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Abstract

Monte Carlo (MC) simulation is considered as the most accurate method for calculation of 

absorbed dose and fundamental physics quantities related to biological effects in carbon ion 

therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC 

package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized 

geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme 

with a continuous slowing down approximation was employed. Energy straggling and multiple 

scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four 

types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, 

carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were 

used. Secondary particles produced in these interactions were sampled according to particle yield 

with energy and directional distribution data derived from Geant4 simulation results. Secondary 

charged particles were transported following the condensed history scheme, whereas secondary 

neutral particles were ignored. goCMC was developed under OpenCL framework and is 

executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with 

Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, 

one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions 

were simulated, such that in the region with dose greater than 10% of maximum dose, the mean 

relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range 

estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm 

criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 

2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different 

GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 

107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an 

NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The 

combined accuracy, efficiency and portability make goCMC attractive for research and clinical 

applications in carbon ion therapy.
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1. Introduction

Radiotherapy plays an important role in cancer treatment. During recent years, radiation 

therapy with light ion beams (protons and carbon ions) has been increasingly used in clinic 

(Schardt et al., 2010; Durante and Loeffler, 2010). Comparing with an X-ray beam that 

delivers dose almost homogeneously over the entire beam path, an ion beam deposits most 

of its energy at the very end of its finite range (Bragg peak). Therefore a more favorable 

ratio between dose to the tumor target and healthy tissues can be achieved. Carbon ion 

therapy is particularly attractive due to its sharp lateral beam penumbra, biological benefits 

such as enhanced relative biological effectiveness (RBE) in the Bragg peak region (Amaldi 

and Kraft, 2005), tissue activation and secondary radiation production that allow in vivo 

range verification (Poenisch et al., 2004; Enghardt et al., 2004; Testa et al., 2008; Testa et 
al., 2009), and potential to overcome tumor hypoxia (Staab et al., 2004; Furusawa et al., 
2000).

Monte Carlo (MC) simulation is an essential tool for carbon ion therapy for several reasons. 

First, experimentally validated MC is acknowledged as the most accurate tool to predict 

dose distributions that are highly sensitive to treatment geometry and patient anatomy 

(Lomax, 2008b, a; Soukup et al., 2009; Unkelbach et al., 2009). Because of the sharp distal 

dose fall-off of a carbon ion beam, its range must be predicted as accurately as possible in 

the treatment planning process to fully utilize the potential of tumor targeting. MC method 

has been shown to be an important dose calculation tool to reduce the range uncertainty and 

hence improve treatment precision (Paganetti, 2012; Bauer et al., 2014). Second, biological 

effectiveness is an important aspect of carbon ion therapy. MC simulation can accurately 

calculate fundamental physics quantities, e.g., particle spectra, that are essential for the 

assessment of biologically related quantities (Frese et al., 2012; Taleei et al., 2016). Third, 

MC simulation also plays a critical role in treatment verification. Its capability of predicting 

secondary radiation, such as positron emitting nuclei and prompt gamma rays, offers a 

feasible approach to assess delivery accuracy by comparing the calculated and measured 

data (Bauer et al., 2013; Robert et al., 2013).

Computational efficiency is a major issue hindering clinical adoption of MC method as well 

as its applications in research. Being a statistical method, an MC simulation requires 

transporting a large number of particles to yield a satisfactory level of precision, causing a 

high computational burden. Although acceleration could be achieved with computer clusters 

(Jiang and Paganetti, 2004; Paganetti et al., 2008; Vadapalli et al., 2011), this is not a 

clinically favorable way due to the efforts of facility deployment and maintenance. Recently, 

accelerated MC computation using graphics processing units (GPUs) has been employed in 

radiotherapy research and clinical applications due to GPU’s tremendous parallel processing 

capability at a low cost (Jia et al., 2014). Substantial acceleration factors over conventional 

CPU-based computations have been reported for photon, electron and proton dose 

calculations (Jia et al., 2010a; Jia et al., 2011; Hissoiny et al., 2011; Jahnke et al., 2012; 

Townson et al., 2013; Bol et al., 2012; Hissoiny et al., 2012; Jia et al., 2012a; Yepes et al., 
2010; Badal and Badano, 2009; Ma et al., 2014; Tseung et al., 2015).
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Aiming at extending the success of GPU-based MC simulation to the carbon ion therapy 

regime, we have started developing an MC engine for this treatment modality. In addition to 

employing GPU-friendly parallel processing schemes developed previously by many groups, 

the current study also focused on solving computational challenges associated with nuclear 

interactions. Hadronic models in the carbon ion radiotherapy energy range, such as quantum 

molecular dynamics model, pre-compound model, Bertini cascade, etc., are numerically 

complicated (Agostinelli et al., 2003). Implementing these models will inevitably increase 

computational burden, as well as the chance of thread divergence, which is unfavorable for 

