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Screening drug effects in patient-derived cancer
cells links organoid responses to genome alterations
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Abstract

Cancer drug screening in patient-derived cells holds great promise
for personalized oncology and drug discovery but lacks standard-
ization. Whether cells are cultured as conventional monolayer or
advanced, matrix-dependent organoid cultures influences drug
effects and thereby drug selection and clinical success. To precisely
compare drug profiles in differently cultured primary cells, we
developed DeathPro, an automated microscopy-based assay to
resolve drug-induced cell death and proliferation inhibition. Using
DeathPro, we screened cells from ovarian cancer patients in mono-
layer or organoid culture with clinically relevant drugs. Drug-
induced growth arrest and efficacy of cytostatic drugs differed
between the two culture systems. Interestingly, drug effects in
organoids were more diverse and had lower therapeutic potential.
Genomic analysis revealed novel links between drug sensitivity
and DNA repair deficiency in organoids that were undetectable in
monolayers. Thus, our results highlight the dependency of cyto-
static drugs and pharmacogenomic associations on culture
systems, and guide culture selection for drug tests.
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Introduction

Cell-based assays are a key tool in basic research and drug discov-

ery, and are increasingly used in personalized oncology. In the last

years, numerous anticancer therapeutics developed from standard

cell line screens in conventional 2D culture failed in clinical studies

(Horvath et al, 2016). As a result, standard treatment and overall

survival of advanced cancers like ovarian cancer (OC) has not

changed for decades (Bowtell et al, 2015). To allow personalized

therapy and improve drug development, new patient-derived

models such as organoids (Gao et al, 2014; Van de Wetering et al,

2015; Schütte et al, 2017) and patient-derived xenografts (Alkema

et al, 2015; Gao et al, 2015; Bruna et al, 2016) that recapitulate the

heterogeneity and intrinsic drug sensitivity of the original tumour

have started to replace the popular cancer cell lines. Patient-derived

organoids may be grown as 3D cultures on hydrogels like Matrigel

that mimic the extracellular matrix. Compared to 2D cell cultures,

they have emerged as near-physiological models reflecting the gene

expression, differentiation and structure of the primary tissue

(Fatehullah et al, 2016). Nevertheless, due to increased workload,

higher costs and the current lack of 3D assay methods, most drug

screens are still performed in less physiological 2D cultures

(Edmondson et al, 2014). Initial studies in ovarian cancer showed

that cells cultured as cell aggregates are less sensitive to drugs than

in monolayer culture (Loessner et al, 2010; Lee et al, 2013). The

culture format thus shapes cellular drug responses and defines the

translational power of a drug assay. However, this dependency

cannot be studied in detail with widely used, unspecific viability

assays that measure metabolic activity or cellular ATP as surrogate

markers. Such assays show limited reproducibility and do not
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resolve actual drug effects of high therapeutic interest such as cell

death and growth arrest (Haibe-Kains et al, 2013; Van de Wetering

et al, 2015). Instead, recent advances in automated microscopy

enable more sophisticated assays that can deconvolve drug effects

in different culture formats.

Here, we systematically compare drug effects in organoid and

standard 2D culture using DeathPro, a confocal microscopy-based

assay and image processing workflow to simultaneously study cell

death and growth arrest in patient-derived material over time. Using

DeathPro, we screened cells from nine high-grade serous OC

patients with clinically relevant drugs and found that growth arrest

and the efficacy of cytostatic drugs notably depend on the culture

type. Remarkably, patient-specific genomic alterations correlated

with drug effects observed in organoids, but not in 2D cell monolay-

ers. Hence, combining refined assays like DeathPro with advanced

models like cancer organoids could enhance drug screening in the

context of personalized oncology and pharmacogenomics.

Results

Deconvolving drug-induced cell death and
proliferation inhibition

To resolve drug effects in patient cells and organoids, we developed

an automated live cell assay and quantification workflow, which

deconvolves drug-induced death and proliferation inhibition over

time (DeathPro; Fig 1). To this end, cells were stained with Hoechst

and counterstained with propidium iodide (PI) for dead cells and

analysed at consecutive time points by confocal microscopy. To

accurately quantify cell growth for each condition (Hafner et al,

2016), cells were imaged at the start and end of the drug treatment

at the same position (Fig 1A). For high-throughput image analysis,

we built an adaptable visual programming workflow that encom-

passes adaptive sequential thresholding and outlier filtering strate-

gies to cope with heterogeneous cell morphologies and dye

intensities. In the workflow, total areas covered by dead cells (PI-

stained) and all cells (Hoechst or PI-stained) were determined from

confocal images and used to calculate LD50 values and area under

curve values for cell death (AUCd) and proliferation inhibition

(AUCpi; Fig 1B).

The DeathPro assay and workflow reliably resolved carbo-

platin-induced cell death and proliferation inhibition in OC orga-

noids generated by culturing patient-derived cells on Matrigel

(Fig 1). In addition, we performed pilot drug screens in OC patient

cells from mouse xenografts and in 2D co-cultures with fibroblasts

to validate our DeathPro concept in other common personalized

cancer models (Fig EV1A–D). Moreover, we resolved drug effects

in lung cancer organoids to verify that the DeathPro workflow can

be applied to patient cells from different cancer entities (Fig EV1E

and F).

By using live cell dyes, patient cells or organoids can be directly

used for screening and do not have to be genetically modified to

express fluorescent proteins. To exclude the possibility that either

dye alters cell behaviour, we tested their effect on OC organoids.

Hoechst and PI did not affect organoid growth but increased cell

death (Fig EV2A and B), which is accounted for in AUCd measure-

ments by normalization to the untreated control (Fig 1B).

Additionally, cytotoxic effects induced by 11 drugs correlated well

between long-term and short-term stained organoids (Pearson corre-

lation 0.81–0.95) indicating that both dyes do not interfere with

drug-induced cell death measured by DeathPro (Fig EV2C and D).

Imaging OC12 organoids only at the end or additionally at the begin-

ning of the drug treatment did neither alter organoid growth nor cell

death (Fig EV2A). To achieve low phototoxicity and high through-

put of DeathPro, we chose to acquire confocal images at low resolu-

tion and to analyse 2D image projections. To validate that this

coarse procedure captures complex 3D phenotypes, we experimen-

tally compared the DeathPro strategy to “slice-wise” analysis of

confocal image stacks. In the tested conditions, we detected similar

cell death ratios with both approaches (Appendix Fig S1). Thus, the

DeathPro imaging strategy can be used to efficiently determine drug

effects in screens but at the cost of a potential bias which we cannot

exclude for all conditions.

