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Abstract
Objective  Metformin is the recommended initial 
drug treatment in type 2 diabetes mellitus, but there 
is no clearly preferred choice for an additional drug 
when indicated. We compare the counterfactual drug 
effectiveness in lowering glycated hemoglobin (HbA1c) 
levels and effect on body mass index (BMI) of four diabetes 
second-line drug classes using electronic health records.
Study design and setting  Retrospective analysis of 
electronic health records of US-based patients in the 
Explorys database using causal inference methodology to 
adjust for patient censoring and confounders.
Participants and exposures  Our cohort consisted of 
more than 40 000 patients with type 2 diabetes, prescribed 
metformin along with a drug out of four second-line drug 
classes—sulfonylureas, thiazolidinediones, dipeptidyl 
peptidase 4 (DPP-4) inhibitors and glucagon-like peptide-1 
agonists—during the years 2000–2015. Roughly, 17 000 
of these patients were followed for 12 months after being 
prescribed a second-line drug.
Main outcome measures  HbA1c and BMI of these 
patients after 6 and 12 months following treatment.
Results  We demonstrate that all four drug classes 
reduce HbA1c levels, but the effect of sulfonylureas 
after 6 and 12 months of treatment is less pronounced 
compared with other classes. We also estimate that DPP-4 
inhibitors decrease body weight significantly more than 
sulfonylureas and thiazolidinediones.
Conclusion  Our results are in line with current knowledge 
on second-line drug effectiveness and effect on BMI. They 
demonstrate that causal inference from electronic health 
records is an effective way for conducting multitreatment 
causal inference studies.

Introduction
Type 2 diabetes mellitus (T2DM) affects more 
than 29 million people in the USA and is the 
seventh leading cause of death.1 2 The Amer-
ican Diabetes Association Standards of Medical 
Care,3 supported by several studies,4 5 recom-
mends dietary changes and physical exercise 
as the initial treatment, followed by adminis-
tration of metformin if lifestyle changes fail 
to reach glycemic control. According to the 
Standards of Medical Care, if metformin does 
not achieve glycemic target within 3 months, 
one of the following six second-line medica-
tions should be added: sulfonylureas (SU), 

thiazolidinediones (TZD), inhibitors of 
dipeptidyl peptidase 4 (DPP-4), glucagon-like 
peptide-1 receptor agonists (GLP-1), sodi-
um-glucose cotransporter 2 (SGLT2) inhibi-
tors or insulin. Currently, the guidelines do 
not prefer one class over the others. The 
effectiveness, costs and risk of complication of 
those drug classes were compared in clinical 
trials6 and meta-analyses of their results.7–9 
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Significance of this study

What is already known about this subject?
►► The effects of type 2 diabetes second-line drugs on 
glycosylated hemoglobin levels and on body mass 
index (BMI) have been evaluated in clinical studies. 
However, the clinical implication of these studies is 
limited by small number of participating individuals 
and the homogeneity of the study populations.

►► Meta-analysis studies have increased sample size 
but potentially suffer from similar homogeneity 
biases.

What are the new findings?
►► This study performs, for the first time, a large-scale 
analysis of the therapeutic and adverse effects of 
type 2 diabetes second-line drugs in real-world 
population using electronic health records.

►► We confirm current knowledge for glycosylated 
hemoglobin levels, while showing better effects on 
decreasing BMI for inhibitors of dipeptidyl peptidase 
4 (DPP-4).

How might these results change the focus of 
research or clinical practice?

►► Our results show that while sulfonylureas are 
the most commonly prescribed second-line 
drugs, their estimated reduction in glycosylated 
hemoglobin levels is significantly smaller than 
the estimated effects of thiazolidinediones, 
glucagon-like peptide-1 agonists or DPP-4 
inhibitors. DPP-4 inhibitors also show significant 
reduction of BMI compared with sulfonylureas and 
thiazolidinediones.