GPU-based parallel simulation (Jia et al., 2014). To overcome the thread divergence issue, it 

is possible to design novel code workflow to synchronize nuclear interaction calculations 

among GPU threads. This approach has been employed previously in proton MC simulation 

problems (Tseung et al., 2015). However, in carbon ion therapy, due to the large number of 

secondary particles, this method would lead to simultaneous writing of a large amount of 

secondary particles to a common stack from many GPU threads. These writing operations 

have to be serialized, impairing overall efficiency. To mitigate these problems, in this study 

we developed a GPU-friendly data-driven approach to sample secondary particles based on 

pre-generated data tables.

Our carbon MC engine was developed under a programming framework called Open 

Computing Language (OpenCL). At present, the majority of the existing GPU-based MC 

packages are implemented under NVidia’s Compute Unified Device Architecture (CUDA) 

environment (NVIDIA, 2011), which supports exclusively NVidia GPUs. While great 

success has been achieved, these packages are not compatible with other computing devices 

such as CPUs and GPUs from other manufacturers. In 2009, OpenCL was released, which 

specified a C-based programming language and a standard interface for parallel computing 

on a variety of platforms consisting of CPUs, GPUs, and other processors or hardware 

accelerators. This provided a solution to the portability problem and eliminated the extra 

efforts when running programs on different platforms. It thus could potentially facilitate 

adoption of the developed code to radiotherapy research and clinical practice 

(Ammazzalorso et al., 2014; Zhou et al., 2012; Tian et al., 2015).

This paper reports our initial achievements in developing a GPU-oriented fast cross-platform 

MC engine under the OpenCL framework, named goCMC (GPU OpenCL Carbon Monte 

Carlo). A complete MC engine for carbon ion therapy should include many features such as 

source modeling and RBE calculation. As the initial step towards developing such a MC 

engine, this study only focuses on the the modeling of particle transport, which is the basis 

for all other advanced functions. In section 2, we will describe the employed physics, 

transport algorithm and parallelization scheme. Dose calculation results in different testing 

cases, as well as performance tests on a variety of computing devices will be presented in 

section 3. Finally we will conclude our study and discuss some further works in section 4.

2. Methods

2.1 Physics

goCMC simulates carbon ion transport in voxelized geometry with kinetic energy up to 450 

MeV/u. Each voxel is defined with its mass density and elemental composition. Charged 
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particle transport in goCMC follows the standard class II condensed history scheme (Berger, 

1963) using the continuously slowing down approximation (CSDA). Each particle is tracked 

along a path consisting of a number of steps, till its residual range is smaller than the 

distance to the next voxel boundary. Carbon CSDA range as a function of energy is tabulated 

to estimate the residual range. For other charged particles, the range is estimated using the 

carbon range table with appropriate scaling to account for charge and mass difference 

(Deasy, 1994).

2.1.1 Sampling step size—The simulation of a carbon ion starts with the sampling of the 

step size δx, i.e., the distance before undergoing a hard interaction event. In goCMC, 

Coulomb interaction with δ-electron production (ionization) and nuclear interactions are 

considered as hard events. Therefore, δx is determined by the total cross section of nuclear 

interactions and ionization. Woodcock method is employed to consider the variation of 

cross-section within a step due to energy loss (Kawrakow, 2000). The total cross section data 

of nuclear interactions are extracted from Geant4 (Agostinelli et al., 2003) and the total 

ionization cross section was computed by (Olive et al., 2014)

(1)

Here re is the classical electron radius, me is the electron mass, ne is the number of electrons 

per volume, z and E are the charge number and kinetic energy of the incident particle, β is 

the particle velocity relative to the speed of light c. The integration is from the electron 

production cut-off energy Te,min to the maximum transferable energy Tmax, which is given 

by

(2)

where m is the incident particle rest mass and γ is the Lorentz factor. All these cross section 

data are tabulated in goCMC database. The sampled step size δx is limited by the distance to 

the next voxel boundary. We also restrict the maximal step size, such that the fractional 

energy loss per step is less than a predefined threshold value. The default threshold value is 

0.25.

After moving a step, if the carbon ion does not reach the voxel boundary, a hard event will 

be sampled. The production of δ-electrons, as well as the energy loss and angular deflection 

along the step are described below in Sec. 2.1.2. The nuclear interaction modeling is 

presented in Sec. 2.1.3.

