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Abstract

In patients with chronic kidney disease (CKD), clinical interest often centers on determining
treatments and exposures that are causally related to renal progression. Analyses of longitudinal
clinical data in this population are often complicated by clinical competing events, such as end-
stage renal disease (ESRD) and death, and time-dependent confounding, where patient factors that
are predictive of later exposures and outcomes are affected by past exposures. We developed
multistate marginal structural models (MS-MSM) to assess the effect of time-varying systolic
blood pressure on disease progression in subjects with CKD. The multistate nature of the model
allows us to jointly model disease progression characterized by changes in the estimated
glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural
assumptions of death and ESRD as non-informative censoring events for subsequent changes in
eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning
into one of six disease states given the current state. We use inverse probability weights with
stabilization to account for potential time-varying confounders, including past eGFR, total protein,
serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal
Insufficiency Cohort (CRIC) Study, a multisite observational study of patients with CKD.
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1. Introduction

In studies of chronic kidney disease (CKD), endpoints of various types are often of interest.
Time-to-event endpoints such as time to end-stage renal disease (ESRD) are considered as
well as longitudinal outcomes such as change in the estimated glomerular filtration rate
(eGFR). Studies with a primary interest in longitudinal outcomes are typically challenged by
the occurrence of death or ESRD, which censor follow-up during the observation period.
When these clinical events, which preclude subsequent measurement of the longitudinal
outcome, are interpreted as censoring events, inferences concerning longitudinal changes
may be biased due to informative censoring. More fundamentally, estimands dependent on
measurements of the longitudinal outcome subsequent to these events can be difficult to
interpret, as described in the truncation by death literature [1, 2]. Alternatively, inferences
restricted to the time-to-clinical-event outcomes provide limited information concerning
effects of treatments or exposures for patients with more modest declines in kidney function.
Recent reviews have emphasized likelihood-based shared random effects approaches for
joint modeling of longitudinal processes and time-to-event in CKD studies[3, 4]. These
methods are challenged by difficulty in implementation, and are subject to the same
limitations as standard regression models in that when estimating joint exposure effects
across time, neither adjustment nor non-adjustment of time-dependent confounders, which
we next describe, result in an unbiased estimate of the causal joint exposure effect.

In the analysis of ESRD, often the primary outcome of interest in CKD studies, changes in
longitudinal outcomes, such as eGFR, prior to the absorbing event, e.g., ESRD, may serve as
confounding factors for the effects of exposures. When exposures are time-varying, interim
longitudinal outcomes can cause time-dependent confounding, where time-dependent
confounders are variables that are affected by prior exposures and predictive of later
exposures and outcomes. In CKD, several variables could potentially serve as time-
dependent confounders given the complex, and often bi-directional, interplay between blood
pressure and kidney function, other clinical factors, and treatment decisions. Further, death
is a competing risk for ESRD.

To estimate the effect of time-varying exposures on CKD progression defined by both time-
to-event and longitudinal outcomes such as ESRD and changes in eGFR, respectively, with
proper adjustment of time-dependent confounding, we propose multistate marginal structural
models (MS-MSMs). Marginal Structural Models (MSMs) are a class of causal models[5]
that may be used to consistently estimate effects of time-varying exposures in the presence
of time-dependent confounding. MS-MSMs are particularly suited to this setting for several
reasons. First, hypertension is both a risk factor and effect of CKD. As a result, several
factors that are associated with CKD are likely to function as time-dependent confounders
for the effect of changes in blood pressure on CKD outcomes. As an example, hypertension
may lead to decreased eGFR, which in turn can elevate subsequent blood pressure levels and
also the risk of ESRD or death. Unbiased estimation of the causal effect of time-varying
blood pressure on CKD progression therefore requires statistical methods that can
accommodate time-dependent confounders. Standard methods of longitudinal and survival
analysis such as Cox proportional hazards regression with time-dependent covariates and
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mixed models or semi-parametric regression methods such as generalized estimating
equations (GEE) cannot handle time-dependent confounding appropriately [5].
Alternatively, MSMs with inverse probability weighting [6], may be used to consistently
estimate causal effects of time-varying exposures on longitudinal and time-to-event
outcomes.

Our main objective is to introduce MS-MSMs with estimation by inverse probability
weighting to estimate the effect of time-dependent exposures on joint longitudinal and time-
to-event outcomes by a Markov multinomial model approach. In formulating MS-MSMs, we
define states that are jointly characterized by longitudinal and time-to-event endpoints and
model the effect of exposures on transitions among these states. [7] recently used inverse
probability weighting to estimate the causal effect of alternative employee benefit programs
on transitions among employment states. This analysis considered a time-independent
exposure variable and Cox and Aalen models for estimating transition intensities. Our
approach is generalized to time-dependent exposures, and we estimate transition intensities
using a generalized linear model approach. Our model is structurally similar to the MSM for
cause-specific hazards in the analysis of time-to-event data of multiple outcome types
developed by [8], but differs substantially in the interpretation since our model
accommodates both the absorbing states encountered in the survival literature and the non-
absorbing states observed in repeated-measures settings. We can use our model to estimate
the probability of patients cycling among multiple states defined by longitudinal outcomes
during the progression and regression of a chronic condition while simultaneously
estimating the probability of a patient experiencing an absorbing event. As a result, our
model is better suited for the analysis of CKD since clinical interest lies in characterizing a
patient’s trajectory over time [9] in addition to evaluating time to clinical, terminal events.
We apply our methodology to a study of the effect of systolic blood pressure (SBP) on CKD
progression within the Chronic Renal Insufficiency Cohort (CRIC) Study, a multisite,
prospective cohort study of nearly 4,000 subjects with mild to moderate CKD at study entry.

