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Abstract

In patients with chronic kidney disease (CKD), clinical interest often centers on determining 

treatments and exposures that are causally related to renal progression. Analyses of longitudinal 

clinical data in this population are often complicated by clinical competing events, such as end-

stage renal disease (ESRD) and death, and time-dependent confounding, where patient factors that 

are predictive of later exposures and outcomes are affected by past exposures. We developed 

multistate marginal structural models (MS-MSM) to assess the effect of time-varying systolic 

blood pressure on disease progression in subjects with CKD. The multistate nature of the model 

allows us to jointly model disease progression characterized by changes in the estimated 

glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural 

assumptions of death and ESRD as non-informative censoring events for subsequent changes in 

eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning 

into one of six disease states given the current state. We use inverse probability weights with 

stabilization to account for potential time-varying confounders, including past eGFR, total protein, 

serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal 

Insufficiency Cohort (CRIC) Study, a multisite observational study of patients with CKD.
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1. Introduction

In studies of chronic kidney disease (CKD), endpoints of various types are often of interest. 

Time-to-event endpoints such as time to end-stage renal disease (ESRD) are considered as 

well as longitudinal outcomes such as change in the estimated glomerular filtration rate 

(eGFR). Studies with a primary interest in longitudinal outcomes are typically challenged by 

the occurrence of death or ESRD, which censor follow-up during the observation period. 

When these clinical events, which preclude subsequent measurement of the longitudinal 

outcome, are interpreted as censoring events, inferences concerning longitudinal changes 

may be biased due to informative censoring. More fundamentally, estimands dependent on 

measurements of the longitudinal outcome subsequent to these events can be difficult to 

interpret, as described in the truncation by death literature [1, 2]. Alternatively, inferences 

restricted to the time-to-clinical-event outcomes provide limited information concerning 

effects of treatments or exposures for patients with more modest declines in kidney function. 

Recent reviews have emphasized likelihood-based shared random effects approaches for 

joint modeling of longitudinal processes and time-to-event in CKD studies[3, 4]. These 

methods are challenged by difficulty in implementation, and are subject to the same 

limitations as standard regression models in that when estimating joint exposure effects 

across time, neither adjustment nor non-adjustment of time-dependent confounders, which 

we next describe, result in an unbiased estimate of the causal joint exposure effect.

In the analysis of ESRD, often the primary outcome of interest in CKD studies, changes in 

longitudinal outcomes, such as eGFR, prior to the absorbing event, e.g., ESRD, may serve as 

confounding factors for the effects of exposures. When exposures are time-varying, interim 

longitudinal outcomes can cause time-dependent confounding, where time-dependent 

confounders are variables that are affected by prior exposures and predictive of later 

exposures and outcomes. In CKD, several variables could potentially serve as time-

dependent confounders given the complex, and often bi-directional, interplay between blood 

pressure and kidney function, other clinical factors, and treatment decisions. Further, death 

is a competing risk for ESRD.

To estimate the effect of time-varying exposures on CKD progression defined by both time-

to-event and longitudinal outcomes such as ESRD and changes in eGFR, respectively, with 

proper adjustment of time-dependent confounding, we propose multistate marginal structural 

models (MS-MSMs). Marginal Structural Models (MSMs) are a class of causal models[5] 

that may be used to consistently estimate effects of time-varying exposures in the presence 

of time-dependent confounding. MS-MSMs are particularly suited to this setting for several 

reasons. First, hypertension is both a risk factor and effect of CKD. As a result, several 

factors that are associated with CKD are likely to function as time-dependent confounders 

for the effect of changes in blood pressure on CKD outcomes. As an example, hypertension 

may lead to decreased eGFR, which in turn can elevate subsequent blood pressure levels and 

also the risk of ESRD or death. Unbiased estimation of the causal effect of time-varying 

blood pressure on CKD progression therefore requires statistical methods that can 

accommodate time-dependent confounders. Standard methods of longitudinal and survival 

analysis such as Cox proportional hazards regression with time-dependent covariates and 
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mixed models or semi-parametric regression methods such as generalized estimating 

equations (GEE) cannot handle time-dependent confounding appropriately [5]. 

Alternatively, MSMs with inverse probability weighting [6], may be used to consistently 

estimate causal effects of time-varying exposures on longitudinal and time-to-event 

outcomes.