2.1.2 Electromagnetic process—Electromagnetic process in goCMC is modeled by the 

standard class II condensed history simulation scheme (Berger, 1963) with a continuous 

slowing down approximation. The mean energy loss of carbon ions is calculated via its 

equivalent step length in water (Fippel and Soukup, 2004). Specifically, for a carbon ion 
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with kinetic energy E transport in material type i, once the step length δx is sampled as 

introduced above, its equivalent length in water δxw is calculated accordingly as

(3)

where fs(E, i) is the mass stopping power relative to water for the i’th material at energy E. 

ρi and ρw are mass densities of the considered material and water, respectively. fs(E,i) for 

different materials and energies are precomputed via Bethe-Bloch equation, and are 

tabulated in goCMC database. In the calculation, the mean ionization energy of each 

material except water is computed via

(4)

where pi is the stoichiometric percentage of the i’th element with an atomic number Zi and 

mean ionization energy Ii. For water, we used the ionization energy 69.2 eV, so that the 

simulated range in water agrees with that from Geant4.

The mean energy loss  in a step δx is calculated by numerically solving the equation 

(Kawrakow, 2000)

(5)

where the restricted stopping power in water, L(E), is also precomputed following the 

standard procedure (Agostinelli et al., 2003). The total energy loss is a stochastic quantity 

with a distribution described in terms of a straggling function. As a good approximation, this 

energy straggling is modeled as a random fluctuation around the mean energy loss . The 

fluctuation follows Gaussian distribution with Bohr’s variance (Bohr, 1948).

Besides energy loss, a carbon ion traversing a medium is also deflected due to many small-

angle scatters. According to the central limit theorem, the net effect is a Gaussian 

distribution (Bethe, 1953) with mean 0 and standard deviation given by (Highland, 1975; 

Lynch and Dahl, 1991)

(6)

Here p is the momentum of the carbon ion and X0 is the radiation length of the material. The 

parameter Es is usually regarded as a constant of 13.6 MeV. However, we found this choice 

led to large deviations in the deflection angle distribution when validating goCMC with 

Geant4 (Agostinelli et al., 2003; Allison et al., 2006). To solve this problem, we have 

calibrated Es for different energies and obtained an empirical energy-dependent form as
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(7)

which provided good agreement between goCMC and Geant4 on calculated dose. Note that 

although Es increases with energy, θ0 still decreases with energy because of the 1/βcp term, 

as the high-energy carbon ions are harder to be deflected than low-energy carbon ions. 

Lateral displacement of the carbon ion position is ignored in our simulation. This 

approximation was found to be valid for proton MC simulation (Fippel and Soukup, 2004). 

Hence, we expect it is also acceptable for carbon ions due to the larger mass.

Elastic Coulomb interactions with production of δ-electrons over user-specified cut-off 

energy Te,min are simulated. In goCMC the default value of Te,min is 0.1 MeV. Kinetic 

energy of δ-electrons is sampled using a standard rejection method (Agostinelli et al., 2003). 

For low energy carbon ion beams (e.g., 100 MeV/u), the maximal energy of δ-electrons is 

~0.3 MeV, corresponding to ~0.5 mm range in water. For high energy beams (e.g., 400 

MeV/u), the maximal energy of δ -electrons is around 1.0 MeV, corresponding to ~4.0–5.0 

mm range in water. Because carbon ions intensively interact with matters, electron 

equilibrium is built shortly after a beam enters a phantom. Hence, current version of goCMC 

terminates δ -electrons once they are generated and their energy is deposited locally.

2.1.3 Nuclear interactions—Four types of nuclear interactions are implemented in 

goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic 

collisions, because these four elements constitute more than 90% of human body weight. 

Elastic interactions are not included, similar to Geant4 which ignores elastic hadronic 

interactions for projectiles heavier than alpha particle. The cross section data extracted from 

Geant4 are used to sample the interaction type.

Once a carbon ion encounters a certain nuclear event, secondary particles are produced. In 

Geant4, a large variety of hadronic models are provided for simulating such nuclear 

collisions. These models describe physics processes in detail and provide good agreement 

with experiments (Wenzel et al., 2015). Due to the complicated calculations involved, 

simulating these models is time consuming. To accelerate the simulation without sacrificing 

the accuracy, we use precomputed data table to achieve secondary particle sampling in 

goCMC. Specifically, to prepare these data, we repeatedly ran simulations of each of the 

four nuclear interactions with Geant4 using the Binary Light Ion Reaction model. The 

energy of carbon ions ranged from 10 MeV/u to 450 MeV/u with an interval of 10 MeV/u. 