In Section 2, we define notation and formalize identification assumptions for the causal
effects of time-varying exposures on multistate outcomes, where MSMs model the causal
effect of time-varying exposures on the probability of transitions among states. We then
utilize transition probabilities to determine the marginal probability of being in a potential
state at the end of observation under a specified joint exposure. In Section 3 we conduct a
simulation study to illustrate the properties of inverse probability weighted estimators for
multistate outcomes, comparing weights with and without truncation, and in Section 4 we
use our MS-MSMs to determine the effect of SBP on CKD progression among mild to
severe CKD as defined the level of eGFR and clinical endpoint states including ESRD and
death.

2. Methods

2.1. Notation

We first define our notation and then describe our causal model and identifying assumptions.
Our notation follows that introduced by [5] for time-varying exposures and scalar outcomes.
First considering the observed data, let Y; 1 denote an outcome taking levels 1,2,... K,
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indicating the 47 subject’s state at time j+ 1 for j=0,1, 2, ..., J. Similarly, let Ajjdenote
subject /s exposure level at time /. Covariates measured at time /are represented by L;jand
may include baseline as well as time-varying covariates. Finally, C; ;indicates whether a
subject is censored by the beginning of the /7 observation time with C;;j= 1 denoting that a
subject is censored and C; ;= 0 representing that a subject is still under observation. Within
each time interval we assume that variables are observed in the temporal order
(L;;AijCij1, Vi) Overbars are used to denote variable history, such that

Yij1=Y1,Yio,...,Yi 1) Causal effects of exposures are defined using potential

outcomes notation [10], where FJ .1 Is the outcome that would have been observed for
subject 7at time /+1 had he or she received the joint exposure 4= (a,a,.--,4). At the
population level, interest often lies in comparing mean potential outcomes under different

joint exposures 4, where a nonzero average causal effect is indicated by E[Yﬁ] # E[ij] for

joint exposures 4% & . Our multistate approach targets comparisons of P(Y* e k), the
marginal probability of a potential outcome state at the end of observation under alternative
joint exposures 4% 4 .

Multistate models facilitate estimation of the marginal probabilities of outcome states by
first modeling the probability of transitioning to an outcome state at a given time j+ 1
conditional on previous outcome states. We take this same approach using potential
outcomes to estimate causal effects on multistate outcomes. First we factor the joint

likelihood of the full history of potential outcome states ./ ( . ,+1> = ( fp ifiza e ,Yfm)
from time 1 to J+ 1 as a product of conditional distributions

( zJ+1> Hf( zJ+1

) . Under a first order Markov assumption we further simplify

[Ls (v, >nf<z,ﬂ ")

the product of conditional distributions as ;—, , indicating
that the probability of a given outcome state at time f+1 depends solely on the most recent
potential outcome state rather than all states from time 1 to time /. The first order Markov
assumption is chosen for convenience but may be relaxed if data provide evidence in favor
of a higher order Markov assumption. The implications of higher order assumptions for
modeling state transitions are discussed in Section 5. For the multistate potential outcomes
considered, multinomial models may be used to characterize the probability of outcome state
kattime j+ 1 conditional on the state at time j. Our multistate marginal structural model is

log (i((:jﬁl:]fr;i:k,))) =h1 (azmﬁ > +ho ( k>

2,7+1

6]

for known functions /(-) and /() up to the unknown parameters g€k and aX’ k. The
probability of transitioning from state A to & from time jto j+ 1 under joint exposure &; s
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modeled by the log odds of YF] 1=k versus the reference outcome state Yf] 11 =k’ The
parameter 5"k measures the causal effect of exposure Zon the probability of transition to
one potential outcome state given the previous potential outcome state, and function

Mo(f: aX’¥) defines the probability of transition for the reference exposure group (4= (O, ...,
0)), accounting for underlying temporal trends in the relative likelihood of transitioning to
state & versus reference state &”. The assumption of additivity of /(4 /-,',Bk"") and /»
(f.aX’ k) implies that the effect, of exposure ajjon transition probabilities does not change

i ; ; hi | @, sBRE ) =gk kg,
over time. As an example, one might consider the model J J for a
binary treatment A; ; where BX K would then denote the log odds ratio of transitioning to
state kversus state & from state 4 under binary treatment a; ;= 1attime jcompared to

/ ;o J
hy (@i k,k):k,k ;
under control a; ;= 0 at time /. Another model might consider ! <aw P B ;a !
in which the log odds ratio of transitioning to state k< versus &* from state A" depends on the

J
. . . Qit . .
cumulative exposure history, where for binary exposures g *is the number of times a
. . . . h ‘-ak/’k .
subject was exposed through time /. The reference function "2 {7’ may include
polynomial terms or splines to flexibly capture temporal changes in the probability of

transitions among states.