Our main objective is to introduce MS-MSMs with estimation by inverse probability 

weighting to estimate the effect of time-dependent exposures on joint longitudinal and time-

to-event outcomes by a Markov multinomial model approach. In formulating MS-MSMs, we 

define states that are jointly characterized by longitudinal and time-to-event endpoints and 

model the effect of exposures on transitions among these states. [7] recently used inverse 

probability weighting to estimate the causal effect of alternative employee benefit programs 

on transitions among employment states. This analysis considered a time-independent 

exposure variable and Cox and Aalen models for estimating transition intensities. Our 

approach is generalized to time-dependent exposures, and we estimate transition intensities 

using a generalized linear model approach. Our model is structurally similar to the MSM for 

cause-specific hazards in the analysis of time-to-event data of multiple outcome types 

developed by [8], but differs substantially in the interpretation since our model 

accommodates both the absorbing states encountered in the survival literature and the non-

absorbing states observed in repeated-measures settings. We can use our model to estimate 

the probability of patients cycling among multiple states defined by longitudinal outcomes 

during the progression and regression of a chronic condition while simultaneously 

estimating the probability of a patient experiencing an absorbing event. As a result, our 

model is better suited for the analysis of CKD since clinical interest lies in characterizing a 

patient’s trajectory over time [9] in addition to evaluating time to clinical, terminal events. 

We apply our methodology to a study of the effect of systolic blood pressure (SBP) on CKD 

progression within the Chronic Renal Insufficiency Cohort (CRIC) Study, a multisite, 

prospective cohort study of nearly 4,000 subjects with mild to moderate CKD at study entry.

In Section 2, we define notation and formalize identification assumptions for the causal 

effects of time-varying exposures on multistate outcomes, where MSMs model the causal 

effect of time-varying exposures on the probability of transitions among states. We then 

utilize transition probabilities to determine the marginal probability of being in a potential 

state at the end of observation under a specified joint exposure. In Section 3 we conduct a 

simulation study to illustrate the properties of inverse probability weighted estimators for 

multistate outcomes, comparing weights with and without truncation, and in Section 4 we 

use our MS-MSMs to determine the effect of SBP on CKD progression among mild to 

severe CKD as defined the level of eGFR and clinical endpoint states including ESRD and 

death.

2. Methods

2.1. Notation

We first define our notation and then describe our causal model and identifying assumptions. 

Our notation follows that introduced by [5] for time-varying exposures and scalar outcomes. 

First considering the observed data, let Yi,j+1 denote an outcome taking levels 1,2,…,K, 
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indicating the ith subject’s state at time j + 1 for j=0,1, 2, …, J. Similarly, let Ai,j denote 

subject i’s exposure level at time j. Covariates measured at time j are represented by Li,j and 

may include baseline as well as time-varying covariates. Finally, Ci,j indicates whether a 

subject is censored by the beginning of the jth observation time with Ci,j = 1 denoting that a 

subject is censored and Ci,j = 0 representing that a subject is still under observation. Within 

each time interval we assume that variables are observed in the temporal order 

(Li,j,Ai,j,Ci,j+1,Yi,j+1). Overbars are used to denote variable history, such that 

. Causal effects of exposures are defined using potential 

outcomes notation [10], where  is the outcome that would have been observed for 

subject i at time j+1 had he or she received the joint exposure ā = (a0,a1,…,aj). At the 

population level, interest often lies in comparing mean potential outcomes under different 

joint exposures ā, where a nonzero average causal effect is indicated by  for 

joint exposures ā ≠ ā′. Our multistate approach targets comparisons of , the 

marginal probability of a potential outcome state at the end of observation under alternative 

joint exposures ā ≠ ā′.

2.2. Model

Multistate models facilitate estimation of the marginal probabilities of outcome states by 

first modeling the probability of transitioning to an outcome state at a given time j + 1 

conditional on previous outcome states. We take this same approach using potential 

outcomes to estimate causal effects on multistate outcomes. First we factor the joint 

likelihood of the full history of potential outcome states 

from time 1 to J + 1 as a product of conditional distributions 

. Under a first order Markov assumption we further simplify 

the product of conditional distributions as , indicating 

that the probability of a given outcome state at time j+1 depends solely on the most recent 

potential outcome state rather than all states from time 1 to time j. The first order Markov 

assumption is chosen for convenience but may be relaxed if data provide evidence in favor 

of a higher order Markov assumption. The implications of higher order assumptions for 

modeling state transitions are discussed in Section 5. For the multistate potential outcomes 

considered, multinomial models may be used to characterize the probability of outcome state 

k at time j + 1 conditional on the state at time j. Our multistate marginal structural model is

(1)

for known functions h1(·) and h2(·) up to the unknown parameters βk′,k and αk′,k. The 

probability of transitioning from state k′ to k from time j to j + 1 under joint exposure āi,j is 
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modeled by the log odds of  versus the reference outcome state . The 

parameter βk′,k measures the causal effect of exposure ā on the probability of transition to 

one potential outcome state given the previous potential outcome state, and function 

h2(j;αk′,k) defines the probability of transition for the reference exposure group (ā = (0,…,