For each energy level and each interaction type, we first determined all of the possible types 

of secondary particle. Note that each specific type of secondary particle may be produced 

from multiple reaction channels. For instance, in a carbon-oxygen interaction, 11C could be 

produced through different channels (12C + 16O →11C+16O + n, 12C + 16O → 11C + 15N 
+ 2H etc.). For each type of secondary particle, we performed statistical analysis to obtain 

the yield of this particle type per nuclear interaction event, as well as the tables of 

cumulative probability distributions for its energy and scattering angle. These data were 

tabulated in goCMC database.
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With these data available, we are able to sample secondary particles in goCMC simulation. 

Here we briefly introduce the sampling procedures. When a primary carbon with certain 

kinetic energy collides with a nucleon, the corresponding yields of all secondary particle 

types are determined from interpolation of the yields data table. For each secondary particle 

type, we generate a given number of particles accordingly. Note that the number of particles 

determined from the yield table may not be an integer. This issue is solved via a statistical 

approach. For example, if the yield of 11C is 1.2, one 11C would be produced and with 20% 

chance another 11C would be produced. For each of the secondary particle, its energy and 

direction are sampled from the tabulated cumulative probability distributions. We would like 

to remark that such a sampling method does not satisfy momentum and energy conservation 

for each single event. However, when enough events are sampled, the conservation laws are 

satisfied in the statistical sense.

We also ignore all electrically neutral particles generated in nuclear interactions. Majority of 

the neutral particles are secondary neutrons. We have conducted studies using Geant4 to 

investigate the impact of secondary neutrons on physical dose. Dose distributions from 

simulation with and without neutron transport were compared. Deviations smaller than 0.5% 

relative to maximum dose were observed. Normalizing to the maximum dose is one typical 

approach in radiotherapy, as only the high dose region is of clinical interest. Hence, we 

expect that neglecting simulations of those neutral secondary particles is a clinically 

acceptable approximation for treatment planning purposes. Similar approach has also been 

employed previously in proton MC simulations (Fippel and Soukup, 2004).

The produced secondary charged particles are transported via electromagnetic process in a 

similar way as primary carbon ions. Because of the large number of particle types, it is 

infeasible to precompute and tabulate all the stopping power data. Therefore restricted 

stopping power is calculated on the fly. Energy straggling, multiple scattering and ionization 

are also included. Since there were more than 300 types of secondary particles considered in 

goCMC, it is not practical to implement their nuclear interactions in the same manner as 

described above for the primary carbon. Hence, the nuclear interactions of these secondary 

particles are ignored in goCMC. In the validation cases we studied, goCMC and Geant4 

dose calculations agreed well with each other, indicating that such an approximation is 

acceptable.

2.2 OpenCL implementation

goCMC is developed under OpenCL framework, which provides efficiency as well as 

portability on various platforms and devices. To achieve high efficiency, single precision 

floating-point variables are used, because GPUs have much higher processing power on 

single precision than double precision. In addition, the image objects and their associated 

fast hardware interpolation on GPU are only available for single precision. To address 

potential precision loss due to the use of single precision (Magnoux et al., 2015), we used an 

additional memory buffer to store the scored quantities after each batch of simulation (Qin et 
al., 2016).

The structure of goCMC is illustrated in Figure 1. The solid boxes performing configuration 

and scheduling works constitute the outer control logic of goCMC, which is called host 
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program in OpenCL. The host program usually runs on a general purpose CPU. The dashed 

boxes indicate the parallel execution of OpenCL kernels. Kernels are C-based functions 

simulating particle transport and scoring physics quantities, which run on processing cores 

of a computing device, e.g., a GPU. There are two simulation kernels in goCMC, one for 

primary carbon transport and the other for secondary charged particle transport.

At initialization stage of goCMC, all physics data and patient data are loaded to the memory 

of the computing device. A stack to store secondary particles and the scoring counters for 

dose and other physical quantities are also allocated on the computing device. We would like 

to mention that the small lateral scattering of carbon ions cause memory writing conflict 

issue during paralleled MC simulation. Specifically speaking, the direction changes of the 

primary carbon ions are very small, so they deposit energy primarily to voxels along a 

straight beam path. Therefore, multiple threads concurrently simulating many carbon ions 

will try to update the same voxels simultaneously, which become serialized and hence 

degraded the simulation efficiency (Jia et al., 2012b). To alleviate this issue, multiple scoring 

counters are implemented in goCMC (Qin et al., 2016).