The predicted outcomes of model (1) define the elements of the Kx K transition matrix

D T
a,2,1 a,2,2 a,2,K
I O I el
NT— J J J
Y I
a,K,1 a,K,2 a,K,K
ARICL GBI T } @

ak k_  _va . ) o
where A" = ( =k Y=k ) for transitions among possible states under joint
exposure 4.

Robins (1998) states that the causal parameter g’ Kis identified under the following
assumptions[6]:

L sequential Ignorability/Exchangeability. V% LAY Ay L
Given the previous state and exposure and covariate history, potential outcomes
under treatment g at time /+ 1 are independent of the observed exposure A; ;.

2. a

Consistency. For Ai,j:a@ ;» Yij=Y;"; For a subject who is actually observed to
have joint exposure &; ;, the observed outcome Y} ;equals the potential outcome

under that exposure history.
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e . — 7 id 1)>0 .
Positivity. For every L; ; such that ffm. <l> >0, fAl.?j T, (@i for all possible

treatment levels a; ;. This states that for any observed covariate history, where

past outcomes Y; are included in, L; ;
possible exposure level at time J.

there is a nonzero probability of any

2.3. Estimation of Transition Probabilities P(Y;%,,=k|Y,=k)

Robins (2000) describes that the causal parameter of MSMs g%X" may be estimated
semiparametrically by weighted estimating equations, where the observed data are weighted
using subject-specific, time-specific inverse probability of treatment weights (IPW) [5]. IPW
accounts for time-varying confounding by creating a pseudo-population in which covariates
at each time of exposure are not associated with the subsequent exposure, but the transition

probabilities ~ (}/i,a'+1:k|y;i,aj:k ) remain the same as in the source population. The
observed data association model is

P (Yij11=k|Yi =k, A; : .

P (Y;‘j+1:k’/ ‘Y;,j:kl ) Zi,]’)

®)
and weighted estimating equations are
n J kflA exp h1(Ei’:ﬁk/*k)+h2(j;nk/’k)
Zzzwi,j Yiit16 — { J_ o : }k, - =0,
i=1j=1k=1 1+ ) exp {hl <ai,j;9 : *) +hs (,72,77 ’ *>}
kst K 4)

where Yj i1 x= Y1 = K), and estimated stabilized weights

N Hg:op (Ai,t:a}zi,t—l)

Wi,j

I_,P <Ai¢:a|Zi,t,1, fi,t) account for time-dependent confounding. Stabilized
weights are estimated by fitting two models. The first one models the likelihood of the
observed exposure A; ;given past exposure Aj -1 and time-dependent covariates L; ;. It
informs the denominator of the stabilized weight and is required to be correct to consistently
estimate the causal parameter. The second model for the numerator, which is not required to
be correctly specified for consistent estimation, is based on a model for exposure A; ;given
past exposure A; -1 In the pseudo-population the exposure-outcome relationship is no
longer confounded by time-dependent exposure so that the associational parameter 644" is
equivalent to the causal parameter g4 [5].

For binary exposures, the IPW may be estimated by pooled logistic regression. The
probabilities of categorical exposures of greater than two levels may be estimated by pooled
multinomial logistic regression. We take this approach in modeling SBP as an exposure,
defining clinically relevant levels for normal, moderately elevated, and elevated SBP as used
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by prior investigators. For continuous exposures, inverse density weighting is possible by
specifying a density function for the exposure distribution and estimating components of that
density by a standard modeling approach. An alternative approach for continuous exposures
is to use a pooled multinomial model considering quantiles of the continuous exposure [11].
For each subject, predicted probabilities of observed exposure level at each time are
calculated, and the product is taken within subject over time to estimate &, ;. In categorizing
continuous exposures, investigators should be conscious of a tradeoff between the positivity
and consistency assumptions. For continuous exposures, it is less likely that every level of
the exposure occurs for each level of observed treatment and confounders at each time, thus
raising concerns of potential positivity violations. In reducing treatment levels through
categorization, it is more plausible that each treatment level is possible at each level of
observed treatment and confounders, but violations of the consistency assumption are
possible as different continuous exposure levels that result in the same categorical exposure
variable could potentially have different implications for potential outcomes, which in turn
would violate consistency as a lack of multiple versions of treatment[12], and is particularly
relevant for exposures that are biological characteristics[13]. We therefore caution
investigators with these considerations when categorizing continuous exposures.