Drug-induced growth arrest in ovarian cancer patient cells is
culture-dependent

To systematically assess the influence of extracellular matrix on

patient cell responses, we used the DeathPro assay to screen patient-

derived OC cell lines (PDCLs) in standard 2D culture or as cancer

organoids. PDCLs were established from metastatic serous ovarian

cancers, maintained in 2D culture and seeded on Matrigel to gener-

ate “cancer organoids” (FIGO stage IIIc-IV, Table EV1, Fig 2A).

Additionally, we included human ovarian surface epithelial cells

(HOSEpiC) to assess potential side-effects such as cytotoxicity in

normal cells. Seeded on Matrigel, HOSEpiC developed into spheres

whereas PDCLs formed morphologically diverse “cancer organoids”

(Fig 2B) that expressed the tumour markers CA-125 and WT1

(Appendix Fig S2).

Ovarian cancer organoids or 2D cultured PDCLs were screened

twice for 22 drugs or drug combinations (Table EV2) currently used

or under investigation for treatment of OC. LD50 and cell death

(AUCd) values were highly reproducible across all drugs and

patients in 2D and organoid culture (Pearson correlation 0.86–0.97,

Fig EV3A), whereas growth arrest (AUCpi) showed slightly lower

correlation (Pearson correlation 0.67–0.76, Fig EV3B).

Based on the DeathPro results, we compared all drug effects

determined in OC patient cells between 2D culture and 3D culture

(Fig 2C). In both screens, drugs induced more growth arrest than

cell death (Fig 2D). Due to low drug-induced cell death, LD50

values could not be determined in 20–30% of all conditions

(Fig EV4A). After 72-h drug treatment, cell death was slightly lower

in organoids than that in 2D cultures (Figs 2C and EV4B). Surpris-

ingly, death upon drug treatment strongly correlated in 2D and 3D

culture whereas drug-induced growth arrest varied greatly with

culture type (Fig 2D, Pearson correlation 0.85 vs. 0.475). Since

drug-induced cell death was growth-dependent and organoids grew

slowly compared to cells in 2D culture (Fig EV3C), we measured

organoid responses a second time after drug removal in 3D (Fig 2E,

Appendix Fig S3A). After washout, drug effects increased in most

patient organoids (Appendix Fig S3A and B) as they either intensify

with time or continue to be induced by residual compounds in

Matrigel. Still, cytotoxicity levels resembled those in 2D culture

(Fig 2F, Pearson correlation 0.755). Likewise, LD50s measured in

3D culture before and after drug removal highly correlated with
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LD50s in 2D culture (Fig EV4C and D, Pearson correlation 0.872,

0.822). In contrast, growth inhibition again differed after drug

removal (Fig 2F, Pearson correlation 0.525). Overall, growth arrest

was the major drug effect in OC cells and was culture type-

dependent, whereas cell death was similar between culture types.

Efficacy of cytostatic drugs depends on culture type

As the culture type affected growth arrest, the efficacy of cytostatic

drugs that do not induce cell death should be culture type-depen-

dent as well. Thus, we compared the efficacy of drugs in our panel

by summarizing drug response parameters (LD50, AUCd and

AUCpi) into a single efficacy measure, and clustering drugs on this

basis. In 2D and 3D culture, three clusters arose based on differen-

tial cytotoxicity: (i) drugs effectively inducing cell death and growth

inhibition (red cluster), (ii) medium cytotoxic drugs (yellow clus-

ter), and (iii) ineffective drugs (blue cluster, Fig 3A and B). Cluster-

ing revealed that the most effective treatments (red cluster, Fig 3A

and B) in both screens comprised belinostat, BKM120, the first-line

therapeutic carboplatin and all combinations thereof. Paclitaxel,

which forms part of the current first-line therapy for OC, was not

among the most effective treatments tested due to its low toxicity in

most patient cells (Fig 2C and E). Moreover, its combination with

carboplatin performed no better than carboplatin alone in 2D and

3D (Appendix Fig S3C and D).

A fourth drug efficacy cluster appearing in 3D, but not in 2D

culture, included four drugs that induced strong growth arrest but

low cell death (green cluster, Fig 3A and B). All four drugs, ICG-

001, temsirolimus, AZD5363 and AZD2014, target proliferation

pathways and were more effective in 3D culture. To differentiate

between these and other drugs, we divided our panel into “cyto-

static drugs” inhibiting kinases or other effectors of proliferation

pathways and “cytotoxic drugs” causing DNA damage, DNA methy-

lation changes or mitotic failure.

The effects of four specific drugs and one drug combination were

significantly altered in 2D compared to 3D before and after drug

removal (Fig 3C and D): sarcoma (SRC) kinase inhibitor dasatinib

induced significantly lower cell death and growth arrest in OC orga-

noids than in monolayer patient cells (Fig 3E). In combination with

carboplatin and paclitaxel, growth arrest in organoids was still

lower than that in 2D. In contrast to dasatinib, the mTOR inhibitors

temsirolimus and AZD2014 inhibited cell growth in organoids more

strongly than in 2D culture. Azacytidine was the only cytotoxic drug

that induced lower growth arrest in organoids than in cells in 2D.

As azacytidine induced comparable cell death in 2D and 3D (Fig 2C

and E), its overall efficacy was similar in 2D and 3D culture (yellow,

medium cytotoxic cluster Fig 3A). In both screens, we found that

belinostat, BKM120 and carboplatin were the most potent drugs and

that the efficacy of the cytostatic drugs dasatinib, temsirolimus and

AZD2014 depended on culture type.
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Figure 1. Drug-induced cell death and proliferation inhibition can be quantified from serial confocal images.

A Schematic overview of drug testing in organoid culture with the DeathPro assay. Cells are grown on Matrigel for 4 days, stained with Hoechst (H) and propidium
iodide (PI) and imaged at day 4, day 7 and day 10. Image gallery exemplifies OC12 organoid growth and cell death at start (day 4) and end of carboplatin treatment
(day 7) and after carboplatin removal (day 10) using eight carboplatin concentrations or drug-free medium (ctrl). Confocal images are reduced to maximum intensity
projections, and binary images of merged Hoechst (green) and PI (red) channel are shown.