0)), accounting for underlying temporal trends in the relative likelihood of transitioning to 

state k versus reference state k′. The assumption of additivity of h1(āi,j;βk′,k) and h2 

(j;αk′,k) implies that the effect, of exposure ai,j on transition probabilities does not change 

over time. As an example, one might consider the model  for a 

binary treatment Ai,j, where βk′,k would then denote the log odds ratio of transitioning to 

state k versus state k′ from state k′ under binary treatment ai,j = 1 at time j compared to 

under control ai,j = 0 at time j. Another model might consider 

in which the log odds ratio of transitioning to state k versus k′ from state k′ depends on the 

cumulative exposure history, where for binary exposures  is the number of times a 

subject was exposed through time j. The reference function  may include 

polynomial terms or splines to flexibly capture temporal changes in the probability of 

transitions among states.

The predicted outcomes of model (1) define the elements of the K×K transition matrix

(2)

where  for transitions among possible states under joint 

exposure ā.

Robins (1998) states that the causal parameter βk′,k is identified under the following 

assumptions[6]:

1. Sequential Ignorability/Exchangeability. , , 

Given the previous state and exposure and covariate history, potential outcomes 

under treatment ā at time j + 1 are independent of the observed exposure Ai,j.

2. Consistency. For ,  For a subject who is actually observed to 

have joint exposure āi,j, the observed outcome Yi,j equals the potential outcome 

under that exposure history.
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3.
Positivity. For every  such that ,  for all possible 

treatment levels ai,j. This states that for any observed covariate history, where 

past outcomes Yi,j are included in, , there is a nonzero probability of any 

possible exposure level at time j.

2.3. Estimation of Transition Probabilities 

Robins (2000) describes that the causal parameter of MSMs βk,k′ may be estimated 

semiparametrically by weighted estimating equations, where the observed data are weighted 

using subject-specific, time-specific inverse probability of treatment weights (IPW) [5]. IPW 

accounts for time-varying confounding by creating a pseudo-population in which covariates 

at each time of exposure are not associated with the subsequent exposure, but the transition 

probabilities  remain the same as in the source population. The 

observed data association model is

(3)

and weighted estimating equations are

(4)

where Yi,j+1,k = I(Yi,j+1 = k), and estimated stabilized weights 

 account for time-dependent confounding. Stabilized 

weights are estimated by fitting two models. The first one models the likelihood of the 

observed exposure Ai,j given past exposure Āi,j−1 and time-dependent covariates . It 

informs the denominator of the stabilized weight and is required to be correct to consistently 

estimate the causal parameter. The second model for the numerator, which is not required to 

be correctly specified for consistent estimation, is based on a model for exposure Ai,j given 

past exposure Āi,j−1. In the pseudo-population the exposure-outcome relationship is no 

longer confounded by time-dependent exposure so that the associational parameter θk,k′ is 

equivalent to the causal parameter βk,k′[5].

For binary exposures, the IPW may be estimated by pooled logistic regression. The 

probabilities of categorical exposures of greater than two levels may be estimated by pooled 

multinomial logistic regression. We take this approach in modeling SBP as an exposure, 

defining clinically relevant levels for normal, moderately elevated, and elevated SBP as used 
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by prior investigators. For continuous exposures, inverse density weighting is possible by 

specifying a density function for the exposure distribution and estimating components of that 

density by a standard modeling approach. An alternative approach for continuous exposures 

is to use a pooled multinomial model considering quantiles of the continuous exposure [11]. 

For each subject, predicted probabilities of observed exposure level at each time are 

calculated, and the product is taken within subject over time to estimate . In categorizing 

continuous exposures, investigators should be conscious of a tradeoff between the positivity 

and consistency assumptions. For continuous exposures, it is less likely that every level of 

the exposure occurs for each level of observed treatment and confounders at each time, thus 

raising concerns of potential positivity violations. In reducing treatment levels through 

categorization, it is more plausible that each treatment level is possible at each level of 

observed treatment and confounders, but violations of the consistency assumption are 

possible as different continuous exposure levels that result in the same categorical exposure 

variable could potentially have different implications for potential outcomes, which in turn 

would violate consistency as a lack of multiple versions of treatment[12], and is particularly 

relevant for exposures that are biological characteristics[13]. We therefore caution 

investigators with these considerations when categorizing continuous exposures.