When subjects leave the study prior to the end of the observation period 6" are subject to
selection bias when exposures and time-dependent factors are predictive of study withdrawal
[5]. In this case, estimation equations are,

n J k=1 exp { @ 5,68 ) +ha (s +) )
1(Cij+1=0 * .’ / Y L / / :Oa
;;}; ( 6,J+1 Ywi,j 4,j+1.k 1+ Z exp <h1 (E‘,jﬁk ,k*) +hs (jmk ,k*))
kx#K
®)
and weights

1_, P (Ai,t;(l@,t—l,ci,t:o) 1_, P (Ci,tzo}zi,t—hci,t—l:())
X

H{:OP (Ai,t:ayzi,t—h C;+=0, fi,t) H{ZOP (Ci,tzo‘zi,tfly Ci4—1=0, Zi,tfl) are
the product of the stabilized inverse probability of the observed joint exposure and stabilized
inverse probability of being uncensored. Standard errors and confidence intervals of

w*

ivj

parameter estimates Bk/’k may be calculated using the robust variance estimator as for
Generalized Estimating Equations [14], which is available in standard statistical software
packages and provides asymptotically conservative standard error estimates provided that
the weights are consistently estimated [15], or by a resampling technique such as the
nonparametric bootstrap [16].
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2.4. Estimating Marginal Probabilities * (YEH:’C)

The predicted probabilities from the multinomial model yield F (Kfim:km,aj:k/), the
probability of a potential outcome state at time j+ 1 under a specified joint exposure at time
/ given the outcome state at time /. Although the significance of the causal effect of
exposures on multistate outcomes may be tested by the null hypothesis that g€ = 0 and the
direction of effect inferred by the suggested odds ratio, the interpretation and magnitude of
the effect are more readily understood by comparing the marginal probability of the final

outcome state (Yfm =k) under various joint exposures. We show in the supplementary

material that the marginal probabilities Afﬂ,k:P (YE, +1=/€> of the final outcome state are
determined by

J
Atjﬂ :’Y(;F HA?-H )
j=0 ©6)

where A? _is the vector of length K with the &’ element of A, =P (YEH :k),

J+1
T
“/0:(731737.._>V6K> =(P (Y;0=1),P (Yip=2),...,P (Y;0=K))", characterizing the

marginal distribution of Y/, and XJ_* as defined in (2). We consider joint exposures of the
type a= (a*a%,...,a*) for ax a specified level of a categorical exposure, although
generalization to other joint exposures is straightforward. For our CKD analysis, marginal
probabilities are thus interpreted as the probability of a potential outcome state under the
case in which a subject maintains the same SBP category for the duration of follow up.

Confidence intervals for I’ (YE,H) may be obtained by the nonparametric bootstrap.

3. Simulation Study

We conducted a simulation study to evaluate the properties of our MS-MSM estimator,
including evaluating the impact of truncating stabilized weights. [17] demonstrated how to
simulate time-to-event outcomes based on a conditional likelihood that induces time-varying
confounding and is consistent with a marginal structural model that marginalizes over all
covariates and contains a noncollapsible link function. We adapt this approach to simulate
transition states that are consistent with our MS-MSM.

Our simulation study considered transitions among four possible states, with state 4
absorbing, determined by the homogenous transition matrix

06 03 0 0.1

0 06 025 0.15

0 0 08 0.2

0 0 0 1 [for the reference exposure of 4= (0,0,...,0), and the
reference transition matrix and MS-MSM for non-reference joint exposures, where the MS-
MSM is given by

a=0_\a=0_
AT=NT=
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P (Y2 =k|ye=F : Ll
WL A

P (Yz‘,ajﬂzk/m,aj:k/a) t=0

AE:O,k,,k

/ Oék k 0 ———— 7
with gK-k=-0.5 and g Aa=0.k"k" | The true values of the marginal probabilities
A® assuming all subjects started in state 1 were (0.006,0.030,0.152,0.812) for 4= (0,0,...,

J+1

0) and (0.40, 0.307, 0.083,0.210) for 4= (1,1,...,1) as determined by the product of the true
transition intensity matrices for j+1=1 to 10.

Following [17], the data generating algorithm induced time-varying confounding through
uniform random variables U; that were common causes of an intermediate covariate L;;and
outcomes Y; ;1. For each subject, we first generated a vector

U o= (Uil,blv Uil,f]Qv Uiblv UZ&?, Uf,’o) of independent uniform (0,1) random variables which we
used to define thresholds for transition probabilities as we next describe. Y} was set to 1 for
all subjects, indicating that all subjects started in state 1.