B Image analysis for the DeathPro assay is based on area measurements in Hoechst and PI channels, and calculation of LD50, AUCd and AUCpi values to describe cell
death and growth arrest. Drug response curve fitting and AUC values are illustrated for OC12 at time points depicted in (A).

Data information: Grey and orange boxes in (A) correspond to the magnifications in (B). Scale bar is 200 lm.
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As drug responses in cancer cells can be influenced by stromal

cells, we investigated how drug effects change when OC cells in 2D

are co-cultured with primary ovary or lung fibroblasts that model

cell interactions in the primary tumour or in lung metastasis, respec-

tively. We tested four PDCLs against five OC drugs and found that

drug-induced cytotoxicity and growth arrest were highly correlated

between both co-culture types (Rp = 0.96, 0.66, Fig EV5A and B).

Drug responses in co-cultures resembled 2D culture effects closer

than 3D culture responses (Rp = 0.64, 0.68 vs. �0.16, �0.05 in 2D

and 3D, Fig EV5A and B). This points to a high influence of the

culture format on drug responses that even persists when the model

is expanded by including other cell types.
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Figure 2. Culture type shapes drug-induced growth arrest in ovarian cancer patient cells.

A Simplified overview of generation and cultivation of patient-derived ovarian cancer cell lines (PDCLs) from different sites (OC: primary tumour, Asc: ascites, PE: pleural
effusion). Patient material was taken directly into 2D culture (Asc211, PE306) or amplified by xenografting into mice. PDCLs are maintained in 2D culture but can be
grown as ovarian cancer organoids on Matrigel.

B Morphology of ovarian cancer organoids and normal ovarian epithelial cells (HOSEpiC) on Matrigel 7 days after seeding. Green (Hoechst) and red (PI) channels are
merged.

C Drug responses (cell death: AUCd, growth arrest: AUCpi) measured with DeathPro assay after 72-h drug treatment in patient cells cultured as monolayers (2D) or
ovarian cancer organoids (3D).

D Comparison of drug-induced cell death (AUCd) and growth arrest (AUCpi) in 2D vs. 3D.
E Drug responses measured in ovarian cancer organoids (3D) after 72-h drug treatment followed by 72-h drug removal.
F Comparison of drug-induced cell death and growth arrest in 2D vs. 3D after drug removal.

Data information: All values shown are means of two independent biological replicates. HOSE, HOSEpiC; Rp, Pearson correlation coefficient; C + P,
carboplatin + paclitaxel.
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Drug responses in patient organoids are more diverse and of
lower therapeutic potential

Having compared drug effects generally and separately, we

inspected differences and similarities of patient cell responses in 2D

and 3D culture by hierarchical clustering. Interestingly, drug

response profiles tended to cluster based on the patients as well as

the culture format (Fig 4A), indicating that culture type can influ-

ence patient cell responses to the same extent as intrinsic tumour

heterogeneity. Most 2D patient profiles clustered together homoge-

nously, with the exception of OC12 and OC18 which showed

comparable response profiles in 2D and 3D. In total, we found 2D

drug profiles in four subclusters while 3D drug profiles occurred in

eight subclusters, demonstrating once more that drug profiles

appear more diverse in organoids. Normal HOSEpiC cells clustered

separately from patient cells in 3D but showed a drug response simi-

lar to OC19 in 2D, suggesting that the culture format can conceal

differences in genomic aberrations and gene expression.

In our screens, we included ovarian epithelial cells (HOSEpiC) to

examine cytotoxicity induced in noncancerous cells. To normalize

drug efficacy in PDCLs to HOSEpiC, we calculated the therapeutic

index (TI) as the ratio of LD50 values from PDCL and HOSEpiC in

both cultures (Fig 4B). TI patterns in cancer organoids were less

favourable overall than in 2D culture (blue colour, Fig 4B). The

most effective candidates, carboplatin and belinostat, had positive

TIs and low toxicity, while low TIs for BKM120 reflected high toxic-

ity in normal cells. To identify patient-specific treatment options,

the drug with the highest TI can be selected for each individual, for

example MK5108 for OC12. For some patient cells, for example

Asc14, belinostat would be suggested from organoid testing but not

from 2D cell testing where cell death was too low to determine an

LD50. Even if drug-induced cytotoxicity differed only minimally

between 2D and 3D cultured patient cells (Figs 2 and EV4), thera-

peutic potentials in OC patient organoids were altered distinctively.

By taking into account the heterogeneity in drug responses, our

DeathPro assay allows the systematic deduction of patient-specific

treatment options across cell cultures and patient cell lines.

Patient cells harbour numerous copy number alterations not
linked to drug-induced cell death

To predict or functionally link drug sensitivities to genetic alter-

ations, several studies have integrated drug sensitivity data from

viability assays of patient cells or cell lines with genome sequencing

data (Garnett et al, 2012; Van de Wetering et al, 2015; Schütte et al,

2017). Here, we performed whole-genome sequencing (WGS) to

associate OC genotypes with drug sensitivity data. First, we con-

firmed that genetic alterations in our PDCL set matched those

observed in tumours: we found multiple copy number alterations

(CNA) in all PDCLs (Fig 5A), as previously reported for serous OC

(Lambrechts et al, 2016). In a set of OC-relevant genes selected from

literature (The Cancer Genome Atlas Research Network, 2011;

Ciriello et al, 2013; Patch et al, 2015) and databases (Zhang et al,

2011; Forbes et al, 2015), few insertion/deletion polymorphisms

(indels) or mutations were detected, except for TP53, which was

mutated with a similar frequency as in the COSMIC cohort (Fig 5B).

Likewise, genes frequently amplified (MYC, PIK3CA and AURKA) or

lost (RB1, PTEN) in ovarian tumours (The Cancer Genome Atlas

Research Network, 2011) were also commonly multiplied or lost in

our set of patient cells (Fig 5B). Since drug sensitivity frequently

correlates with alterations in the corresponding drug target (Garnett

et al, 2012), we associated target genes commonly affected by CNAs

with cell death (AUCd) induced by the respective inhibitor. Amplifi-

cations of AURKA and PI3KCA did not alter cytotoxicity induced by

AURKA inhibitor MK5108 or PI3K inhibitor BKM120, respectively

(Fig 5C and D). Moreover, loss of BRCA1/2, a putative marker for

impaired DNA repair capacity (Abkevich et al, 2012), did not affect

sensitivity towards the DNA damage-related drugs carboplatin and

olaparib (Fig 5E and F).