After initialization, the primary carbon transport kernel is distributed to multiple processing 

cores performing the simulation. Because the maximal number of threads is restricted by the 

device’s computational power, primary carbons are loaded and simulated in a batched 

fashion. During transport simulation, quantities of interest are scored and the produced 

secondary particles are pushed into the aforementioned stack. Since the stack size is 

restricted by the device’s memory size, after each batch of primary carbons, we preferably 

simulate secondary particles, as long as there are enough of them to fully utilize the device’s 

processing power. As mentioned in 2.1.3, we implement nuclear interactions for primary 

carbons but not for secondary particles. The simulation time for transport of primary carbon 

ions is hence longer than that of secondary particles. Therefore, the transport of primary 

carbon ions and secondary particles are separated to avoid wasting computation powers, 

since otherwise those short secondary particle transport threads would wait for the primary 

particle transport threads. After all the primary and secondary particles are simulated, 

statistical analysis is performed on the multiple counters to calculate the mean and standard 

deviation of the scoring quantities in each voxel.

2.3 Testing scenarios

We have performed comprehensive dose calculation studies to validate goCMC. In this 

initial development study, we focused on the accuracy of physical dose calculation. 

Calculations of other quantities of interest, e.g., biological effectiveness will be investigated 

in future works. As such, four homogeneous phantom cases, i.e., pure water, lung 

(−500HU), soft tissue (40HU) and bone (600HU), an inhomogeneous phantom, and a patient 

case were used, and the doses calculated by our goCMC were compared with dose computed 

by the general purpose MC code Geant4 10.01 (Agostinelli et al., 2003). The same Geant4 

version and physics settings were used to get the physics data described in Section 2.1. In all 

the phantom cases except lung, the phantom dimensions were 10.2 × 10.2 × 45 cm3 (x × y × 

z) with a voxel size 0.1 × 0.1 × 0.1 cm3. Because the range of carbon ions in lung is much 

longer than others, we used a 10.2 × 10.2 × 75 cm3 lung phantom with a voxel size 0.1 × 0.1 
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× 0.1 cm3. In these cases, mono-energetic mono-directional beams with initial energy of 100 

MeV/u, 250 MeV/u and 400 MeV/u were studied. In the water phantom case, we simulated 

both broad beams (a 5.0 × 5.0 cm2 square beam) and infinitesimal pencil beams with zero 

initial beam size. The reason to use an infinitesimal pencil beam is that compared to the 

broad beam dose distribution, pencil beam dose distribution is more sensitive to primary 

carbon ion angular deflection and secondary particle angular distributions. In other 

homogeneous cases, only the broad beam was simulated. The inhomogeneous phantom was 

a water phantom with a half-lung half-bone slab of 5.0 cm thickness inserted with their 

proximal edges at z = 15 cm depth, as indicated in Figure 6(a). A 300 MeV/u broad beam 

was used in this case to have the Bragg peaks inside the slab. The incident beam in all the 

phantom cases was along z direction. We also tested goCMC on a patient case. We selected 

a patient head CT scan with a resolution of 512 × 512 × 128 and a voxel size 0.075 × 0.075 

× 0.125 cm3. A 250 MeV/u broad beam impinged laterally on the patient. The material 

composition for each voxel was derived from the CT images using the calibration method 

from Schneider et al., 2000.

As mentioned in Section 2.1, neutral particles and electrons were not transported in goCMC. 

We thus disabled transport of these particles in Geant4 simulations for all the phantom cases. 

To confirm that the contribution from these particles is negligible, we performed two Geant4 

simulations for the patient case. One was the simplified simulation without transport of 

secondary electrons and neutral particles in analogy to goCMC. The other one was the full 

simulation with all of these considered.

To test the efficiency and portability of goCMC, we ran simulations on different computing 

devices: 1) an NVidia GeForce GTX TITAN GPU card with 2688 cores, 876 MHz clock 

frequency, 6.0 GB memory and 288.4 GB/sec memory bandwidth; 2) an AMD Radeon R9 

290x GPU card with 2816 cores, 980 MHZ clock frequency, 4.0 GB memory and 320 

GB/sec memory bandwidth; 3) an NVidia GeForce GTX 1080 GPU card with 2560 cores, 

1607 MHZ clock frequency, 8.0 GB memory and 320 GB/sec memory bandwidth; 4) an 

Intel i7-3770 CPU processor with 4 cores, 3.4 GHz clock frequency, 32 GB memory and 

25.6 GB/sec memory bandwidth; 5) an Intel Xeon E5-2640 CPU processor with 6 cores, 2.5 

GHz clock frequency, 384 GB memory and 42.6 GB/sec memory bandwidth.

3. Results

3.1 Dose distributions

Dose distributions in different cases are shown in Figures 2–7. For all cases, both goCMC 

and Geant4 simulated 3 × 107 primary carbon ions. The precision of our simulation was 

quantified by the relative uncertainty σ/D. At each voxel, σ is the uncertainty estimated by 

the dose results from all dose counters and D is the calculated dose value. The mean relative 

uncertainty  in the region with dose greater than 10% of the maximum dose was found 

less than 1%. For visualization purposes, error bars are not drawn in the figures.