At baseline (j= 0) censoring for each subject was set to Cj,g = 0, indicating that all subjects
were present. The baseline covariate Lo was generated as ®1(U ;o) + &j,0, where @1 is the
inverse cumulative distribution function for the standard normal distribution and &;,g ~
M0,0.2) and U g is the mean of all elements of the vector U;,o. Treatment A;o was
Bernoulli(p;,0), with logif(p;0) = —0.8 — 0.8L . Y1 followed a multinomial model with

o { P (Yi1=k|Yi0=1, Aip)

Lk, ALk
= ’ ’ A
P (Y;1=1|Y;0=1,4;0) } aHE Ao,

a=0,1k
abk=lo ol
with gK=-0.5 and 9 \Na=o11 |-

To generate Y;; consistent with 190 and the MS-MSM, Uy was compared to 1311
A411=0.6 for a;o = 0 and 0.71 for a;p= 1). For1 — A% <Ul) v, was setto Yy = 1,
0
indicating that the subject remained in state 1 for j=1. For 1 — A™"! > U/},

P (Yi1=2|Yio=1,Yi1 # 1, A;p=ai0)
P (Y1 #1|Yi0=1, Adip=a;0) the conditional probability of state 2 given that the

subject did not remain in state 1, was then compared to Uilj2 such that for
U2 P (Y;1=2]Y;0=1,Yi1 # 1, A; p=a,0)

wstT T p (Vis # 1|Vio=1, Asg=aso) -+ Yi1=2and Yjy =4 otherwise, noting
that P (Y1 = 3| Y0 = 1,A;0) = 0 according to 140,
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For subsequent time points j=1,...,9, C; 1 was generated according to the model

log { P (Cirn=11G=0 ll Llf) } — 5.0 0.24,;406L,

1-P (C@"+1:1‘C@j:0, Ai7'7'7 LL]') ’ ’ . Then for Cl,j+l =0
and Yj;# 4, the time-varying confounder L, ;1 was generated as 0.7L;;— 0.5A, 1 +
®1(U;p), and treatment Aij i1 was Bernoulli(p; j+1), with fogip; j+1) = —0.8 = 0.8L; i1
- 0.4L;;+ 0.3A; - Y1 was generated according to Y as follows based on the reference

matrix X}ZO and the multinomial model

P (Y 1=k|Y; =k, 4; , ,
log ( s1=k[Yi; i ) N Y
P (Yi,j+1:1|yz',j:17Ai,j) =0

, \G=0.k" k
. , ah F=log | ———
with gK' K= -0.5 and Na=0.k" k" |
. For Y; 71, Y; ;1 was generated as described for the transition from Yjoto Yj
based on A4 for 4

For Y;;=2, U; o, Was compared to 1422, For1 — A™*2 <UL Y; j41=2,
indicating that the subject remained in state 2. For 1 — A™*? > U7,

P (Yij1=3|Yij=2,Yiju1 # 2,4, )

P (Ym‘+1 #2|Y; =2, Zi_/j> was then compared to Uf(’f, such that for

Y j1=3|Yi;=2,Yi 11 # 27Zi,j)

P
Uy <1 - ( =
i P (Yi,j+1 * 2|YL"]':2,A¢J) , Y,‘,j+1:3 and YI',/'+1:4
otherwise

For Y;;=3, Ujqs was compared to A%33 such that for 1 — A**3< U7, Y41 =3,
indicating that the subject remained in state 3. For 1 — \»*% < U}y, Yja1 = 4.

Each replicated dataset had 1000 patients, and the maximum number of time intervals was
set to J= 10 for subjects who remained uncensored. Results are based on 1000 replicated
datasets.

In applying MS-MSMs to the simulated data, time-varying treatment and censoring weights
were determined according to the correct models in the denominator, and numerator terms
for stabilizing weights included the most recent treatment level A; ;for modeling C; x4 and
A, j+1. Results were generated for unweighted estimates, estimates based on stabilized
weights without truncation, and estimates based on weights that were truncated at 987
percentile. Model fitting was stratified by current state, resulting in 5 estimates of the causal
log odds ratio parameter for the effect of exposure on transitioning from: 1) State 1 to 2
(642), 2) State 1 to 4 (544), 3) State 2 to 3 (5>3), 4) State 2 to 4 (6>4), and 5) State 3 to 4
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(5%4). For each stratified regression, staying in the current state was the reference transition,
hence no model parameters were estimated for that transition.

Simulation results are shown in Tables 1 and 2. Bias of unweighted coefficient estimates
ranged from 4.6-35.3%, whereas bias was small for IPW estimates with and without
truncation (bias 0.2-7.2%). The IPW estimates, however, were less efficient than
unweighted estimates, with Monte Carlo standard errors of estimators based on weights
without truncation double to triple the Monte Carlo standard errors of unweighted estimates.
The efficiency of weighted estimation was improved by truncation but still had larger
standard errors than the unweighted estimates. The robust variance estimator seemed to
underestimate the asymptotic variance when weights without truncation were used. For the

marginal probability vector Azl, unweighted estimation resulted in underestimation of the
probability of being in the most severe outcome state 4 at the end of follow up for 4= (0,0,
...,0) (0.714 estimated versus 0.812 true) compared to weighted estimation (0.814 without
truncation, 0.793 with truncation) and overestimation of the probability of being in outcome
states 2 or 3. The opposite occurred for (4= (1,1,...,1)), with underestimation of the
probability of ending in milder states 1 and 2 without weighting (0.365 estimated versus
0.40 true and 0.286 estimated versus 0.307 true for states 1 and 2, respectively) and
overestimation of the probability of ending in more severe states. Bias in the estimation of
marginal probabilities was small for the estimated MS-MSM. Compared to weighted
estimation without truncation, the marginal probability estimates resulting from weight
truncation at the 98 percentile show greater bias but less variability despite similar bias
between the coefficient estimates.

