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ABSTRACT
The cellular hypoxic response contributes to cell transformation and tumor progression. Hypoxia-inducible
factor 1 (HIF-1) is a key transcription factor that mediates transcription of genes whose products are
essential for cellular adaptation to hypoxia. The activity of HIF-1 is largely regulated by the abundance of
its alpha subunit (HIF-1a), which is primarily regulated by an oxygen-dependent and ubiquitin/
proteasome-mediated degradation process. The HIF-1a protein level is also regulated by protein kinases
through phosphorylation. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase with a tumor
suppressive function. Plk3 phosphorylates and destabilizes HIF-1a. Plk3 also phosphorylates and stabilizes
PTEN, a known regulator of HIF-1a stability via the PI3K pathway. Our latest study showed that the Plk3
protein is suppressed by hypoxia or nickel treatment via the ubiquitin/proteasome system. We discovered
that Seven in Absentia Homologue 2 (SIAH2) is the E3 ubiquitin ligase of Plk3 and that Plk3 in turn
destabilizes SIAH2. Given the role of SIAH2 in promoting stability of HIF-1a, our work reveals a novel
mutual regulatory mechanism between Plk3 and SIAH2, which may function to fine-tune the cellular
hypoxic response. Here we discuss the role of Plk3 in the hypoxic response and tumorigenesis in light of
these latest findings.
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The hypoxic response

The cellular response to hypoxia (the hypoxic response) is a
complex intracellular signaling network that coordinates the
biological activities in response to low oxygen tension.1,2

The central players of this response are hypoxia inducible
factors (HIFs),1,2 with HIF-1 being the most important and
best characterized.1,3 As a transcription factor, HIF-1 medi-
ates expression of a group of HIF-response genes, such as
the vascular endothelial growth factor (VEGF) and the glu-
cose transporter GLUT1, by binding to the HIF response
element (HRE) on the promoters of these genes.1-3 Expres-
sion of these genes triggers further signaling cascades lead-
ing to profound biological changes in the cell. These
changes include metabolic alterations that stimulate angio-
genesis and promote cell survival, which are required for
adaption to hypoxia.1-3

The overall cellular activity of HIF-1 is primarily dictated by
the abundance of its a subunit (HIF-1a), which is regulated
mainly at the post-translational level.1-3 HIF-1a is inducible
under hypoxia whereas the beta subunit (HIF-1b or ARNT) is
constitutively expressed.1-3 Under normoxia, HIF-1a is
degraded through oxygen-dependent hydroxylation and the
ubiquitin proteasome system mediated by prolyl hydroxylases
(PHDs) and Von Hippel-Lindau Factor (pVHL), respectively.1-3

Low oxygen tension reduces hydroxylation and slows degrada-
tion of HIF-1a, which lead to higher overall HIF-1 activity in
the cell.1-3 The stability of HIF-1a is also regulated by protein
kinases. Phosphorylation by a number of protein kinases,

including ERKs, GSK3b, and Plk3, has been shown to alter HIF-
1a stability and/or localization.4-9

The hypoxic response contributes to both tumorigenesis and
tumor progression.3,10,11 An overactive hypoxic response path-
way, often manifested as elevated cellular levels of HIF-1a, is a
common feature of human cancers.3,11 This characteristic is
essential for the survival of rapidly proliferating tumor cells
that frequently face oxygen and/or nutrient restrictions due to
increase in tumor masses. Elevated hypoxic responses promote
survival of tumor cells by triggering angiogenesis which
supplies nutrients and oxygen as well as by reprograming the
cellular metabolism, all of which are essential for cellular
adaptation to the hypoxic condition.1-3,11 Given the importance
of the hypoxic response in cancer, inhibition of the hypoxic
pathway and/or tumor angiogenesis is considered an important
strategy of cancer therapy.12,13

Polo-like kinase 3

Polo-like kinase 3 (Plk3) is one of the 5 mammalian members
(Plk1-5) of an evolutionarily conserved family of serine/thre-
onine protein kinases, which share significant amino acid
sequence homology.14-17 All Plks have a highly conserved
kinase domain (KD) at the amino–terminus and a polo box
domain (PBD) at the carboxyl-terminus.14-17 The KD of Plks
confers catalytic activity whereas the PBD is important for their
subcellular localization and the substrate recognition.15-17 Plk1 is
the best studied member of the Plk family with a well-defined