When subjects leave the study prior to the end of the observation period θk′,k are subject to 

selection bias when exposures and time-dependent factors are predictive of study withdrawal 

[5]. In this case, estimation equations are,

(5)

and weights 

 are 

the product of the stabilized inverse probability of the observed joint exposure and stabilized 

inverse probability of being uncensored. Standard errors and confidence intervals of 

parameter estimates  may be calculated using the robust variance estimator as for 

Generalized Estimating Equations [14], which is available in standard statistical software 

packages and provides asymptotically conservative standard error estimates provided that 

the weights are consistently estimated [15], or by a resampling technique such as the 

nonparametric bootstrap [16].
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2.4. Estimating Marginal Probabilities 

The predicted probabilities from the multinomial model yield , the 

probability of a potential outcome state at time j + 1 under a specified joint exposure at time 

j given the outcome state at time j. Although the significance of the causal effect of 

exposures on multistate outcomes may be tested by the null hypothesis that βk′,k = 0 and the 

direction of effect inferred by the suggested odds ratio, the interpretation and magnitude of 

the effect are more readily understood by comparing the marginal probability of the final 

outcome state  under various joint exposures. We show in the supplementary 

material that the marginal probabilities  of the final outcome state are 

determined by

(6)

where  is the vector of length K with the kth element of , 

, characterizing the 

marginal distribution of Yi,0, and  as defined in (2). We consider joint exposures of the 

type ā = (a*,a*,…,a*) for a∗ a specified level of a categorical exposure, although 

generalization to other joint exposures is straightforward. For our CKD analysis, marginal 

probabilities are thus interpreted as the probability of a potential outcome state under the 

case in which a subject maintains the same SBP category for the duration of follow up. 

Confidence intervals for  may be obtained by the nonparametric bootstrap.

3. Simulation Study

We conducted a simulation study to evaluate the properties of our MS-MSM estimator, 

including evaluating the impact of truncating stabilized weights. [17] demonstrated how to 

simulate time-to-event outcomes based on a conditional likelihood that induces time-varying 

confounding and is consistent with a marginal structural model that marginalizes over all 

covariates and contains a noncollapsible link function. We adapt this approach to simulate 

transition states that are consistent with our MS-MSM.

Our simulation study considered transitions among four possible states, with state 4 

absorbing, determined by the homogenous transition matrix 

 for the reference exposure of ā = (0,0,…,0), and the 

reference transition matrix and MS-MSM for non-reference joint exposures, where the MS-

MSM is given by
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with βk′,k = −0.5 and . The true values of the marginal probabilities 

 assuming all subjects started in state 1 were (0.006,0.030,0.152,0.812) for ā = (0,0,…,

0) and (0.40, 0.307, 0.083,0.210) for ā = (1,1,…,1) as determined by the product of the true 

transition intensity matrices for j+1=1 to 10.

Following [17], the data generating algorithm induced time-varying confounding through 

uniform random variables Ui, that were common causes of an intermediate covariate Li,j and 

outcomes Yi,j+1. For each subject, we first generated a vector 

 of independent uniform (0,1) random variables which we 

used to define thresholds for transition probabilities as we next describe. Yi,0 was set to 1 for 

all subjects, indicating that all subjects started in state 1.

At baseline (j = 0) censoring for each subject was set to Ci,0 = 0, indicating that all subjects 

were present. The baseline covariate Li,0 was generated as Φ−1(Ūi,0) + εi,0, where Φ−1 is the 

inverse cumulative distribution function for the standard normal distribution and εi,0 ~ 

N(0,0.2) and Ūi,0 is the mean of all elements of the vector Ui,0. Treatment Ai,0 was 

Bernoulli(pi,0), with logit(pi,0) = −0.8 − 0.8Li,0. Yi,1 followed a multinomial model with

with β1,k = −0.5 and 

To generate Yi,1 consistent with λā=0 and the MS-MSM,  was compared to λā,1,1 

(λā,1,1=0.6 for ai,0 = 0 and 0.71 for ai,0= 1). For , Yi,1 was set to Yi,1 = 1, 

indicating that the subject remained in state 1 for j=1. For , 

, the conditional probability of state 2 given that the 

subject did not remain in state 1, was then compared to  such that for 

, Yi,1 = 2 and Yi,1 = 4 otherwise, noting 

that P (Yi,1 = 3|Yi,0 = 1,Ai,0) = 0 according to λā=0.
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For subsequent time points j = 1,…,9, Ci,j+1 was generated according to the model 

. Then for Ci;j+1 = 0 

and Yi;j ≠ 4, the time-varying confounder Li,j+1 was generated as 0.7Li,j − 0.5Ai,j−1 + 

Φ−1(Ūi,0), and treatment Ai,j+1 was Bernoulli(pi,j+1), with logit(pi,j+1) = −0.8 − 0.8Li,j+1 

− 0.4Li,j + 0.3Ai,j.−Yi,j+1 was generated according to Yi,j as follows based on the reference 

matrix  and the multinomial model

with βk′,k = −0.5 and .