4. Analysis of the Chronic Renal Insufficiency Cohort Study

Our study of SBP and CKD progression includes 3,708 participants from the CRIC Study
previously described by Anderson et al.(2015), who examined the effect of SBP on time to
ESRD (defined as receipt of maintenance dialysis or a kidney transplant) or halving of
eGFR[11]. Patients were assessed annually for 0 to 7 years with variable follow up per
patient. Over half of patients (2133 (57.5%)) had 5 or more visits; 442 (11.9%) only
contributed 1 visit, 317 (8.5%) contributed 8 visits, and median follow up was 5.7 years.
Systolic blood pressure was defined categorically at each year of follow up based on the
mean of 3 seated measurements as < 120 mmHg (A; ;= 1), [120,130) mmHg (A;,= 2),
[130,140) mmHg(A;,;= 3), and = 140 mmHg(A;,; = 4). We defined the CKD outcome state
according to levels of eGFR at each year, ESRD, or death, such that Yj ., = 1 for eGFR >
60, Y1 =2 for eGFR [45,60), Yj 1 =3 for eGFR of [30,45), Yj 1 = 4 for eGFR of
(0,30), ;1 =5 for ESRD, and Yj 1 = 6 for death. For patients observed to develop the
clinical events of ESRD or death the event was assigned to the first annual visit after the
occurrence of the event. At baseline 658 (17.7%) were in state 1 indicating mild CKD, 1041
(28.0%) were in state 2, 1261(34.0%) were in state 3, and 748(20.2%) were in state 4, the
most severe level of CKD. A total of 1481 (39.9%) patients had SBP<120 mmHg, 713
(19.2%) were in the interval [120,130), 559 (15.1%) fell within [130,140), and 955 (25.7%)
had SBP = 140mmHg. For the purpose of our analysis, both ESRD and death were
absorbing states such that death indicated death prior to the occurrence of ESRD. Baseline
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demographic and clinical variables were sex, race, education level, self-reported
hypertension, and baseline values of all time-dependent covariates, where time-dependent
covariates were age, presence of cardiovascular disease, diabetes, BMI, use of angiotensin
converting enzyme or angiotensin receptor blockers (ACEs/ARBS), number of
antihypertensive medications, proteinuria, and past eGFR. Each of the time-dependent
covariates potentially confounds the association between blood pressure at any given time
and CKD state changes. Additionally, it is plausible that earlier blood pressure values could
affect subsequent level of kidney function (i.e., eGFR) or damage (i.e., level of proteinuria),

1duosnuey Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnue Joyiny

use of anti-hypertensive medications, and occurrence of cardiovascular disease, justifying
the exploration of these variables as potential time-dependent confounders.

Loss to follow up was the only censoring event.

The causal model relating state transitions to the previous SBP history is shown in (7)
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og - _
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64 j 11 ‘ ( 2y )
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where 7(j) is a spline function for time. In this model, the odds ratio of transition from state
k' at time jto state kversus " is modeled as a function of blood pressure level through

time jand time. Coefficients 5(’j may be interpreted as the log odds ratios of transitioning
into state Aversus & for always having an SBP level in category & versus always having an
SBP level < 120 mm Hg. Our model did not constrain the direction of transitions at all,
therefore allowing subjects to transition into improved states. Transitions that were observed
fewer than 5 times were assigned zero probability to ensure stability of modeling. These
were transitions from eGFR = 60 to eGFR < 30 or ESRD, eGFR [45,60) to ESRD, and
eGFR < 30 to eGFR =60. Our model included a spline term 7(j) to flexibly allow for non-
homogeneity in the Markov process. The transition diagram corresponding to our analysis is
shown in Figure 1.

