Cdk4 and cdk6 function as negative regulators upstream 
of pRb to promote cell cycle progression, and loss of p16INK4a  
function can lead to enhanced Cdk4/6 pathway activation67. 
Three selective cdk4/6 inhibitors performed well in clinical trials: 
LEE011/ribociclib/Kisqali (Novartis), palbociclib (IBRANCE, 
Pfizer Inc.), and abemaciclib (Eli Lilly and Company). Palboci-
clib was granted accelerated US Food and Drug Administration 
(FDA) approval in combination with letrozole for the treatment 
of estrogen receptor-positive, HER2-negative breast cancer68,  
followed by breakthrough approval of abemaciclib and most  
recently FDA approval of ribociclib/Kisqali for similar indica-
tions as combinatorial therapy. Palbociclib has been shown to 
induce tumor cell senescence in several pre-clinical models69–73. 
Although there is currently no clinical evidence that palbociclib-
induced senescence could promote tumorigenesis, co-injection of 
fibroblasts induced to senesce by palbociclib has recently been 
shown to potentiate in vivo growth of mouse melanoma cells74.  
Of note, the authors demonstrated that palbociclib-induced  
fibroblast senescence is accompanied by robust induction of  
the SASP that is mediated by NF-κB but does not involve the 
DDR74.

In contrast to cell-autonomous mechanisms of TIS induced 
by genotoxic stress or re-activation of growth-suppressive  
pathways, CIS limits tumor cell proliferation through non-cell-
autonomous pathways. In β-cancer cells lacking functional pRb 
and p53 due to expression of SV40 T-antigen under the control  
of the rat insulin promoter (RIP-Tag), T

H
1 cytokines interferon 

gamma (IFN-γ) and tumor necrosis factor (TNF) induce senes-
cent growth arrest in vitro, accompanied by restoration of func-
tional p16INK4A/pRb75. Adoptive transfer of T antigen–specific T

H
1  

cells also induced senescence of tumor cells in vivo, resulting in 
reduced tumor burden75. Likewise, tumor-targeted IL-12 induced 
both cytolytic killing and senescent growth arrest of human  
rhabdomyosarcoma xenografts in lethally irradiated mice recon-
stituted with a humanized immune system76. The identification  
of CIS as a tumor-suppressive mechanism indicates a novel,  
non-cytolytic role for the immune system in restraining tumor  
cell proliferation.

Unlike apoptotic cells that are readily cleared by the immune  
system, TIS cells that are not removed by the immune system 
may accumulate over time. TIS cells share many similarities with  
senescent cells induced by non-chemotherapeutic stimuli, and  
persistent senescent cells indeed may be a reservoir for pro- 
inflammatory and pro-tumorigenic SASP mediators36,77. The  
relationships between persistent TIS cells and response to chem-
otherapy and disease outcome were examined in a recent study 
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using p16-3MR mice, in which p16INK4A-positive senescent cells 
can be selectively ablated using ganciclovir77,78. Chemotherapeutic  
agents with varying mechanisms of action were all shown to 
be capable of inducing TIS in vivo, and removal of senescent 
cells with ganciclovir five days after administration of doxo-
rubicin ameliorated the expression of pro-inflammatory SASP 
components induced by chemotherapy. Importantly, removal of 
senescent cells in the p16-3MR mouse model limited not only  
chemotherapy-induced fatigue but also tumor relapse and metas-
tasis. Additionally, the prevalence of p16INK4A-positive senescent 
cells in peripheral blood T cells obtained from women prior to 
undergoing chemotherapy for breast cancer successfully predicted 
risk of chemotherapy-related fatigue78. This elegant study provides  
further impetus for the development of senolytic compounds to 
selectively target senescent cells or the SASP itself78,79.

Potential strategies for ameliorating the deleterious effects of 
senescence have been proposed80–83 with the overall goal of main-
taining the anti-proliferative effects of senescence while harness-
ing the pro-tumorigenic activities of the SASP. Broadly speaking, 
these approaches include selectively targeting and eliminating  
senescent cells, preventing the development of the SASP, or  
targeting the SASP in existing senescent cells (reviewed in 80). 
The recently developed senolytic compound ABT-263 (navitoclax) 
is a potent inhibitor of BCL2 and BCL-XL that induces caspase- 
dependent apoptosis of senescent cells. Selective removal of  
senescent cells by navitoclax has been shown to rejuvenate the 
hematopoietic stem cells and muscle stem cell compartments in 
aged or lethally irradiated mice79; however, the clinical use of this 
potent senolytic thus far has been limited by its thrombocytopenic 
effects84. Modulation of the SASP has yielded promising results 
in Pten-null mouse prostate tumors, in which prostate-specific  

genetic ablation of Stat3 reduced expression of tumor-suppressive  
chemokines while sparing expression of chemoattractants59.  
Although combined Pten and Stat3 deficiency did not prevent  
tumorigenesis, tumors that did develop were smaller and less  
invasive, with increased infiltration of immunostimulatory  
CD8+ T cells, NK cells, and B cells59. The work of Toso et al.  
provides in vivo proof of principle that the pro-tumorigenic  
effects of senescence can be manipulated toward a tumor- 
suppressive phenotype59.

Conclusions
Given that senescence can act as a double-edged sword in  
tumorigenesis, it is imperative to consider its dual nature in the 
design and use of senescence-inducing anti-cancer therapies. 
Future studies aimed at uncoupling the detrimental effects of  
senescence from its anti-proliferative effects may permit fine- 
tuning of the senescence response to favor good clinical outcomes. 
A deeper understanding of the molecular and immunological  
contexts that determine a tumor-suppressive versus a tumor- 
promoting SASP will aid in the development of senescence- 
targeting therapies. Combination therapies consisting of a TIS arm 
to halt tumor cell proliferation and a senolytic arm to rein in the 
SASP through removal of senescent cells may ultimately be of 
great clinical benefit.
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