Homologous recombination deficiency scores correlate with drug
effects in organoids

To incorporate the complex genomic aberrations in OC, we focused

on the genome structure altered by DNA repair deficiencies. Loss of

heterozygosity regions can be counted and added up to the homolo-

gous recombination deficiency (HRD) score (Fig 6A) which is linked

to cellular HR repair capacity (Abkevich et al, 2012). HRD scores in

our OC set varied between 3 and 22 (Fig 6B). We systematically

associated HRD scores and OC drug responses in different culture

systems and found 20 statistically significant correlations

(R2 > 0.61, false discovery rate < 0.1, Fig 6C). Remarkably, 90%

(18/20) of these potentially relevant associations were observed

with 3D culture-derived data. HRD scores correlated not only with

cytotoxic responses to carboplatin and all its combinations (Fig 6C

and D) but also with paclitaxel, azacytidine and decitabine

◀ Figure 3. Culture type determines effectivity of targeted drugs like SRC inhibitor dasatinib and mTOR inhibitors AZD2014 and temsirolimus.

A Hierarchical clustering of drug effects determined in ovarian cancer DeathPro screens in 2D culture and 3D culture. Dendrograms derived from hierarchical clustering
of drug effects averaged over all 10 patient cell lines (AUCd: cell death, AUCpi: growth arrest, LD50: lognorm LD50, scaled to 1 for minimum and 0 for maximum dose).
Subclusters are differently coloured.

B 3D visualization of dendrograms shown in (A). Drug effects are averaged over all 10 patient cell lines. Drug groups derived from clustering are coloured similarly as
in (A).

C Differences of drug effects in patient cell lines measured with DeathPro assay in 2D or 3D culture after 72 h (dell death: AUCd, growth arrest: AUCpi). Blue heat map
colour indicates a higher drug response in 3D culture and red colour a stronger effect in 2D culture. Black boxes mark drugs whose effects are significantly altered in
cancer organoids compared to 2D cultured cells.

D Differences of drug effects in patient cell lines cultured in 2D or 3D. Effects were measured with DeathPro assay directly after 72-h drug treatment in 2D or after 72-h
treatment and 72-h drug removal in 3D culture. Black boxes mark drugs whose effects are significantly altered in cancer organoids compared to 2D cultured cells.

E Drugs whose efficiency in inducing cell death or growth arrest is significantly changed when not applied in 2D but 3D culture. Effects of drugs marked in (C, D).
Dasatinib, AZD2014 and temsirolimus target proliferation pathways (cytostatic drugs), azacytidine induced cell death (cytotoxic drug).

Data information: HOSE, HOSEpiC; C + P, carboplatin + paclitaxel: *P < 0.05 in two-sided Welch’s t-test.
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responses although these drugs do not directly affect DNA structure

or repair (Fig 6E–G). Moreover, HRD scores were linked to growth

arrest induced by temsirolimus (Fig 6H). Stratification based on

high (≥ 10) or low (< 10) HRD scores divided OC cells into respon-

ders (OC12, OC18 and PE20) and non-responders to carboplatin,

olaparib or azacytidine (Fig 6D and F, Appendix Fig S4A). The OC
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responders grew faster than non-responders in organoid but not in

2D culture (Fig 2C and D, Appendix Fig S4B). Thus, high HRD

scores co-occurred not only with high drug-induced cytotoxicity but

also with fast growth in organoids. Altogether, the strong correlation

of growth and HRD scores with drug response in cancer organoids

supports our view that organoids are a better model to assess

patient-specific drug response in vitro.

Discussion

In this study, we systematically compared drug responses between

2D and organoid cultures of patient cells and their association with

genomic alterations. For this purpose, we developed DeathPro,

an automated microscopy-based workflow that simultaneously

discriminates cytotoxic and cytostatic drug effects over time. Previ-

ous microscopy-based drug assays in 3D cell cultures or organoids

focused on morphological changes (Celli et al, 2014; Härmä et al,

2014), metabolic parameters (Walsh et al, 2016) or required specific

instrumentation to resolve cell death and growth (Jung et al, 2016;

Walsh et al, 2016). Tested in a small number of cell models and not

in parallel in 2D cultures, the usability and scalability of these

assays is limited (Celli et al, 2014; Jung et al, 2016; Walsh et al,

2016). We have demonstrated the versatility and robustness of

DeathPro in drug screens of heterogeneous OC cells in monolayer

and organoid culture, co-cultures with fibroblasts, PDX-derived cells
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data. Losses are shown in blue, gains in red.
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C–F Association of copy number changes in drug target genes with drug sensitivities. (C) Cytotoxicity of Aurora kinase A inhibitor MK5108 in patients with or without
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as well as in lung cancer cells as a second cancer entity. Unlike

most image-based viability assays, which detect viable cells by cyto-

plasmic staining with Calcein AM (Celli et al, 2014; Trumpi et al,

2015), DeathPro directly compares the area of nuclei of dead and

live cells and generates drug efficacy measures over time indepen-

dent of cellular morphology and cytoplasmic stains. Counting dead

and live cells as an alternative to area measurements would require

detailed, time-consuming imaging of organoids unfeasible in high-

throughput drug screens. To the other end, subtle changes in

nuclear size due to mitosis defects and apoptosis might be

neglected. Even though we here presented drug screens based on

Hoechst for staining live cells, the DeathPro image analysis
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Figure 6. Homologous recombination deficiency scores correlate with drug-induced cell death in primary ovarian cancer cells.

A Visualization of homologous recombination deficiency (HRD) score determination by counting lost chromosome regions. Total copy number (TCN) and B-allele
frequency (BAF) plots derived from Asc15 whole-genome sequencing data are shown. Black squares illustrate chromosome regions summarized as HRD score.

B HRD scores of patient-derived ovarian cancer cell lines used for DeathPro drug screening.
C Heat map of correlation coefficients (R2) and estimated false discovery rates (FDR) determined from systematic association of drug responses (AUCd: cell death,

AUCpi: growth arrest) with HRD scores. FDR was estimated by random sampling.
D–H Drug-induced cell death (AUCd) or growth arrest (AUCpi) of all nine primary OC cell lines divided into two groups with low (< 10) or high (≥ 10) HRD score.

Cytotoxicity induced by carboplatin (D), paclitaxel (E), azacytidine (F) and decitabine (G) correlates with HRD score. Growth arrest induced by temsirolimus (H) is
reduced in HR deficient cells. R² values of not significant correlations are shown in italics.