Stabilized MSM treatment and censoring weights were determined by pooled multinomial
and logistic regression, respectively. The final weights were truncated at the 1st and 99th
percentile(0.08 and 8.47, respectively). The complete distribution of weights before and after
truncation is shown in the supplementary material. Figures 2-5 show the log odds ratios for
the effect of blood pressure on transitions among states as estimated by the MS-MSM and
standard, unweighted analysis. MS-MSM estimates generally suggest decreased likelihood
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of improving and increased likelihood of progressing with increasing blood pressure. Figure
4 particularly shows a strong, monotone effect of blood pressure on transitions to ESRD,
with the =140 mm Hg level leading to a significantly greater likelihood of transitioning to
ESRD than the reference <120 mm Hg blood pressure level. Coefficient estimates from
unweighted, standard regression were farther from the null than respective MS-MSM
estimates. The estimated marginal probabilities for being in a given state at the end of 7
years if always in a given SBP category are shown in Figure 6 and Table 3 with respective
95% bootstrap confidence intervals based on 1000 bootstrap replicates. Marginal
probabilities based on unweighted estimation are shown in Table 4 for comparison. Several
significant differences were observed between the joint exposure of always having low (<
120 mm Hg) versus high(= 140 mm Hg) SBP, with favorable effects estimated for low blood
pressure. Monotonic relationships were observed for blood pressure effects on mild CKD
and ESRD. For increasing levels of SBP, subjects were less likely to be in a mild CKD state
at the end of the observation period and more likely to have experienced ESRD. Under
consistently low SBP, 22.9% (95% CI 19.4-26.4) of participants would have mild CKD at
the end of follow up, whereas under high SBP, only 4.2%(3.1-5.3) of patients would be
expected to have mild CKD. The probability of developing ESRD, however, was
significantly higher under high SBP (43.4%, 95% CI 38.4%-48.4%) than low SBP (13.4%,
95% CI 11.0%-15.8%). No significant differences were detected for the probability of death
as an effect of blood pressure. Similar to the odds ratio estimates, marginal probability
estimates based on unweighted estimation overstated the effect of blood pressure (Table 4),
suggesting that 9.3% (7.6-11.0) of subjects with consistently low SBP experience ESRD by
the end of follow up as compared to 53.9%(50.2-57.6) with consistently high SBP. At any
given time interval, it is possible that participants with controlled blood pressure (< 120 mm
Hg) were otherwise healthier, as indicated potentially by a better eGFR history, greater use
of blood pressure-controlling medications, lack of cardiovascular disease, and other
measured patient factors, and thus more likely to have a favorable prognosis than patients
with high blood pressure, which could result in incorrectly attributing favorable outcomes to
blood pressure such that the standard analysis overstates the beneficial effect of blood
pressure. Our time-dependent weights account for such differences throughout the
observation period by including these intermediate indicators of overall health in the weights
such that estimated effects reflect only blood pressure differences and not these other
factors. In general, however, the impact of time-dependent confounding on effect estimates
is difficult to disentangle with the large number of time-varying confounders considered that
are complexly related to blood pressure and disease progression.

ion

We have formulated MSMs to estimate the causal effect of time-varying exposures subject to
time-dependent confounding on multistate outcomes. Our model allows the consideration of
both longitudinal and time-to-event outcomes that are simultaneously accommodated in a
multistate outcome framework. This allows the examination of the effect of exposures on
progressing to both moderate and advanced disease states and avoids the treatment of
clinical outcomes as informative censoring events for examining longitudinal outcome while
also accounting for changes in longitudinal outcomes on assessing progression to clinical
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endpoints. As with similar marginal model longitudinal approaches applied to panel data,
our method easily accommodates unbalanced data characterized by a different number of
observations per participant provided that causes for such differential follow up are
measured or it is unrelated to unobserved outcome states.

In specifying our model, we make a first order Markov assumption that the transition
probabilities depend only on the most recent state and not previous states. We also illustrate
how to construct the transition matrices under this assumption and to estimate the marginal
state probabilities under a joint exposure through a simple matrix product. When this
assumption is violated, the estimates of the MS-MSMs may still be interpreted causally as
odds ratios for the likelihood of transitioning from one outcome state to another given the
current state and marginalizing over all previous states. However, the estimated marginal
probability of each state under a joint exposure at the end of the observation period may not
be consistent under our simplified marginalization approach. The dependence of the
transition probabilities on additional past outcome states may be tested empirically by
adding additional previous outcomes to the MS-MSMs. Evaluation of the first order Markov
assumption in the CRIC dataset did reveal that additional prior states were in some cases
predictive of transition probabilities. For example, considering all possible transitions from
current state 2, i.e., eGFR of [45 — 60), patients who were in state 2 in the previous year
were less likely to transition to state 1, i.e., eGFR= 60 in the following year than patients
who were in state 1 in the previous year. Further considering transitions from current state 2,
those who were in eGFR state 3, i.e., eGFR of [15,30), in the previous year were more likely
to die than those who were in state 1 the previous year. This encourages the exploration of
alternative model specifications and more generalized marginalization techniques. To
improve the plausibility of a first order Markov assumption, one can redefine the state
representation by including additional prior state information using a summary measure of
previous states. For example, one can summarize a patient’s trajectory over the past several
time periods using a slope term, which can then be used to define states. Clinical knowledge
can inform reasonable state definitions that are more likely to satisfy the first order
assumption. If a reasonable dimension reduction of state history is not available, the model
may be fit under higher-order Markov assumptions. The calculation of marginal
probabilities, however, is complicated by marginalizing over multiple previous states such
that transition matrices are larger in dimension. For example, when there are K outcome
states and transitions depend on both the current and previous state, consecutive yearly
transitions may be represented by a matrix of dimension A2 x K2, where a state is now
defined jointly by consecutive states. Due to the overlap in definition of consecutive joint
states, many elements of joint state transition matrices will be zero, which provides some
simplification of subsequent matrix products. An alternative approach may consider
stratified models for each outcome time j+ 1 where each model contains the full prior
outcome history. This approach would be less efficient as it does not allow borrowing of
information across time, but would result in consistent estimation of transition conditional
probabilities that could then be entered into a generalized marginalization formula to obtain
marginal probabilities at the end of follow up. Stratified models for each outcome time j+ 1
might be used to develop additional model checking or sensitivity analysis methods to
evaluate the impact of violations of the first-order Markov assumption on estimated marginal
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probabilities. Our method also relies upon a correctly specified multinomial MSM for the
transition probabilities and consistent estimation of the denominators of the censoring and
treatment weights. When any of these assumptions are violated the parameter estimates and
resulting marginal probabilities are subject to bias for the true average causal odds ratio for
exposure. We also assume an additive model for the effects of treatment and time on the
transition intensity matrix. This assumption may be relaxed to include interactions of
exposures with exogenous time-varying factors such as time, but not endogenous time-
varying covariates potentially affected by exposures such as individual patient
characteristics[6, 18].