• For Yi,j=1, Yi,j+1 was generated as described for the transition from Yi,0 to Yi,1 

based on λā for ā

• For Yi,j =2,  was compared to λā,2,2. For , 

indicating that the subject remained in state 2. For , 

 was then compared to , such that for 

, Yi,j+1=3 and Yi,j+1=4 

otherwise

• For Yi,j =3, Ui,03 was compared to λā,3,3 such that for , Yi,j+1 = 3, 

indicating that the subject remained in state 3. For , Yi,j+1 = 4.

Each replicated dataset had 1000 patients, and the maximum number of time intervals was 

set to J = 10 for subjects who remained uncensored. Results are based on 1000 replicated 

datasets.

In applying MS-MSMs to the simulated data, time-varying treatment and censoring weights 

were determined according to the correct models in the denominator, and numerator terms 

for stabilizing weights included the most recent treatment level Ai,j for modeling Ci,j+1 and 

Ai,j+1. Results were generated for unweighted estimates, estimates based on stabilized 

weights without truncation, and estimates based on weights that were truncated at 98th 

percentile. Model fitting was stratified by current state, resulting in 5 estimates of the causal 

log odds ratio parameter for the effect of exposure on transitioning from: 1) State 1 to 2 

(β1,2), 2) State 1 to 4 (β1,4), 3) State 2 to 3 (β2,3), 4) State 2 to 4 (β2,4), and 5) State 3 to 4 
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(β3,4). For each stratified regression, staying in the current state was the reference transition, 

hence no model parameters were estimated for that transition.

Simulation results are shown in Tables 1 and 2. Bias of unweighted coefficient estimates 

ranged from 4.6–35.3%, whereas bias was small for IPW estimates with and without 

truncation (bias 0.2–7.2%). The IPW estimates, however, were less efficient than 

unweighted estimates, with Monte Carlo standard errors of estimators based on weights 

without truncation double to triple the Monte Carlo standard errors of unweighted estimates. 

The efficiency of weighted estimation was improved by truncation but still had larger 

standard errors than the unweighted estimates. The robust variance estimator seemed to 

underestimate the asymptotic variance when weights without truncation were used. For the 

marginal probability vector , unweighted estimation resulted in underestimation of the 

probability of being in the most severe outcome state 4 at the end of follow up for ā = (0,0,
…,0) (0.714 estimated versus 0.812 true) compared to weighted estimation (0.814 without 

truncation, 0.793 with truncation) and overestimation of the probability of being in outcome 

states 2 or 3. The opposite occurred for (ā = (1,1,…,1)), with underestimation of the 

probability of ending in milder states 1 and 2 without weighting (0.365 estimated versus 

0.40 true and 0.286 estimated versus 0.307 true for states 1 and 2, respectively) and 

overestimation of the probability of ending in more severe states. Bias in the estimation of 

marginal probabilities was small for the estimated MS-MSM. Compared to weighted 

estimation without truncation, the marginal probability estimates resulting from weight 

truncation at the 98th percentile show greater bias but less variability despite similar bias 

between the coefficient estimates.

4. Analysis of the Chronic Renal Insufficiency Cohort Study

Our study of SBP and CKD progression includes 3,708 participants from the CRIC Study 

previously described by Anderson et al.(2015), who examined the effect of SBP on time to 

ESRD (defined as receipt of maintenance dialysis or a kidney transplant) or halving of 

eGFR[11]. Patients were assessed annually for 0 to 7 years with variable follow up per 

patient. Over half of patients (2133 (57.5%)) had 5 or more visits; 442 (11.9%) only 

contributed 1 visit, 317 (8.5%) contributed 8 visits, and median follow up was 5.7 years. 