Data information: *P < 0.05 in two-sided Welch’s t-test.
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workflow provided can be readily adapted to other nuclear stains or

markers.

Resolving drug effects in OC patient cells, we found that drug-

induced cell death was similar in both culture types whereas growth

arrest varied. Accordingly, the efficacy of cytostatic drugs like dasa-

tinib, temsirolimus or AZD2014 was culture type-dependent. Since

most newly developed drugs are cytostatic (Steeg, 2016), our results

highlight the importance of choosing the right model system to eval-

uate drug efficacy, for example in preclinical studies. In particular,

our results reveal diverse drug responses in organoids and suggest

that specific drug response phenotypes are visible in organoids but

not in monolayer culture. We observed less cell death in 3D

compared to 2D cultures after 72 h but higher death after drug

removal (114 h), which may lead to an underestimation of drug

effects in 3D after a 72-h standard treatment interval. The previously

reported findings that standard cell lines in 3D culture are more

chemoresistant than in 2D culture (Lee et al, 2013; Edmondson

et al, 2014) may therefore in part reflect altered cell death kinetics,

which should be accounted for in future screens. Interestingly, the

observed drug effects in OC patient cells mirrored findings from clin-

ical trials. The combination of carboplatin and paclitaxel did not

perform better than carboplatin alone, consistent with the ICON 3

trial (Parmar et al, 2002). Paclitaxel killed only two of nine patient

cancer organoids, similar to taxol monotherapy studies in metastatic

or refractory OC that reported 20% responders (Einzig et al, 1992;

Trimble et al, 1993). Dasatinib, which failed at clinical phase II for

recurrent OC and primary peritoneal carcinoma (Schilder et al,

2012), was effective in 2D but ineffective in 3D culture in our

screen. From the drugs included in our panel, no candidate

surpassed the first-line therapeutic carboplatin with regard to (i)

efficacy in the whole patient set, and (ii) limited toxicity in normal

epithelial cells. Still, initial cytotoxicity profiles determined with

DeathPro readily suggested patient-specific alternatives to carbo-

platin, such as Aurora kinase A inhibitor MK5108 for chemosensi-

tive patient OC12 or belinostat for chemoresistant patient Asc14.

To the best of our knowledge, we provide the first detailed

comparison of drug effects in primary cells cultured in the absence

or presence of an extracellular matrix. By seeding patient-derived

cells onto Matrigel, we generated OC organoids that, like other

cancer organoids, lack stromal and immune cells as well as func-

tional vasculature (Van de Wetering et al, 2015; Pauli et al, 2017;

Schütte et al, 2017). As drug effects changed upon addition of fibro-

blasts to 2D cultured patient cells, immune and stromal cells might

also profoundly alter organoid drug responses. In the future, the OC

organoid model could be enhanced by including stromal and meta-

stases relevant cells such as mesothelial cells (Yeung et al, 2015).

By associating resolved drug responses in OC patient cells with

HRD scores from WGS data, we found a set of relevant correlations

which would not be detected with proliferation-based assays in 2D.

As expected based on a study that linked higher platinum sensitivi-

ties to HR deficiency (Telli et al, 2016), carboplatin-induced cytotox-

icity correlated with HRD scores in patients with OC. Moreover, we

detected correlations of DNA demethylating drug effects with HRD

scores, suggesting a link between deficient DNA homologous recom-

bination repair and DNA demethylation. While only decitabine

sensitivity has been linked to KRAS status so far (Stewart et al,

2015), there is increasing evidence that both azacytidine and decita-

bine induce reactive oxygen species which cause DNA damage and

finally apoptosis in cancer cells (Gao et al, 2008; Shin et al, 2012;

Fandy et al, 2014). For all drugs whose effects correlated with HRD

score, we observed a stronger correlation in OC cancer organoids

than in monolayer culture. Interestingly, cell growth, HRD score

and drug-induced cytotoxicity were linked in organoids but not in

2D cell culture. Similar to drug efficacy, this suggests that genotype–

drug sensitivity correlations are more pronounced in 3D cultures,

which is particularly important since comprehensive studies so far

have focused on 2D culture data (Barretina et al, 2012; Garnett et al,

2012).

Taken together, we developed and provide the DeathPro assay as

a tool for refined drug screening and for deciphering genotype–drug

sensitivity associations, and found that culture type was a key deter-

minant of the efficacy of cytostatic drugs. In our hands, drug sensi-

tivity was not generally decreased in organoids as previous studies

suggested; instead, drug responses were more diverse and corre-

lated better with genomic alterations in 3D compared to 2D culture.

Overall, these results could provide a rationale to select the appro-

priate culture format for drug sensitivity assays in basic and future

translational research.

Materials and Methods

Patient-derived cell lines and organoids

Tumour material from serous ovarian cancer patients was collected

at the Departments of Gynaecology and Obstetrics, at the University

Medical Centres Mannheim and Heidelberg. The study was

approved by the ethical committees of the Universities of Mannheim

and Heidelberg (case number 2011-380N-MA and S-008/2009) and

conducted in accordance with the Helsinki Declaration; written

informed consent was obtained from all patients. Primary serous

ovarian carcinoma cell lines except for Asc211 and PE306 were

established by transplantation of primary tumour specimen or

tumour cells as previously described (Aloia et al, 2015; Noll et al,

2016). In detail, xenografts were established by first cutting primary

serous adenocarcinomas into pieces < 2 mm3 and then transplant-

ing them subcutaneously into NOD.Cg-Prkdcscid Il2rgtm1Wjl NSG

mice. Ascites or pleural effusion samples were spun down, remain-

ing erythrocytes were removed using ACK buffer (Lonza), and the

resulting cell suspension was then filtered through a 40 lm mesh

(Greiner Bio-One). For initiation of xenografts, at least 1 × 106 cells

were injected intraperitoneally into NOD.Cg-Prkdcscid Il2rgtm1Wjl

NSG mice. Mice were monitored for several months until tumour

engraftment was detected. For establishment of OC PDCLs except

Asc211 and PE306, engrafted tumours were taken out, cut into

pieces < 1 mm3 and then enzymatically disaggregated into a single

cell suspension with 1 lg/ml collagenase IV (Sigma) and DNase

(Sigma) or with the human tumour dissociation kit (Miltenyi Biotec)

for 2 h at 37°C on a MACSMix rotator (Miltenyi Biotec) with occa-

sional vortexing. Remaining erythrocytes were removed using ACK

buffer. The resulting suspension was then filtered through a 40 lm
mesh.