►► We demonstrated that causal inference methods 
can confirm and expand current knowledge in a 
cost-effective way and should gain increased focus 
when addressing epidemiological questions.
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These comparisons found no significant difference in 
drug class effect on the percentage of blood glycated 
hemoglobin (HbA1c); thus, no specific recommendation 
about the choice of a second drug could be made.10 

Notably, clinical trials are laborious and costly. Trials 
often include small samples with limited representative-
ness of the target population (eg, between 2005 and 2012, 
the Food and Drug Administration approved drugs based 
on a median number of 2 clinical trials and the median 
number of patients enrolled was 76011). Meta-analyses of 
clinical trials may have higher power and be more gener-
alizable, but are also vulnerable to publication bias, small-
study effects and limited degree of heterogeneity.12

Electronic health records (EHRs) hold promise as an 
alternative approach to conduct causal inference exper-
iments that can address some of these imitations.13 14 
Specifically, secondary use of EHRs requires lower costs, 
can scale to a large number of patients and better 
represents the heterogeneity in the population. There are 
trade-offs to using the EHR approach, and such analyses 
may suffer from three major limitations: First, patients 
may get treatment outside the institutions included in 
the EHR, resulting in missing and fragmented data.15 
Second, confounders play a crucial role in effect size esti-
mation and their identification is challenging.16 Third, 
differences in protocols or adoption rate for new medica-
tions across institutions may obscure true effect size and 
might not be generalizable beyond the database from 
which they are derived.17

Here, our aim is to compare the effects of T2DM 
second-line drugs using a real-world evidence approach. 
We emulate a multiarm clinical trial of four classes of 
drugs for diabetes, commonly used as second-line treat-
ment (SU, TZD, DPP-4 and GLP-1). We compare the 
counterfactual (ie, potential) effectiveness (in terms of 
HbA1c levels) and body mass index (BMI) outcomes of 
17 082 patients over the course of 12 months, adjusting 
for confounders and censoring (additional 23 789 
patients). For reference, a recent meta-analysis of antidi-
abetes drugs8 was based on data of about 18 000 patients. 
We describe the measures we have taken to address the 
aforementioned limitations of causal inference from 
EHR data. Our results are in line with current knowl-
edge, thus demonstrating that causal inference from 
EHRs is an effective way for conducting multitreatment 
causal inference studies.

Research design and methods
Study design
Data source
We used the Explorys database (IBM), which includes 
EHR records of approximately 50 million patients, pooled 
from multiple different healthcare systems in the USA. 
Data consist of a combination of clinical EHRs, health-
care system outgoing bills and adjudicated payor claims, 
are standardized and normalized using common ontol-
ogies, including SNOMED and The National Drug File 

- Reference Terminology, and are searchable through a 
Health Insurance Portability and Accountability Act of 
1996-enabled, de-identified database tools. The EHR 
data include patient demographics, diagnoses, proce-
dures, prescribed drugs, vitals and laboratory values.

Cohort definition
We defined a cohort of patients with T2DM based on 
the Northwestern University diabetes phenotyping algo-
rithm,18 comprising 40 871 patients, using the following 
criteria:

Inclusion criteria
Our analysis considered T2DM patients, identified by 
having at least two types of evidence for T2DM, out of 
T2DM diagnosis, T2DM-specific drugs, and indicative 
lab values (fasting and random glucose or HbA1c levels). 
We included only patients who were first prescribed 
metformin and subsequently prescribed, during the years 
2000–2015, a second-line drug belonging to any of four 
classes: SU, TZD, inhibitors of DPP-4 and GLP-1 agonists 
(online supplementary table 1 lists drugs for each drug 
class).

The first prescription with order status marked as 
completed (ie, that it was not canceled or erroneous) 
of the second-line drug was considered the ‘index-date’ 
(emulating the date of intervention allocation and initia-
tion in clinical trials).

We required the patients to have at least 12 months of 
documented pretreatment observation period prior to 
the index date.

Exclusion criteria
Patients with type 1 diabetes mellitus, identified by either 
a type 1 diabetes diagnosis code or prescription of pram-
lintide (approved also for patients with T2DM who use 
insulin), as well as patients prescribed more than one 
second-line drug classes on the index date were excluded 
from the analysis. Our analysis did not include the 
following three second-line medications: SGLT2 inhibi-
tors, meglitinides and α-glucosidase inhibitors due to the 
low number of patients receiving it within our data (185, 
429 and 153 patients with available HbA1c measurements, 
respectively). We did not compare insulin because it is 
not commonly considered as the first choice for second-
line therapy in clinical practice; it is also administered to 
patients with more advanced or severe disease than oral 
agents1; and patient acceptance of insulin often involves 
unique psychological and social factors that are not part 
of our cohort data, nor usually recorded in the EHR. 
These factors are likely to be important confounders 
and no analysis that uses this type of data could adjust 
for them.