As described in section 2.1.2, energy loss of carbon ions within a step was calculated via its 

equivalent step length in water. Therefore the accuracy of simulation in water is of particular 

importance. We thus first examined dose distribution in a homogeneous water phantom with 
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a broad beam as well as an infinitesimal pencil beam. Figure 2 shows the depth dose curves 

and lateral profiles in the water phantom. The left column corresponds to the broad beam 

and the right column is for the pencil beam. The three lateral profiles are taken from the 400 

MeV/u beam case at the entrance region (z = 55 mm), right in front of Bragg peak (z = 259 

mm), and beyond the Bragg peak (z = 300 mm). Depth dose of the 100 MeV/u and 250 

MeV/u beams matched well, whereas small discrepancies existed for the 400 MeV/u beam 

in front of the peak region. Quantified discrepancies for all cases will be presented later. 

Both goCMC and Geant4 produced a small bump in front of the Bragg peak in depth dose 

curves of the 400 MeV/u beam. The bump was found to be the Bragg peak of 

secondary 11C, which had a shorter range than primary 12C (Pshenichnov et al., 2007). 

There was also discrepancy when comparing the profile beyond the Bragg peak, as indicated 

by the blue line and dots in Figure 2(c). These discrepancies were mainly due to the fact that 

goCMC ignored nuclear interactions for secondary particles that contributed to dose beyond 

the Bragg peak.

Dose distributions in other homogeneous phantoms are presented in Figure 3–5. In most of 

the cases, goCMC and Geant4 were in good agreement. However, a relatively big difference 

of 28% of the peak value appears in the low energy lung case as shown in Figure 3. This can 

be ascribed to a small shift (less than a voxel) of the peak locations between goCMC and 

Geant4 results.

To validate goCMC simulation in heterogeneous media, we used an inhomogeneous 

phantom and a patient case. Figure 6(a) illustrates the geometry of the phantom, along with 

the dose distribution of a 300 MeV/u mono-energetic square beam overlaid on the phantom 

for display. Figure 6(b) depicts the depth dose curves along the two horizontal lines in 

Figure 6(a) and Figure 6(c) plots lateral profiles along the two vertical lines in Figure 6(a). A 

small shift was observed in depth dose curves, which made difference in lateral profiles 

obvious due to the sharp dose gradient along the depth direction.

The results of the patient case are illustrated in Figure 7. A 250 MeV/u mono-energetic 

square beam impinged on the patient from the right side. In addition to Geant4 simulation 

without neutral particles and electron transport, we also performed a full Geant4 simulation. 

Figure 7(a) shows the dose distributions calculated by goCMC and Geant4 full simulation at 

one axial slice. Figure 7(b) and (c) illustrate the good agreement of dose profiles between 

goCMC and the two Geant4 simulations along the two straight lines indicated in Figure 7(a).

3.2 Quantitative analysis

We have computed the voxel-by-voxel dose difference between goCMC and Geant4 in 

regions that received a dose greater than 10% of the maximal dose for all testing cases. The 

mean difference relative to the maximal dose, ∊̅D 10% ≡ | DgoCMC − DGeant4|/Dmax is listed in 

Table 1, where |.| denotes standard L2 vector norm and D is a vector of calculated dose in 

voxels within 10% isodose line. ∊̅D 10% was small for all the cases (~<1%) except the lung 

case with 100 MeV/u beam. The relatively large difference of 1.6% in the latter case was 

due to the difference of peak dose. As discussed above, it is mainly caused by a small range 

difference and binning effects.
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From the depth dose curves, beam ranges in homogeneous phantoms were estimated as the 

distal position where dose dropped to 80% of the peak value. The corresponding range 

difference ∊R between goCMC and Geant4 is also listed in Table 1. Most of the range 

differences were very small (less than 1 mm). The only large value of ∊R is 1.36 mm for 400 

MeV/u beam in lung, which corresponds to over 50 cm range. This is an extreme case and is 

probably not of clinical relevance.

We also performed a 3D γ-test (Gu et al., 2011) on the doses calculated by goCMC with the 

corresponding ones calculated by Geant4 as reference. With 1%/1mm criterion, the passing 

rate in regions that receive a dose higher than 10% maximum dose was over 90% for all the 

cases, except 68.6% for 400 MeV/u pencil beam in water and 79.1% for 400 MeV/u broad 

beam in bone. The first one was caused by the small peak value in the dose distribution, 

which was the reference dose used for γ index calculation. The second one was due to a 

small difference in the location of the 11C bump (~2 mm), as well as the dose difference 

beyond the Bragg peak that can be ascribed to the lack of nuclear interactions of secondary 

particles in goCMC. When using a less strict criterion, i.e., 2%/1mm, these two cases got 

over 99% passing rate. The passing rates of all other cases were over 96%.