CONTACT Dazhong Xu Dazhong_xu@nymc.edu Department of Pathology, New York Medical College School of Medicine, Valhalla, NY 10595, USA.
© 2017 Taylor & Francis

CELL CYCLE
2017, VOL. 16, NO. 21, 2032–2036
https://doi.org/10.1080/15384101.2017.1373224

https://crossmark.crossref.org/dialog/?doi=10.1080/15384101.2017.1373224&domain=pdf&date_stamp=2017-11-15
mailto:Dazhong_xu@nymc.edu
https://doi.org/10.1080/15384101.2017.1373224


and critical role in cell cycle progression.15-17 Plk4 has an impor-
tant role in centrosome dynamic during the cell cycle.14-17 Plk5
has a truncated KD rendering it kinase-deficient.14-19 Plk5 func-
tions to suppress cell cycle progression, mediate neuron differen-
tiation, and suppress glioblastoma.18,19 The expression of Plk5
appears to be restricted to the brain.15-19 The functions of Plk2
and Plk3 seem to be more diverse and not restricted to cell cycle
progression.14-17,19 Importantly, all members of the Plk kinase
family have close association with tumorigenesis and tumor pro-
gression.14-17,19-22

PLK3 is considered an immediate early response gene whose
mRNA level is inducible by mitogenic stimulation.15,21 Interest-
ingly, the level of Plk3 protein is quite constant in mitogen-
stimulated cells throughout the cell cycle,15,21 although it has
also been reported that the Plk3 protein level does oscillate dur-
ing the cell cycle.23,24 The kinase activity of Plk3, on the other
hand, appears to oscillate during the cell cycle and is regulated
by a variety of stress conditions, including genotoxic insults,
hypoxia, and osmotic stresses.25-28 The functional profile of
Plk3 is apparently rather diverse. Earlier work indicates that
Plk3 is involved in multiple phases of cell cycle progression,
including G1/S transition, mitosis, DNA replication, Golgi frag-
mentation, and centrosomal functions.15,21 Later studies
revealed additional functions of Plk3 in stress responses.8,25,27,28

Despite the functional significance of Plk3 discovered in vari-
ous cell-based studies, PLK3 null mice are rather normal and
fertile.9,29 However, these mice tend to be slightly larger and
more prone to spontaneous tumor development later in the
life.9 This is in sharp contrast with the embryonic lethal pheno-
types as result of deletion of Plk1 or Plk4.30,31 The lack of a sig-
nificant adverse phenotype suggests that cellular functions of
Plk3, particularly those associated with cell cycle regulation,
can be compensated by other members of the Plk family and
therefore largely dispensable. Functional complementation
studies by us and others show that both Plk3 and Plk1 are capa-
ble of rescuing CDC5 (Plk of budding yeast)-deficiency in bud-
ding yeast.32,33 It appears that divergent evolution eventually
leads to new functions of Plk3 in higher animals despite its con-
served functions in yeast. Thus, regulation of stress responses
rather than normal cell cycle progression could be the primary
function of Plk3 in mammals.

Plk3 expression is reduced in many human malignancies,
including those in the lung, head and neck, colon, kidney,
liver, stomach, and rectum.15,21 Expression of Plk3 mRNA
and protein is also significantly deregulated in human mela-
noma cell lines and tissues.15 Plk3 mRNA was found to be
significantly downregulated in a majority of more than a
dozen human lung carcinoma samples, apparently as a
result of reduced PLK3 transcription.34 These data suggest
that reduced Plk3 expression may be associated with tumor
development. This notion is supported by the observation
that although polymorphisms were identified in 40 lung
tumor cell lines, no missense or nonsense mutations were
found in Plk3.35 These previous observations and the find-
ing that PLK3 null mice are prone to developing tumors in
several organs later in the life indicate a tumor suppressive
role of Plk3 and that reduced expression is likely the
main mechanism that associates Plk3 with increased
tumorigenesis.