Outcomes and follow-up time
As outcomes, we used HbA1c and BMI at two follow-up 
periods, 6 and 12 months after the index date. We aver-
aged the HbA1c and BMI over ±3 month windows for 
each period (3–9 months for the first follow-up period 
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Figure 1  Illustration of the causal inference scheme. (A) 
Index date is the first prescription of diabetes second-line 
drug after use of metformin. (B) Potential censoring events 
include switching to another second-line drug, missing 
glycated hemoglobin (HbA1c) or body mass index (BMI) 
measurement, or undergoing bariatric surgery. (C) Outcomes 
(HbA1c and BMI) are checked after 6 and 12 months from 
index date. (D) Follow-up ends after 15 months.

Table 1  Descriptive statistics of patients on T2DM second-line drug classes for the HbA1c outcome

Drug class Patients (n) Treatment change* Missing outcome* Average age† % Female*

Sulfonylurea 26 684 4336 (16%, 3e−152) 12 269 (46%, –) 61.2 (2e−98) 47.7% (2e−15)

Thiazolidinedione 4794 1145 (24%, 2e−12) 2235 (47%, –) 59.6 (0.001) 48.2% (–)

Glucagon-like peptide-1 
receptor agonists

1532 398 (26%, 4e−9) 735 (48%, –) 52.8 (5e−113) 66.6% (3e−44)

Dipeptidyl peptidase 4 7861 2314 (29%, 3e−118) 3405 (43%, 5e−6) 58.9 (2e−32) 51.1% (8e−5)

Per-confounder statistics appear in online supplementary table 2.
*Proportion test. Missing entries (–) are not significant with FDR <0.05.
†Wilcoxon rank-sum test. Missing entries (–) are not significant with FDR <0.05.
FDR, false discovery rate; HbA1c, glycated hemoglobin; T2DM, type 2 diabetes mellitus.
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and 9–15 months for the second; figure 1). We chose a 
12-month pretreatment observation period to ensure that 
the second-line drug is prescribed for the first time as, 
for example, 99% of patients receiving SU have prescrip-
tion period <12 months. It also balances the need for a 
complete and stable baseline (ie, longer period) with the 
need to include more patients and avoid bias due to exclu-
sion of patients with relatively limited histories in our 
data (ie, a shorter period). We chose follow-up periods 
of 6 and 12 months (averaging over ±3 month windows, 
resulting in 15 months in total) since they provide a 
good estimate of the short to intermediate effects of the 
drugs and correspond to the majority of random clinical 
trial follow-up time interval.6 8 We required each patient 
to have at least one HbA1c measurement during the 
pretreatment observation period.

Analysis methods
We considered two potential biases: (1) selection bias 
due to censoring; and (2) confounders, affecting both 
treatment choice and measured outcome (HbA1c levels 
or BMI).

In order to handle these two biases, we extracted 
patient characteristics within the pretreatment 

observation window using the feature engineering frame-
work of Ozery-Flato et al.19 The comprehensive set of 
features included demographic information (age, sex, 
ethnicity), insurance type, patient-aggregated diagnoses 
using Clinical Classifications Software categories, catego-
ries of Charlson20 and Elixhauser comorbidity indexes,21 
prescribed drugs (active ingredients), and laboratory 
results values over the baseline period. Diagnosis codes 
and drugs are binary features (measuring the existence 
of a diagnosis or a drug prescription for that patient). 
Categorical features, such as insurance type or ethnicity, 
were split into binary features. For lab values, we included 
the number of times a lab value was measured within the 
baseline period, and the maximal, minimal and average 
values within that period. For the HbA1C outcome, we 
also included the last measurement before treatment 
and the time from first diabetes diagnosis (based on 
the Northwestern University diabetes phenotyping algo-
rithm). As a preliminary step, we filtered features that 
were dominated (>95% of patients) by a single value or 
were spurious (>80% with missing values), resulting in 
632 features. Missing lab values were imputed using the 
median value of the test across patients.