3.3 Efficiency and code portability

One of the motivations of this study is to achieve high computational efficiency using the 

GPU platform. We also employed OpenCL for code portability consideration. We have 

tested goCMC on different GPUs and CPUs and resulting dose distributions were consistent 

with each other. Table 2 lists particle transport simulation time and GPU/CPU data transfer 

time in various cases. Difference in performance among the devices was mainly due to the 

distinct computing ability of the devices at the hardware level (Tian et al., 2015).

The computation time for Geant4 on a 3.40GHz Intel i7-4770 CPU is also presented in Table 

2. This is not a fair comparison because goCMC ignored the nuclear interactions for 

secondary particles, whereas Geant4 simulated nuclear interactions of all particles with 

sophisticated hadronic models, and the produced tertiary and further generations of particles 

were simulated as well. Here, we would only like to emphasize that goCMC can achieve a 

clinically acceptable dose calculation accuracy within 3–200 seconds on a single GPU, 

depending on the beam energy and GPU type.

4. Discussion and conclusions

We have successfully developed a GPU-oriented fast cross-platform MC engine for carbon 

ion therapy, goCMC. Both electromagnetic and nuclear interactions were simulated in 

goCMC based on physics laws and/or reliable tabulated data. Various testing cases have 

been studied and good agreement between goCMC and Geant4 was observed. The Geant4 

version and physics settings used in this study was validated against published experimental 

data (Schwaab et al., 2011; Parodi et al., 2013) and another experimentally validated code 

FLUKA (Parodi et al., 2012). If desired, users can always use other physics data as the code 

input. By using parallel computing devices such as GPUs, goCMC could reach very high 

efficiency. Depending on the beam energy and voxel size, it took 16–200 seconds to 

simulate 107 carbon ions on a single GPU card. The corresponding CPU time for Geant4 
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with the same setup was 60–100 hours. Besides accuracy and efficiency, goCMC was also 

portable among different computing devices.

The evaluation studies in this paper were performed in cases with mono-energetic mono-

directional beams. A realistic case typically contains source particles with initial energies 

and directions in a wide range. goCMC is able to simulate particles with different initial 

states in parallel and properly accumulate physics quantities e.g. physics dose, fluence, 

spectra from all threads. For biological dose calculation, in addition to physics dose, dose-

averaged α and β (linear-quadratic model (Kellerer and Rossi, 1978) parameters) should 

also be scored. After transporting all the input particles, the final biological dose can be 

computed using the scored physical dose, and dose averaged α and β. In this process, the 

OpenCL kernel scheduling and data distribution approach reported in this paper are still 

valid. Regarding efficiency, in a parallel execution of a transport kernel, the number of 

concurrently simulated particles depends on the available hardware resources, mainly the 

number of available processing cores. It is desired to have the execution time among cores 

close to each other to avoid the situation that some cores finish sooner and wait for others. 

Since simulation time of a particle is mainly determined by its initial energy, in a case with 

input particles of different energies, it is desired to arrange the particles, such that the 

concurrently transported particles are close in initial energy. A practical approach is to first 

sort and group source particles by initial energy and then to perform simulations group-by-

group. For each kernel execution, the particles being transport together are close in energy. 

Hence, the simulation time and acceleration factor is approximately the same as the mono-

energetic case. Thus, we expect that the acceleration reported in Table 2 will still hold in 

realistic cases.

Despite the success, there are a few issues to be addressed in future studies. First, for clinical 

applications, the overall dose calculation accuracy is determined by two components, i.e., 

carbon ion transport inside the patient body and the input source particle information. 

Analytical beam model or phase space files are usually used to provide the information of 

source particles. One of our future works is to implement the function of such beam models. 

Second, the validation presented in this paper only covers some simple setups. 

Comprehensive investigation of robustness and accuracy of goCMC in various patient cases 

will be conducted. Third, secondary electrons were simply terminated in the current version 

of goCMC with their energy locally deposited. While this was expected to be accurate 

enough in most scenarios, electron transport may be necessary in some cases, e.g., in lung or 

in the boundary between two tissues of very different density and/or compositions where 

electron disequilibrium may occur. In future versions of goCMC, electron transport will be 

included by using modules from our existing photon-electron MC package (Tian et al., 2015; 

Jia et al., 2010b). Similarly, transport of neutron was not included in goCMC. If neutron 

transport is found necessary in some applications, we will implement this in future versions. 