In addition to the first order Markovian assumption, it is important not to lose sight of the
dependence of causal inferences under our MS-MSM model to the assumptions of
exchangeability, positivity, and consistency. We note, in particular, that the magnitudes of
the effect of BP on progression of CKD given in this report appear to be larger than would
be expected from the estimated effects of low BP targets on CKD progression reported in
previous randomized trials [19, 20, 21]. Thus unmeasured confounding violating the
exchangeability assumption cannot be ruled out. In addition, the application of frameworks
for causal inference based on counterfactuals has been criticized for applications where the
treatment is a biological parameter due to concerns regarding the validity of the consistency
assumption [22]. In our example, the concern may be raised that the difference in the values
of eGFR that would be observed at two different levels of blood pressure may differ
depending on the mechanism by which blood pressure is modified between the two levels
being compared; the "effect” of a given change in blood pressure might differ depending on
whether the blood pressure level is modified by changes in diet, physical activity, or by
different classes of antihypertensive medication. Thus the marginal structural model
described in this paper depends on the assumption that the causal effects of a given change
in blood pressure on eGFR are independent of the mechanism used to modify blood
pressure. The concept that a given madification of blood pressure level produces similar
effects on outcomes irrespective of the mechanism by which blood pressure is modified has
been advanced in the cardiovascular disease literature.

In our application we treated ESRD as a terminal event. This follows from the original
scientific question of causes of CKD progression, for which ESRD is the final stage.
Transitions from ESRD to death may be modeled in MS-MSM; however, patients who
develop ESRD are expected to differ substantially from patients at milder CKD states in the
behavior of their blood pressure. Modeling of the causal effect of SBP on the transition to
death would require a separate pooled logistic regression model for exposure status, which,
depending on the level of incidence of ESRD in the cohort, may be fit on a relatively small
subset of the cohort. In specifying MSMs for multistate outcomes, it is necessary to consider
whether a single pooled logistic model is reasonable across all states, or if interactions of
treatment and previous state should be considered, and whether enough variability in states
is observed to estimate such interactions.

Our analysis is consistent with previous time-to-event MSM Cox analysis which showed
increased risk of ESRD for patients with higher blood pressure [11]. Novel to our analysis
are the trends noted in transitions among moderate CKD states denoted by changes in eGFR.
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We anticipate that these methods can be used in further studies of CKD and other chronic
conditions for which both longitudinal and clinical endpoints are important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transition Diagram for Chronic Kidney Disease Progression
Parameters A4 X denotes the probability of transition from state & to state k. The model

allowed for transition to more or less severe states defined by eGFR. Death and ESRD were
absorbing states.
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Figure 2. Log Odds Ratios of Blood Pressure Effects for Transitions from State 1
Log odds ratios shown are for the odds of transitioning into the indicated state versus staying

in state 1 for always being in the indicated blood pressure category versus always being in
the reference state of < 120 mm Hg
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Log Odds Ratios of Blood Pressure Effects for Transitions from State 2. Log odds ratios
shown are for the odds of transitioning into the indicated state versus staying in state 2 for
always being in the indicated blood pressure category versus always being in the reference

state of <120 mm Hg
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Figure 4.
Log Odds Ratios of Blood Pressure Effects for Transitions from State 3. Log odds ratios

shown are for the odds of transitioning into the indicated state versus staying in state 3 for
always being in the indicated blood pressure category versus always being in the reference
state of <120 mm Hg
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Figure 5.
Log Odds Ratios of Blood Pressure Effects for Transitions from State 4. Log odds ratios

shown are for the odds of transitioning into the indicated state versus staying in state 4 for
always being in the indicated blood pressure category versus always being in the reference
state of <120 mm Hg
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Yearly Marginal Distribution of States by Systolic Blood Pressure Trajectory.
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