Systolic blood pressure was defined categorically at each year of follow up based on the 

mean of 3 seated measurements as < 120 mmHg (Ai,j = 1), [120,130) mmHg (Ai,j = 2), 

[130,140) mmHg(Ai,j = 3), and ≥ 140 mmHg(Ai,j = 4). We defined the CKD outcome state 

according to levels of eGFR at each year, ESRD, or death, such that Yi,j+1 = 1 for eGFR ≥ 

60, Yi,j+1 = 2 for eGFR [45,60), Yi,j+1 = 3 for eGFR of [30,45), Yi,j+1 = 4 for eGFR of 

(0,30), Yi,j+1 = 5 for ESRD, and Yi,j+1 = 6 for death. For patients observed to develop the 

clinical events of ESRD or death the event was assigned to the first annual visit after the 

occurrence of the event. At baseline 658 (17.7%) were in state 1 indicating mild CKD, 1041 

(28.0%) were in state 2, 1261(34.0%) were in state 3, and 748(20.2%) were in state 4, the 

most severe level of CKD. A total of 1481 (39.9%) patients had SBP<120 mmHg, 713 

(19.2%) were in the interval [120,130), 559 (15.1%) fell within [130,140), and 955 (25.7%) 

had SBP ≥ 140mmHg. For the purpose of our analysis, both ESRD and death were 

absorbing states such that death indicated death prior to the occurrence of ESRD. Baseline 
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demographic and clinical variables were sex, race, education level, self-reported 

hypertension, and baseline values of all time-dependent covariates, where time-dependent 

covariates were age, presence of cardiovascular disease, diabetes, BMI, use of angiotensin 

converting enzyme or angiotensin receptor blockers (ACEs/ARBs), number of 

antihypertensive medications, proteinuria, and past eGFR. Each of the time-dependent 

covariates potentially confounds the association between blood pressure at any given time 

and CKD state changes. Additionally, it is plausible that earlier blood pressure values could 

affect subsequent level of kidney function (i.e., eGFR) or damage (i.e., level of proteinuria), 

use of anti-hypertensive medications, and occurrence of cardiovascular disease, justifying 

the exploration of these variables as potential time-dependent confounders.

Loss to follow up was the only censoring event.

The causal model relating state transitions to the previous SBP history is shown in (7)

(7)

where f (j) is a spline function for time. In this model, the odds ratio of transition from state 

k′ at time j to state k versus k′ is modeled as a function of blood pressure level through 

time j and time. Coefficients  may be interpreted as the log odds ratios of transitioning 

into state k versus k′ for always having an SBP level in category a versus always having an 

SBP level < 120 mm Hg. Our model did not constrain the direction of transitions at all, 

therefore allowing subjects to transition into improved states. Transitions that were observed 

fewer than 5 times were assigned zero probability to ensure stability of modeling. These 

were transitions from eGFR ≥ 60 to eGFR < 30 or ESRD, eGFR [45,60) to ESRD, and 

eGFR < 30 to eGFR ≥60. Our model included a spline term f (j) to flexibly allow for non-

homogeneity in the Markov process. The transition diagram corresponding to our analysis is 

shown in Figure 1.

Stabilized MSM treatment and censoring weights were determined by pooled multinomial 

and logistic regression, respectively. The final weights were truncated at the 1st and 99th 

percentile(0.08 and 8.47, respectively). The complete distribution of weights before and after 

truncation is shown in the supplementary material. Figures 2–5 show the log odds ratios for 

the effect of blood pressure on transitions among states as estimated by the MS-MSM and 

standard, unweighted analysis. MS-MSM estimates generally suggest decreased likelihood 
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of improving and increased likelihood of progressing with increasing blood pressure. Figure 

4 particularly shows a strong, monotone effect of blood pressure on transitions to ESRD, 

with the ≥140 mm Hg level leading to a significantly greater likelihood of transitioning to 

ESRD than the reference <120 mm Hg blood pressure level. Coefficient estimates from 

unweighted, standard regression were farther from the null than respective MS-MSM 

estimates. The estimated marginal probabilities for being in a given state at the end of 7 

years if always in a given SBP category are shown in Figure 6 and Table 3 with respective 

95% bootstrap confidence intervals based on 1000 bootstrap replicates. Marginal 

probabilities based on unweighted estimation are shown in Table 4 for comparison. Several 

significant differences were observed between the joint exposure of always having low (< 

120 mm Hg) versus high(≥ 140 mm Hg) SBP, with favorable effects estimated for low blood 

pressure. Monotonic relationships were observed for blood pressure effects on mild CKD 

and ESRD. For increasing levels of SBP, subjects were less likely to be in a mild CKD state 

at the end of the observation period and more likely to have experienced ESRD. Under 

consistently low SBP, 22.9% (95% CI 19.4–26.4) of participants would have mild CKD at 

the end of follow up, whereas under high SBP, only 4.2%(3.1–5.3) of patients would be 

expected to have mild CKD. The probability of developing ESRD, however, was 

significantly higher under high SBP (43.4%, 95% CI 38.4%–48.4%) than low SBP (13.4%, 