Censoring analysis
For both HbA1c and BMI inference, we considered 
patients as censored if they received a second-line 
treatment, but during the follow-up period (1) had no 
6-month or 12-month HbA1C or BMI measurements; (2) 
switched or added another antidiabetic drug (including 
the following drug classes, which were not directly evalu-
ated in this work: insulin, SGLT2 inhibitors, meglitinides 
and α-glucosidase inhibitors); or (3) underwent bari-
atric surgery. We corrected for censoring by reweighing 
the uncensored population using inverse probability of 
censoring weighting (IPCW).22 

Confounder analysis
We defined the set of confounders in two ways: (1) domain 
expert confounder set, manually selected by an internist, 
aided by literature search; and (2) a comprehensive 
confounder set, treating all the 632 extracted features 
as confounders. In total, we selected 34 domain expert 
confounders for HbA1c inference (online supplementary 
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Table 2  Descriptive statistics of patients on T2DM second-line drug classes for the BMI outcome

Drug class Patients (n) Treatment change* Missing outcome* Average age† % Female*

Sulfonylurea 18 170 2967 (16%, 2e−109) 8611 (47%, 2e−16) 60.9 (4e−17) 48.4% (0.01)

Thiazolidinedione 2691 640 (23.8%, 3e−6) 1503 (56%, 2e−29) 59.2 (7e−05) 49.3% (–)

Glucagon-like peptide-1 
receptor agonists

1172 293 (25%, 5e−5) 441 (38%, 3e−8) 52.9 (3e−86) 66.6% (7e−34)

Dipeptidyl peptidase 4 6295 1852 (29%, 3e−92) 2352 (37%, 2e−49) 58.7 (2e−29) 50.9% (0.003)

Per-confounder statistics appear in online supplementary table 3.
*Proportion test. Missing entries (–) are not significant with FDR <0.05.
†Wilcoxon rank-sum test. Missing entries (–) are not significant with FDR <0.05.
BMI, body mass index; FDR, false discovery rate; T2DM, type 2 diabetes mellitus.
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table 2) and 8 domain expert confounders for BMI infer-
ence (online supplementary table 3). We used doubly 
robust (DR) estimator suggested by Robins et al23 to correct 
for confounders. This estimator combines a model for 
the distribution of the counterfactual outcome (standard-
ization) and a treatment assignment mechanism model 
(inverse probability of treatment weighting, IPTW). As 
demonstrated by Bang and Robins,24 DR estimators improve 
on either estimators because they are consistent even when 
only one of the models is correctly specified. This makes 
DR especially suited for observational data, where one can 
never be sure that either model is correct. For the outcome 
model, we used ridge regression with fivefold cross-valida-
tion to adjust the regularization coefficient. For the treat-
ment model, we used multiclass logistic regression with the 
regularization strength set to one and using balancing of 
the class sizes. Next, similar to Gerhard et al25 we multiplied 
the IPCW weights obtained from the censoring model with 
the IPTW weights from the treatment model, and capped 
weights smaller than the first and larger than the 99th 
percentiles to their corresponding percentiles, as suggested 
by Cole and Hernán.26 Capping the weights trims the tails 
of the distribution of the inverse probability weighted esti-
mator, reduces instability and was shown to work better 
than removing the concerned units altogether.27 We then 
fed these weights into the outcome model to compute the 
DR estimator.

Based on Groenwold et al,28 we also tested the results of 
stratification of continuous variables, for example, age and 
lab values, into five categories to prevent introduction of 
residual confounding. We obtained similar counterfactual 
mean values to the non-categorized values but larger confi-
dence intervals (CIs) and thus omitted these results for 
brevity.

As suggested by Austin,29 the standardized difference, 
d, can be used to quantify covariate imbalance across 
subject groups. Specifically, for continuous confounders:

	
d =

−
χtreatment −

−
χcontrol√

S2
treatment + S2

control
2

�

where 
−
χtreatment and 

−
χcontrol denote the sample mean 

of the covariate in treated and untreated subjects, respec-
tively, whereas S2

treatment and S2
control denote the sample 

variance of the covariate in treated and untreated 
subjects, respectively.