Cell lines were initiated by plating single cell suspensions

(0.5 – 1 × 105 cells) in T25 PRIMARIA flasks in a defined serum-

free culture medium as described in (Noll et al, 2016) with the addi-

tion of 36 ng/ml hydrocortisone (Sigma), 5 lg/ml insulin (Life
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Technologies) and 0.5 ng/ml beta-estradiol (Sigma), referred to as

CSC medium. For initial cell growth, CSC medium was supple-

mented with 50 lg/ml gentamicin (Life Technologies), 0.5 lg/ml

Fungizone (Life Technologies) and 10 lM ROCK inhibitor Y27632

(Selleckchem). Adherent monolayer cultures were maintained and

incubated at 37°C and 5% CO2, and all subsequent passages were

propagated without antibiotics/ROCK inhibitors. Contaminating

fibroblasts were removed by sequential differential enzymatic diges-

tion with StemPro Accutase (ThermoFisher). Asc211 and PE306 cell

lines were established directly from patient material. Cell suspen-

sions were prepared as described above and taken directly into 2D

culture. Tumorigenicity of PDCLs was verified by injecting 1 × 106

cells intraperitoneally into NOD.Cg-Prkdcscid Il2rgtm1Wjl NSG mice

and assessment of tumour growth. HOSEpiC cells were obtained

from ScienCell Research. PDCLs were checked for cross-contamina-

tion with standard OC cell lines and tested for mycoplasma contami-

nation using the commercial Multiplex Cell Line Authentication and

Mycoplasma Test Services (Multiplexion, Heidelberg, Germany). All

OC cells were used at passages below 20 (PDCLs) or 6 (HOSEpiC).

To generate organoids, PDCLs and HOSEpiC were seeded onto

growth factor reduced, phenol red-free Matrigel (Corning, > 9 mg/ml

protein) using CSC medium supplemented with 2% (v/v) Matrigel to

a density of 5,000–12,500 cells/cm2. Organoids were grown for up to

10 days, and medium was renewed every 3–4 days to CSC medium

without Matrigel.

To test DeathPro in cells directly derived from xenografts, 10,000

OC12 cells were intraperitoneally injected into NOD.Cg-Prkdcscid

Il2rgtm1Wjl NSG mice to form ascites. Cell clusters washed out from

mice ascites were subjected to erythrocyte lysis and seeded onto

Matrigel in CSC medium supplemented with antibiotics.

The cell lines LN2106 and T2427 were generated from human

squamous cell lung carcinomas as described previously (Gottschling

et al, 2012). Their use for research was approved by the ethical

committee of the University of Heidelberg (S-270/2001). LN2106

and T2427 cells were cultivated in DMEM/Ham’s F-12 (Thermo-

Fisher) with 10% foetal calf serum (ThermoFisher) for not more

than 20 passages. Lung cancer organoids were generated similar to

OC organoids.

DeathPro microscopy-based drug screens

Drugs were dissolved in DMSO, water, PBS or ethanol and stored as

single-use aliquots at �80°C (Table EV2). Drug dilution series (1:3)

were prepared using the respective culture medium. For drug

combinations, two or three drugs were combined by using similar

concentrations as for single drug testing. Drug concentrations, treat-

ment intervals and endpoints were chosen according to published

studies or determined in pilot experiments. Drug screening was

performed in 96-well Angiogenesis l-Plates from ibidi. For 2D

culture screens, 5,000 OC cells per well were seeded in 70 ll CSC
medium directly onto the plate. For organoid screens, 2,500 cells

were seeded in CSC medium containing 2% Matrigel onto 10 ll
solidified Matrigel. Drugs were added to CSC medium containing

1 lg/ml Hoechst (Invitrogen) and 1 lg/ml PI (Sigma) 1 day (2D) or

4 days (3D) after cell seeding. After 72 h, organoids were washed

twice with PBS and drug-containing medium was substituted by

drug-free medium. Likewise, lung cancer cells were seeded onto

Matrigel, treated with drugs in Hoechst- and PI-containing medium

from day 4 to day 7 after seeding and incubated for another 72 h

until day 10 in drug-free medium.

For the 2D OC co-cultures, 1,000 primary human ovary fibro-

blasts or IMR90 lung fibroblasts stained with 1 lM CellTracker

Green (ThermoFisher) for 40 min were seeded together with 2,000

OC12 cells or 4,000 cells from OC15, OC20 or PE306 in 70 ll CSC
medium per well. Drug treatment in CSC medium started at day 1

after seeding and lasted for 72 h.

In each drug assay, cells were exposed maximally to 1% DMSO

or 1% ethanol in the highest drug concentrations and corresponding

controls were included in the assay.

Cells were imaged at similar positions at 0, 72 and 144 h (only

3D) after start of drug treatment using a Zeiss LSM780 confocal

microscope, 10× objective (EC Plan-Neofluar 10×/0.30 M27) and

405 and 561 nm diode lasers in simultaneous mode. Imaging was

performed in an incubation chamber at 37°C, 5% CO2 and 50-60%

humidity using the Visual Basic for Applications macro “Autofocus-

Screen” (Conrad et al, 2011). All image data were used and anal-

ysed. To assess reproducibility, the drug screens in OC cells and

organoids were performed twice independently with different cell

passage numbers and different drug plate layouts. Lung cancer orga-

noids were screened once. Biological variability in all tested condi-

tions was assessed by imaging two positions per well, and no other

technical replicates were included.

Image processing and drug response analysis

Image stacks were processed to maximum intensity projections

(MIPs) with a custom-built macro “MIP_export.ijm” in Fiji 2.0.0-rc-

19/1.49 m (Schindelin et al, 2012). MIPs were uploaded and

processed in our “DeathPro” workflow in KNIME 3.1 (Konstanz

Information Miner, Berthold et al, 2008). In short, images were

annotated with drugs and concentrations used, smoothed by median

filtering and signals extracted by local mean thresholding. Sums (ar-

eas) of binary images were calculated and used to calculate cell death

and growth using R version 3.3.2 (R Core Team, 2016; see detailed

Information). For the calculation, summarizing, clustering and plot-

ting of values, the packages drc (Ritz et al, 2015), stringr, Complex-

Heatmap (Gu et al, 2016), ggplot2 (Wickham, 2009), reshape

(Wickham, 2007) and RColorBrewer (Neuwirth, 2014) were used.