95% CI 11.0%–15.8%). No significant differences were detected for the probability of death 

as an effect of blood pressure. Similar to the odds ratio estimates, marginal probability 

estimates based on unweighted estimation overstated the effect of blood pressure (Table 4), 

suggesting that 9.3% (7.6–11.0) of subjects with consistently low SBP experience ESRD by 

the end of follow up as compared to 53.9%(50.2–57.6) with consistently high SBP. At any 

given time interval, it is possible that participants with controlled blood pressure (< 120 mm 

Hg) were otherwise healthier, as indicated potentially by a better eGFR history, greater use 

of blood pressure-controlling medications, lack of cardiovascular disease, and other 

measured patient factors, and thus more likely to have a favorable prognosis than patients 

with high blood pressure, which could result in incorrectly attributing favorable outcomes to 

blood pressure such that the standard analysis overstates the beneficial effect of blood 

pressure. Our time-dependent weights account for such differences throughout the 

observation period by including these intermediate indicators of overall health in the weights 

such that estimated effects reflect only blood pressure differences and not these other 

factors. In general, however, the impact of time-dependent confounding on effect estimates 

is difficult to disentangle with the large number of time-varying confounders considered that 

are complexly related to blood pressure and disease progression.

5. Discussion

We have formulated MSMs to estimate the causal effect of time-varying exposures subject to 

time-dependent confounding on multistate outcomes. Our model allows the consideration of 

both longitudinal and time-to-event outcomes that are simultaneously accommodated in a 

multistate outcome framework. This allows the examination of the effect of exposures on 

progressing to both moderate and advanced disease states and avoids the treatment of 

clinical outcomes as informative censoring events for examining longitudinal outcome while 

also accounting for changes in longitudinal outcomes on assessing progression to clinical 
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endpoints. As with similar marginal model longitudinal approaches applied to panel data, 

our method easily accommodates unbalanced data characterized by a different number of 

observations per participant provided that causes for such differential follow up are 

measured or it is unrelated to unobserved outcome states.

In specifying our model, we make a first order Markov assumption that the transition 

probabilities depend only on the most recent state and not previous states. We also illustrate 

how to construct the transition matrices under this assumption and to estimate the marginal 

state probabilities under a joint exposure through a simple matrix product. When this 

assumption is violated, the estimates of the MS-MSMs may still be interpreted causally as 

odds ratios for the likelihood of transitioning from one outcome state to another given the 

current state and marginalizing over all previous states. However, the estimated marginal 

probability of each state under a joint exposure at the end of the observation period may not 

be consistent under our simplified marginalization approach. The dependence of the 

transition probabilities on additional past outcome states may be tested empirically by 

adding additional previous outcomes to the MS-MSMs. Evaluation of the first order Markov 

assumption in the CRIC dataset did reveal that additional prior states were in some cases 

predictive of transition probabilities. For example, considering all possible transitions from 

current state 2, i.e., eGFR of [45 – 60), patients who were in state 2 in the previous year 

were less likely to transition to state 1, i.e., eGFR≥ 60 in the following year than patients 

who were in state 1 in the previous year. Further considering transitions from current state 2, 

those who were in eGFR state 3, i.e., eGFR of [15,30), in the previous year were more likely 

to die than those who were in state 1 the previous year. This encourages the exploration of 

alternative model specifications and more generalized marginalization techniques. To 

improve the plausibility of a first order Markov assumption, one can redefine the state 

representation by including additional prior state information using a summary measure of 

previous states. For example, one can summarize a patient’s trajectory over the past several 

time periods using a slope term, which can then be used to define states. Clinical knowledge 

can inform reasonable state definitions that are more likely to satisfy the first order 

assumption. If a reasonable dimension reduction of state history is not available, the model 

may be fit under higher-order Markov assumptions. The calculation of marginal 

probabilities, however, is complicated by marginalizing over multiple previous states such 

that transition matrices are larger in dimension. For example, when there are K outcome 

states and transitions depend on both the current and previous state, consecutive yearly 

transitions may be represented by a matrix of dimension K2 × K2, where a state is now 

defined jointly by consecutive states. Due to the overlap in definition of consecutive joint 

states, many elements of joint state transition matrices will be zero, which provides some 

simplification of subsequent matrix products. An alternative approach may consider 

stratified models for each outcome time j + 1 where each model contains the full prior 

outcome history. This approach would be less efficient as it does not allow borrowing of 

information across time, but would result in consistent estimation of transition conditional 

probabilities that could then be entered into a generalized marginalization formula to obtain 

marginal probabilities at the end of follow up. Stratified models for each outcome time j + 1 

might be used to develop additional model checking or sensitivity analysis methods to 

evaluate the impact of violations of the first-order Markov assumption on estimated marginal 

Stephens-Shields et al. Page 14

Stat Med. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probabilities. Our method also relies upon a correctly specified multinomial MSM for the 

transition probabilities and consistent estimation of the denominators of the censoring and 

treatment weights. When any of these assumptions are violated the parameter estimates and 

resulting marginal probabilities are subject to bias for the true average causal odds ratio for 

exposure. We also assume an additive model for the effects of treatment and time on the 

transition intensity matrix. This assumption may be relaxed to include interactions of 

exposures with exogenous time-varying factors such as time, but not endogenous time-

varying covariates potentially affected by exposures such as individual patient 

characteristics[6, 18].