And, for dichotomous confounders: 

	
d =

̂
Ptreatment −

̂
Pcontrol�����

̂
Ptreatment

(
1 −

̂
Ptreatment

)
+
̂
Pcontrol

(
1 −

̂
Pcontrol

)

2

�

where 
̂
Ptreatment and 

̂
Pcontrol denote the prevalence 

or mean of the dichotomous variable in treated and 
untreated subjects, respectively.

We followed Austin29 and tested for imbalance in the 
confounders after correcting for the treatment models 
and censoring by comparing the number of confounders 
that were below the 0.1 threshold before and after 
weighing. For additional validation, we applied our 
inference scheme to two negative controls30: patient 
height and pretreatment HbA1C, which are unaffected 
by treatment type. For the outcome of pretreatment 
HbA1C, we excluded pretreatment HbA1C from the set 
of confounders.

Patient involvement
No patients were involved in setting the research ques-
tion or the outcome measures, nor were they involved 
in developing plans for design or implementation of the 
study. No patients were asked to advise on interpretation 
or writing up of results. There are no plans to dissemi-
nate the results of the research to study participants or 
the relevant patient community.

Results
Study design
Our cohort included 40 871 patients. Of these, 28 328 
also had available BMI before the prescription of second-
line drugs and were used for inference of counterfactual 
BMI (tables 1 and 2, online supplementary figure 2–3). 
There were significantly more censored patients on TZD, 
GLP-1 or DPP-4 who switched or added another drug 
than patients on SU (censored patients, p<2e−109; tables 1 
and 2). TZD and SU had significantly higher percentage 
of patients with missing BMI measurements during 
the follow-up than GLP-1 and DPP-4 (p<3e−8; table  2). 

https://dx.doi.org/10.1136/bmjdrc-2017-000435
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Figure 2  Predicted and observed HbA1c levels 
using doubly robust estimation adjusting for either a 
comprehensive set of confounders (left panel) or a set of 
confounders provided by a domain expert (right panel). Red 
dots indicate the actual measurements of patients at baseline 
(before second-line treatment), after 6 and 12 months. Black 
dots (with error bars) represent the counterfactual predictions 
and 95% CIs, supposing all patients were treated with that 
drug class. The results of the Bayesian mixed-treatment 
comparison (MTC) meta-analysis by McIntosh et al7 8 
are marked MTC. DPP-4, dipeptidyl peptidase 4; GLP-1, 
glucagon-like peptide-1 receptor agonists; HbA1c, glycated 
hemoglobin; SU, sulfonylurea; TZD, thiazolidinedione.
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Finally, the patients on GLP-1 were about 6 years younger 
on average (p~0) and included significantly higher rate 
of women (p<3e−44; table  1). The patient age distribu-
tion (online supplementary figure 1) is similar to the age 
distribution published by the Centers for Disease Control 
and Prevention (CDC) for 2011.31

Analysis methods
We applied causal inference methods to compute the 
counterfactual HbA1c levels and BMI (for each one of 
the four drug classes) at each of the two follow-up time 
points, adjusting for censored patients and confounders 
(Research design and methods).

Our balancing test (methods) showed that the 
percentage of balanced confounders, with negligible 
difference between treatment groups (standardized 
difference ≤0.1), ranged between 87% and 97% (compre-
hensive set and domain expert set in BMI outcome, 
respectively); online supplementary figures 2–5 display 
scatter plots of the absolute standardized difference 
before and after the correction. We found no signif-
icant differences between patients on different drug 
classes when using negative controls of patient height, 
while finding differences of up to 0.08% in HbA1c levels 
before index date between GLP-1 and SU or TZD (see 
Discussion).

HbA1c outcome
HbA1c measurements were available for 83% of the 
patients from up to 90 days prior to initiation of second-
line treatment, and for 95% of the patients up to 180 
days (see online supplementary figure 6 for complete 
temporal distribution).