Hierarchical clustering with Euclidian distance and complete

linkage was used to compare PDCL-specific drug response profiles

consisting of cell death (AUCd) and growth arrest (AUCpi) values

measured over all drugs tested. Average linkage was used for drug

response parameters averaged over all PDCLs.

The “DeathPro” workflow including R-scripts, Fiji macro, instal-

lation manual, example data and results can be found in Code EV1.

Image processing in the DeathPro KNIME workflow

The KNIME workflow has been optimized for images acquired as

follows: to minimize laser intensities and phototoxicity during drug

screen imaging, a large pinhole (172 lm 2D, 200 lm 3D) was used.

Image stacks with 15–20 slices (3D culture) or seven slices (2D

culture), 50 lm slice distance and 512 × 512 pixels with a resolu-

tion of 2.767 lm/pixel were acquired simultaneously with 405 and

561 nm lasers. This coarse confocal imaging strategy allows scan-

ning of a 96-well plate with two positions/well within 40 min (2D)
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or 70 min (3D culture). The 405 nm laser intensities were adjusted

for each PDCL so that the signal-to-noise ratio for Hoechst intensi-

ties in live cells to background was greater than 2. Intensity of the

561 nm laser was chosen in a way that PI intensities were not satu-

rated. At each time point analysed, the plate was calibrated and

images were taken at the same position in the wells.

In the KNIME workflow, the MIPs of one plate are loaded and

annotated using a “plate layout” csv-file chosen by the user. All

MIPs were smoothed using median filtering with a radius of

0.5 pixels. To cope with varying cell and organoid morphologies,

image-derived parameters were used for thresholding. For each

plate, images from untreated control were filtered. From these

images, the radius of the largest cancer organoids or cells was deter-

mined using mean local thresholding and the initial radius defined

at beginning. For the Hoechst images, two thresholds were applied:

a first mean local threshold with the large radius determined from

the controls to detect big structures followed by a second local

threshold with small radius to get small structures of low contrast

(live cells). For the PI channel, only one threshold was used since PI

stains only dead cells, whereas Hoechst intensities are high in dead

and low in live cells. Images with overall changes in Hoechst inten-

sities caused by high drug concentrations were filtered out and

subjected to local thresholding with adapted sensitivity parameters.

After thresholding, the binary images of Hoechst and PI were

combined (H + PI) to calculate the area of all cells. Small objects

(artefacts) were filtered out from binary images. The area (sum) of

dead cells (PI) or all cells (H + PI) was determined and exported in

csv-files. R-scripts (see below) were used to finally calculate all

screen parameters.

In the 2D co-culture screens, signals from green fluorescent

fibroblasts were acquired subsequently to Hoechst and PI signals

with a 488 nm laser. For segmentation, a mean local threshold

(radius = 35 pixel, c = �2) was used and binary images were used

to filter out signals from fibroblast nuclei. Thus, cell death and

growth arrest were determined exclusively for OC cells.

Cell death and growth inhibition analysis in R

The csv-files generated by KNIME that contained the area values

were used to calculated LD50 and AUCd as follows. Drug response

curve fitting to determine the LD50 was only performed if there was

a significant difference between cell death in drug-treated and

untreated samples. Therefore, an analysis of variance (ANOVA) was

performed and LD50 was only calculated for drugs with P-values

< 0.0005. Drug response curve fitting and LD50 calculation were

performed using the LL2.4 function of the drc package with Hill

Slope > 0 and 1 as maximum value for death ratio. AUCd values

were calculated with the following reference: median of the death

ratio in controls. AUC values were normalized as follows: AUC > 0

to 1-median and AUC < 0 to the median. In late drug response time

points like 144 h, cells are often dead for several days, disintegrated

and thus can be hardly stained with PI. Cells weakly stained with PI

might not be detected and mislead the results. However, dead cells

cannot move away and thus the area of dead cells cannot decrease

from an earlier to a later time point. This rationale was applied for

the correction of 144 h values: PI area values determined after 72

and 144 h at the same position were compared and set to the 72-h

value in case dead cells were lost (144 h value < 72 h value).

Cell growth was calculated by dividing the area of all cells

(H + PI) of the later time point (72 or 144 h) by the area of all cells

(H + PI) at drug test start (0 h). The variation in growth due to

image processing and confounding factors like migration or disper-

sion of organoids upon cell death necessitates filtering and adjust-

ment of growth values. Otherwise artefacts in one of 16 images in

one drug dilution series can completely distort the AUCpi of this

drug. “Loss of dead cells” as described above was similarly

corrected: growth after 144 h was set to growth after 72 h, in case

growth 144 h < growth 72 h. Growth values smaller 1 were set to 1

to correct for confounding factors like cells migrating out of the

position repeatedly imaged. The maximum growth value to filter

out artefacts was set to 8 as this value refers to three cell doublings

within 3 days. Furthermore, the median growth in controls (mgc)

was determined for untreated, DMSO and ethanol-treated samples

and used to limit growth under drug conditions to the twofold mgc.

AUCpi values were calculated with mgc as reference. The described

R code is included in the “DeathPro” KNIME workflow in Code EV1.

Whole-genome sequencing and analysis

Genomic DNA from 1 × 106 primary cells was extracted using the

DNeasy Blood & Tissue Kit (Qiagen), prepared with the TruSeq PCR

free library kit (Illumina) and sequenced on a HiSeq X Ten (Illu-

mina). Sequences were mapped to the human reference genome

(build hg19, version hs37d5; McVean et al, 2012) using bwa-mem

0.7.8-r455 (Li, 2013). The OC22 sample contained ~30% mouse

gDNA due to irremovable, immortalized mouse fibroblasts poten-

tially derived from the mouse xenograft and thus had to be aligned to

the hs37d5-mm10 hybrid reference sequence. Only reads mapped

against hs37d5 were used for further analysis. WGS data of all other

PDCLs and HOSEpiC contained only human DNA sequences. Dupli-

cates were marked with Picard 1.125 (https://broadinstitute.github.

io/picard/). Somatic nucleotide variations and indels were called

without matched control using our in-house workflow (Jones et al,

2012), filtered (ENCODE Project et al, 2012) and annotated with

Annovar (Wang et al, 2010; see below for detailed description). Copy

number variations and loss of heterozygosity regions were deter-

mined by dedicated workflows, and gains and losses were classified

based on estimated ploidies (see detailed information below). Genes

listed in oncoprints were selected from top 100 altered genes in OC in

COSMIC (Forbes et al, 2015) and ICGC (Zhang et al, 2011). Homolo-

gous recombination deficiency scores were determined as previously

described (Abkevich et al, 2012) with the following changes: copy

neutral loss of heterozygosity regions was excluded, chromosome 17

included and the region length was decreased from 15 to 10 Mb.