In addition to the first order Markovian assumption, it is important not to lose sight of the 

dependence of causal inferences under our MS-MSM model to the assumptions of 

exchangeability, positivity, and consistency. We note, in particular, that the magnitudes of 

the effect of BP on progression of CKD given in this report appear to be larger than would 

be expected from the estimated effects of low BP targets on CKD progression reported in 

previous randomized trials [19, 20, 21]. Thus unmeasured confounding violating the 

exchangeability assumption cannot be ruled out. In addition, the application of frameworks 

for causal inference based on counterfactuals has been criticized for applications where the 

treatment is a biological parameter due to concerns regarding the validity of the consistency 

assumption [22]. In our example, the concern may be raised that the difference in the values 

of eGFR that would be observed at two different levels of blood pressure may differ 

depending on the mechanism by which blood pressure is modified between the two levels 

being compared; the ”effect” of a given change in blood pressure might differ depending on 

whether the blood pressure level is modified by changes in diet, physical activity, or by 

different classes of antihypertensive medication. Thus the marginal structural model 

described in this paper depends on the assumption that the causal effects of a given change 

in blood pressure on eGFR are independent of the mechanism used to modify blood 

pressure. The concept that a given modification of blood pressure level produces similar 

effects on outcomes irrespective of the mechanism by which blood pressure is modified has 

been advanced in the cardiovascular disease literature.

In our application we treated ESRD as a terminal event. This follows from the original 

scientific question of causes of CKD progression, for which ESRD is the final stage. 

Transitions from ESRD to death may be modeled in MS-MSM; however, patients who 

develop ESRD are expected to differ substantially from patients at milder CKD states in the 

behavior of their blood pressure. Modeling of the causal effect of SBP on the transition to 

death would require a separate pooled logistic regression model for exposure status, which, 

depending on the level of incidence of ESRD in the cohort, may be fit on a relatively small 

subset of the cohort. In specifying MSMs for multistate outcomes, it is necessary to consider 

whether a single pooled logistic model is reasonable across all states, or if interactions of 

treatment and previous state should be considered, and whether enough variability in states 

is observed to estimate such interactions.

Our analysis is consistent with previous time-to-event MSM Cox analysis which showed 

increased risk of ESRD for patients with higher blood pressure [11]. Novel to our analysis 

are the trends noted in transitions among moderate CKD states denoted by changes in eGFR. 
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We anticipate that these methods can be used in further studies of CKD and other chronic 

conditions for which both longitudinal and clinical endpoints are important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transition Diagram for Chronic Kidney Disease Progression
Parameters λk′,k denotes the probability of transition from state k′ to state k. The model 

allowed for transition to more or less severe states defined by eGFR. Death and ESRD were 

absorbing states.
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Figure 2. Log Odds Ratios of Blood Pressure Effects for Transitions from State 1
Log odds ratios shown are for the odds of transitioning into the indicated state versus staying 

in state 1 for always being in the indicated blood pressure category versus always being in 

the reference state of < 120 mm Hg
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Figure 3. 
Log Odds Ratios of Blood Pressure Effects for Transitions from State 2. Log odds ratios 

shown are for the odds of transitioning into the indicated state versus staying in state 2 for 

always being in the indicated blood pressure category versus always being in the reference 

state of < 120 mm Hg
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Figure 4. 
Log Odds Ratios of Blood Pressure Effects for Transitions from State 3. Log odds ratios 

shown are for the odds of transitioning into the indicated state versus staying in state 3 for 

always being in the indicated blood pressure category versus always being in the reference 

state of < 120 mm Hg
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Figure 5. 
Log Odds Ratios of Blood Pressure Effects for Transitions from State 4. Log odds ratios 

shown are for the odds of transitioning into the indicated state versus staying in state 4 for 

always being in the indicated blood pressure category versus always being in the reference 

state of < 120 mm Hg
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Figure 6. 
Yearly Marginal Distribution of States by Systolic Blood Pressure Trajectory.
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