The differences in estimated HbA1c levels using the 
domain expert and comprehensive sets of confounders 
were lower than 0.03%. All four drug classes were 
predicted to reduce HbA1c levels below 7% after 12 
months of treatment, with a predicted reduction in 
HbA1c levels relative to baseline over the entire popula-
tion of 0.6%–0.61% (SU, domain expert and comprehen-
sive set correction, respectively) to 0.85%–0.83% (GLP-1, 
domain expert and comprehensive set correction, 
respectively) (online supplementary table 5, figure  2). 
Twelve-month HbA1c levels inferred for SU were signifi-
cantly higher than for TZDs, DPP-4 and GLP-1 by 0.09%–
0.24% (Wald test, p<3e−5; online supplementary table 
6). Inferred levels for DPP-4 were significantly higher 
than TZD after 12 months and higher than GLP-1 after 
6 months of treatment, but differences became insignif-
icant after 12 months (online supplementary table 6). 
Notably, both actual and inferred HbA1c levels were 
lower than those computed using the mixed-treatment 
comparison (MTC) of clinical trials of McIntosh et al.7 8

BMI outcome
BMI measurements were available for 78% and 83% of 
the patients as recent as 90 and 180 days prior to treat-
ment date, respectively (see online supplementary figure 
7 for complete time distribution).

The predicted BMI after 12 months was significantly 
lower for patients on DPP-4 than for patients on SUs or 
TZDs by 0.47–0.81 kg/m2 (Wald test, p<8e−4; figure  3, 
online supplementary figure 7–8), but not significantly 
lower than the predicted BMI for patients on GLP-1. 
On average, patients on GLP-1 had higher BMI (by 
4.2–4.4 kg/m2; online supplementary figure 7) before 
the prescription of second-line treatment compared 
with patients prescribed one of the other studied drug 
classes. These GLP-1 patients had lowered their BMI by 
0.87 kg/m2 on average. Our predicted BMI shows signifi-
cant advantage for GLP-1 over TZD based on the domain 
expert confounder set, but not statistically significant 
based on the comprehensive confounder set. It also 
shows no significant advantage over SU in a population 
with lower initial BMI (online supplementary supple-
mentary table 8; see also discussion on BMI and GLP-1).

Discussion
We presented a causal inference analysis of observational 
EHR data to compare the effect of adding a second-line 
treatment for T2DM on HbA1c and BMI, in patients 
already treated with metformin. Our inferred HbA1c 
levels for up to 12 months of follow-up suggest that the 
effect of TZD, DPP-4 and GLP-1 inhibitors is comparable, 
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Figure 3  Predicted and observed BMI levels using doubly 
robust estimation adjusting for either a comprehensive set of 
confounders (left panel) or a set of confounders provided by 
a domain expert (right panel). Red dots indicate the actual 
measurements of patients at baseline (before second-line 
treatment), after 6 and 12 months. Black dots (with error 
bars) represent the counterfactual predictions and 95% CIs, 
supposing all patients were treated with that drug class. BMI, 
body mass index; DPP-4, dipeptidyl peptidase 4; GLP-1, 
glucagon-like peptide-1 receptor agonists; SU, sulfonylurea; 
TZD, thiazolidinedione.
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whereas that of SU is smaller. While TZD and SU have a 
negligible effect on BMI, DPP-4 and GLP-1 reduce BMI 
after 12 months of treatment.

The analyzed data contain privately insured employees, 
Medicare and Medicaid. While the data potentially 
under-represent children and young adults, as this popu-
lation is rarely confronted with T2DM, there was no 
major bias introduced, as can be seen by the comparison 
of the age distribution in online supplementary figure 1 
to the distribution published by the CDC for 2011.31

We addressed three challenges associated with causal 
inference from EHRs, including fragmented data, identi-
fication of the true set of confounders, and differences in 
protocols or adoption rate across institutions. To address 
fragmented data, we corrected for potential selection 
bias using patients with incomplete data as censored. In 
order to reduce the probability of incorrectly specifying 
confounders or correcting for them, we took the following 
three measures: For the first measure, we compared 
confounder sets based on domain expertise with a compre-
hensive set of confounders based on available clinical and 
demographic information of the patient to find minor 
differences in predicted outcomes. We showed the DR 
estimator improves balancing of confounders for both 
confounder sets and especially for the domain expert 
sets, but as noted by Austin29 for propensity score models, 
in many settings it is likely that one can safely include 
all measured baseline characteristics in the models. For 
the second measure, we tested whether we could reduce 
residual confounding by stratifying continuous values, 

such as age and lab tests, to five categories, as suggested by 
Groenwold et al.28 Finally, we used DR estimation in order 
to account for potential misspecification of either the treat-
ment or outcome models.24 The DR estimator did not iden-
tify difference between drug classes for the negative control 
of patient height, but did identify small but significant 
differences in the control of pretreatment HbA1C with 
regard to GLP-1. This does not affect the overall conclu-
sions of the paper, but suggests that with regard to GLP-1, 
pretreatment HbA1C cannot be fully explained by other 
confounders.