Last, but not least, to further boost efficiency, especially for some computational intensive 

tasks such as repeated spot dose calculations in inverse treatment planning, it is likely that 

GPUs/CPUs in a cluster will be needed. Currently, OpenCL does not support working with 

clusters. It is our plan to enable acceleration on clusters by using a framework called 

VirtualCL (Barak and Shiloh, 2014), a wrapper for OpenCL that allows most unmodified 

applications to transparently utilize multiple OpenCL devices in a cluster.
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In carbon ion therapy, relative biological effectiveness (RBE) calculation is an important 

issue (Hall and Giaccia, 2012) since it determines the photon-equivalent dose for biological 

treatment planning. In contrast to proton therapy where a single RBE value of 1.1 is usually 

used (Paganetti et al., 2002), RBE varies largely throughout the radiation field for heavier 

ions. There are several factors affecting RBE values, including projectile type, energy, linear 

energy transfer (LET) and radiosensitivity of the tissue. It is complicated to calculate RBE 

for carbon ions using deterministic algorithms due to the large number of nuclear fragments. 

MC simulation has the potential for RBE calculations, because it explicitly simulates the 

production and propagation of secondary particles. Incorporation of RBE models into 

goCMC is currently under development. Upon completion, goCMC could serve as a module 

in biological treatment planning systems.

Positron-emitting nuclei (PEN) produced in nuclear interactions could be used for treatment 

verifications (Bauer et al., 2013; Knopf et al., 2008; Parodi et al., 2008a; Parodi et al., 
2008b, c; Parodi and Enghardt, 2000). For carbon ion therapy, 11C, 10C, 15O and 13N are 

dominant contributions. MC simulation is an important tool to compute their distributions, 

which will be compared with measurements for treatment verification. The current version 

of goCMC is able to score the distribution of these PENs. This paper focuses on presenting 

our initial development of goCMC and its validation in terms of physical dose. It is our next 

step to perform a more comprehensive validation study to investigate its accuracy in other 

aspects including the computation of PEN distributions.
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Figure 1. 
Flow chart of goCMC simulation. The dashed boxes indicate threads in the primary carbon 

ions and secondary particle transport kernels which are distributed to multiple processing 

cores.
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Figure 2. 
Water phantom case: (a) Depth dose curve of a broad beam. (b) Depth dose curve of a pencil 

beam. (c) Lateral profile of the 400 MeV/u broad beam at entrance, close to Bragg Peak and 

beyond Bragg Peak. (d) Lateral profile of the 400 MeV/u pencil beam at entrance, close to 

Bragg Peak and beyond Bragg Peak.
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Figure 3. 
Lung phantom case: (Left) Depth dose curve of broad beam in lung. (Right) Lateral profile 

of the 400 MeV/u broad beam at entrance, close to Bragg Peak and beyond Bragg Peak.
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Figure 4. 
Soft tissue phantom case: (Left) Depth dose curve of broad beam in soft tissue. (Right) 

Lateral profile of the 400 MeV/u broad beam at entrance, close to Bragg Peak and beyond 

Bragg Peak.
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Figure 5. 
Bone phantom case: (Left) Depth dose curve of broad beam in bone. (Right) Lateral profile 

of the 400 MeV/u broad beam at entrance, close to Bragg Peak and beyond Bragg Peak.
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Figure 6. 
(a) Configuration of the inhomogeneous phantom and dose distributions calculated by 

goCMC and Geant4 of a 300 MeV/u broad beam. (b) Depth dose curves through the bone 

and lung inserts. (c) Lateral profiles at the depths of 16.0 and 17.0 cm.
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Figure 7. 
(a) Dose distributions in a patient case calculated by goCMC and Geant4 full simulation, (b), 

(c) Dose profiles along a horizontal and a vertical line as indicated by the dashed lines in (a).
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Table 2

Simulation time of 107 carbon ions in a water phantom with different energies and computing devices. For all 

cases, voxel size was 1 × 1 × 1 mm3 and phantom size was 102 × 102 × 450 mm3. All time are in unit of sec, 

except noted otherwise.

Device
Simulation time CPU/GPU

transfer time100MeV/u 250 MeV/u 400 MeV/u

NVidia GeForce GTX TITAN GPU 11.1 68.1 162.6 0.3

AMD Radeon R9 290x GPU 9.9 60.5 125.6 0.3

NVidia GeForce GTX 1080 GPU 2.5 20.4 50.4 0.3

Intel i7-3770 CPU 245.9 1596.6 2316.2 NA

Intel XeonE5-2640 CPU 60.1 332.2 612.5 NA

Geant4, Intel i7-4770 CPU 64 h 84 h 90 h NA
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