SNV/indel calling from whole-genome sequence data

We called SNVs and indels from all 10 samples without matched

control using our bioinformatic workflow (Jones et al, 2012, 2013).

SNVs were identified from tumour samples by using samtools/

bcftools version 0.1.19 (Li et al, 2009), and indels were determined

by Platypus version 0.8.1 (Rimmer et al, 2014). For later selection of

SNVs, a confidence score of 10 was set and further deducted if the

SNV was part of repeats or listed in DUKE excluded regions, DAC

blacklisted regions, self-chain regions or segmental duplication

records as introduced in the ENCODE project (ENCODE Project et al,
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2012). For indels, filters from Platypus were used to calculate a confi-

dence score ranging from 0 to 10. SNVs and indels were excluded

from the analysis if the confidence score was less than 8, sequencing

depth was too high (> 150 reads) or too low (< 6 reads), or the reads

were not properly mapped (according to the bwa-mem aligner).

Moreover, we removed very common SNVs/indels that are potential

polymorphisms as follows: first, mutations that could be found in

dbSNP version 147 (Sherry et al, 2001) with “COMMON = 1” tag

were removed, but rescued if they had a corresponding OMIM record

in dbSNP. Then, we additionally removed mutations found in ExAC

version 0.3.1 (> 0.1%; Lek et al, 2016), EVS (> 1%; Exome Variant

Server, NHLBI Exome Sequencing Project (ESP)) and our control

dataset (> 2%, among 280 controls). We used functional annotations

from Annovar (release Feb 2016 Wang et al, 2010) to select only

SNVs and indels found in coding regions for the oncoprint.

Identifying structural variations and copy number variations

Without matched controls for the 10 ovarian cancer samples, struc-

tural variations (SV) and CNVs were determined by two bioinfor-

matic workflows, named SOPHIA and ACEseq, respectively

(manuscripts for both workflows in preparation).

Briefly, SOPHIA uses the “supplementary alignment” feature of

the bwa-mem aligner, providing candidate chimeric alignments of

reads which cannot be represented by a linear alignment because

parts map to different locations in the genome (“split reads”) which

is an error-prone indicator of structural variations (SV). SOPHIA uses

a decision tree to designate high-quality reads and low-quality reads

that fall on poorly mappable regions or appear due to low-quality

base calls. From the remaining high-quality reads, SOPHIA filters the

results provided by the supplementary alignments generated by the

aligner using control (blood) sequencing data from a large back-

ground population database of 1,740 patients across different

diseases (published TCGA cohorts and published/unpublished DKFZ

cohorts) and sequencing technologies (100 bp read length Illumina

HiSeq 2000/2500 and 151 bp read length Illumina HiSeq X Ten)

aligned using the same alignment settings and workflow. An SV is

discarded if (i) the ratio of low-quality reads supporting one of the

breakpoints exceeds 0.5, (ii) if the SV is detected only on one break-

point (with the second either unmappable or undetected) and the

exact same breakpoint was detected in more than three cases in the

1,740 patient population background model, (iii) the SV is detected

by two breakpoints and one of them was exactly detected in more

than 3% of the 1,740 patient population background model, (iv)

both of the detected breakpoints had less than 10% allele frequency.

ACEseq (allele-specific copy number estimation from sequenc-

ing) uses the tumour coverage as well as the B-allele frequency

(BAF) to determine copy numbers. In addition, tumour cell content

and ploidy are estimated. During pre-processing of the data, allele

frequencies were obtained for all single nucleotide polymorphism

(SNP) positions recorded in dbSNP version 135 (Sherry et al, 2001).

Positions with BAF between 0.1 and 0.9 in the tumour are assumed

to be heterozygous in the germline. To improve sensitivity with

regard to imbalanced and balanced regions, heterozygous and

homozygous alternative allele SNP positions were phased with

impute2 (Howie et al, 2009; McVean et al, 2012). Additionally, the

coverage for 10-kb windows with sufficient mapping quality and

read density in a control was recorded for the tumour and

subsequently corrected for GC-content and replication timing to

remove coverage fluctuations caused by these biases. The genome

was segmented using the PSCBS package in R (Van Den Meersche

et al, 2009; Olshen et al, 2011) while incorporating SV breakpoints

defined by SOPHIA. Segments were clustered according to their

coverage ratio and BAF value using k-means clustering. Neighbour-

ing segments that fell into the same cluster were joined. Small

segments were attached to the more similar neighbour. Finally,

tumour cell content and ploidy of the samples were estimated by fit-

ting different tumour cell content and ploidy combinations to the

data. Segments with balanced BAF were fitted to even-numbered

copy number states whereas unbalanced segments were allowed to

fit to uneven numbers as well. Lastly, estimated tumour cell content

and ploidy values were used to compute the total and allele-specific

copy number for each segment. Based on the ploidy values from

ACEseq, we set thresholds for copy number gain/loss for 2n PDCLs

to > 2.7, < 1.3 and for 3n�4n > 4.7, < 2.3. In addition, loss of

heterozygosity was determined when total copy number of one

allele was lower than 0.5. For OC22, due to the mouse genome

contamination, we set the threshold for LOH to 1.5. For further anal-

ysis, we selected fully inclusive genes in the segments from the

gain/loss segments, based on the BioMart (Kasprzyk, 2011) dataset

from Ensembl release 85 (Yates et al, 2016).

Statistical analysis

Independent replicates refer to independent cell samples seeded,

treated and imaged on different days. Differences between effects of

drug combinations and single drugs were tested for statistical signif-

icance using a paired Student’s t-test. Differences between responses

of different groups to one drug were assessed with a two-sided

Welch’s t-test. P-values < 0.05 were considered statistically signifi-

cant and indicated with asterisks. Pearson’s correlation coefficient

(Rp) was used to describe the strength of correlation between

biological replicates. Coefficient of determination (R2) was used to

denote strength of linear relationships between area under curve

values and HRD scores. False discovery rate for R2 was determined

by random sampling.

Data availability

Sequence data have been deposited at the European Genome-

phenome Archive (http://www.ebi.ac.uk/ega/), which is hosted by

the EBI, under Accession Number EGAS00001002239.

Expanded View for this article is available online.
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