Explorys database is an amalgamation of patient data 
from multiple clinics. While the data have undergone 
standardization and normalization procedures to account 
for the differences between healthcare facilities, our esti-
mated effect sizes might deviate from the true effects in 
individual healthcare facilities. Additionally, we could not 
account for potential environmental confounders that 
are not available in EHR data, such as lifestyle changes.

We consider HbA1c and BMI as good proxies for 
future patient risk,32 but there are other considerations 
in selecting a second-line drug beyond its effect on 
these measures, such as risks of adverse reactions and of 
diabetes-related complications. While we did not directly 
address adverse reactions, patients who were switched 
drug classes may indirectly point to such effects. These 
outcomes should be studied in subsequent work, poten-
tially observing patients for longer follow-up periods to 
gain stronger statistical power. Other extensions should 
focus on differences between individual drugs from the 
same class, which could have different outcomes (such as 
different drugs from the SU class33).

Patients prescribed SU were less likely to be added a third 
drug or switched to another drug than patients on the other 
drugs studied (16% of the patient on SU relative to >24% of 
the patients on the other three drug classes, p<e−150). This is 
despite the effect of SU on HbA1c being somewhat smaller. 
Possible explanations for this observation may include the 
low cost of SU, the availability of a metformin-SU pill34 
and the option of once-a-day dosing. Additionally, SU and 
TZD patients had significantly lower availability of BMI 
measurements during the follow-up period. Possible expla-
nations for this are that when GLP-1 or DPP-4 treatments 
are prescribed, either the physician or the patient is more 
likely to have been concerned with the BMI, thus measures 
it more frequently; or that costs of SU and TZD tend to be 
lower and would be more frequently prescribed to patients 
with a lower socioeconomic state, which tend to be less well 
followed up on.

There may have been some unmodeled confounding 
present in the relationship between GLP-1 and HbA1C, 
considering that a small but significant association arose 
with the negative control of pretreatment HbA1C. We 
note that GLP-1 agonists are prescribed significantly 
more to women. Difference in response to GLP-1 
between men and women was reported in 2005,35 and a 
study from 2013 found that the effect of one such GLP-1 
agonist, exenatide, was larger in women.36 All patients in 
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our study were treated with GLP-1 after 2005 and 38% of 
them treated during or after 2013, suggesting physicians 
may have considered this evidence when prescribing 
GLP-1. Also, patients on GLP-1 are typically younger than 
patients on other drug classes, in line with an observation 
made by others.37 Finally, patients with higher BMI tend 
to be prescribed GLP-1, and this is likely due to its known 
positive effect on weight.38 39 In our analysis, though, 
DPP-4 inhibitors are estimated to lead to BMI reduction 
comparable to GLP-1 agonists.

TZD is the only class predicted to maintain HbA1c at 
a stable level in 6 and 12 months, whereas HbA1c levels 
are predicted to increase over time in the other studied 
classes. A gradual weaning of the effect of SU on HbA1c 
levels had been previously described.13

The estimates of HbA1c8 reported in the meta-anal-
ysis (MTC) we used for reference were higher than our 
EHR-based inference. We note that we predicted HbA1c 
in exact periods, while the MTC method combined 
heterogeneous time point measurements across the 
different clinical trials, some listed as having up to 5 years 
of follow-up. This may suggest that the meta-analysis 
captured later stages in the progression of T2DM, char-
acterized by higher HbA1c levels.40

As demonstrated by our analysis, as well as by others,41 
EHR data can support causal inference and allow repli-
cation of clinical trial results. The advantages of this 
approach in terms of the labor and costs required to 
expand evidence-based medicine are clear. As the avail-
ability of EHR data increases and the many theoretical 
and technical challenges associated with detecting and 
correcting for confounders are addressed, we expect 
causal inference based on observational data to become 
more widely used.
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