Regulation of HIF-1a by Plk3 through direct
phosphorylation

The implication of Plk3 in the cellular hypoxic response was
initially revealed in a genetic study showing that PLK3 null
mice exhibited an increased tumor incidence later in the life
and that the tumors developed in these mice were often larger
and more vasculated than those from the wild type animals.9

Biochemical analysis showed that murine embryonic fibro-
blasts (MEFs) from PLK3 null mice express a much elevated
level of HIF-1a in response to hypoxia or nickel, a hypoxia
mimic.8,9 Furthermore, ectopically expressed Plk3 suppresses
nuclear accumulation of HIF-1a in HeLa cells.9 Inhibition of
HIF-1a nuclear translocation appears to be dependent on the
kinase activity of Plk3 as overexpression of the Plk3 kinase
domain was sufficient to suppress HIF-1a accumulation in
the nucleus under hypoxic conditions.9 Consistently, expres-
sion of VEGF-A, a major HIF-1a response protein, was also
higher in PLK3 null MEFs.9 These results suggest a possible
direct regulation of HIF-1a by Plk3. Follow up studies using
in vitro kinase assay in combination with mass spectrometry
confirmed that Plk3 phosphorylates HIF-1a at two evolution-
arily conserved serine residuals: Ser-576 and Ser-657.8 Ser-
576 is located within the oxygen-dependent degradation
domain (ODDD) whereas Ser-657 residues immediate down-
stream of the nuclear export signal (NES) of HIF-1a,8 sug-
gesting that Plk3 may regulate degradation and nuclear
export of HIF-1a. Further experimentation confirmed that
phosphorylation of these residuals reduces the stability of
HIF-1a in a hydroxylation- and pVHL-independent manner.8

Previous work demonstrated that ERK MAP kinases phos-
phorylate HIF-1a at residues Ser-641 and Ser-643 (both are
within NES), through which promotes translocation of HIF-1a
from the cytoplasm to the nucleus.6,7 Glycogen synthase kinase
3 b (GSK3b) phosphorylates HIF-1a at three serine residues
(Ser-551, Ser-555, and Ser-589) located within ODDD,4

through which enhances HIF-1a degradation in a pVHL-inde-
pendent manner.4,36 The discovery that Plk3 regulates HIF-1a
added one more kinase to the short list of protein kinases that
directly regulate HIF-1a through direct phosphorylation.

Regulation of HIF-1a by Plk3 through PTEN

Phosphatase and tensin homologue (PTEN) is an important
tumor suppressor that inhibits the phosphatidylinositol 3-kin-
ases kinase (PI3K) signaling pathway by dephosphorylating the
phosphoinositides.37,38 Activation of the PI3K pathway leads to
an elevated AKT activity.38 AKT may increase the HIF-1a pro-
tein level by activating mTOR or inhibiting GSK3b, which reg-
ulate the protein synthesis and stability of HIF-1a,
respectively.4,12,39-41

PTEN can be phosphorylated by a number of kinases.42-49 Phos-
phorylation of PTEN can affect its activity and/or stability 42-52. The
sites of phosphorylation on PTEN are concentrated at the C-termi-
nal region of the protein,42-49 the regulatory domain of
PTEN.42,53,54 Phosphorylation of PTEN by Plk3 was discovered
based on the observation that PLK3 null MEFs exhibited reduced
levels of the PTEN protein.43 In vitro kinase assays followed by
mass spectrometry identified Thr-366 and Ser-370 at the C-
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terminal region of PTEN as the phosphorylation targets of Plk3.43

These two sites were further confirmed using a phospho-specific
antibody that recognized p-Thr-366 and p-Ser-370.43 Phosphoryla-
tion of these two residues enhances the stability of PTEN, consis-
tent with the reduced PTEN protein level in PLK3 null MEFs.43

Thus, phosphorylation of these two sites by Plk3 may stabilize
PTEN and lead to an increased overall PTEN activity in the cell.
Given the known effect of the PI3K pathway on HIF-1a stability
and that PTEN is a negative regulator of the PI3K pathway, it is
conceivable that Plk3 may affect HIF-1a stability indirectly
through the PI3K signaling pathway.

Regulation of HIF-1a through mutual regulation
between Plk3 and SIAH2

Our most recent work has added additional complexity to the
regulation of HIF-1a/the hypoxic response by Plk3. A recent
effort to understand the effects of hypoxia and nickel on Plk3
expression reveals that the Plk3 protein is suppressed by hyp-
oxia or nickel through the ubiquitin proteasome system.55

Seven in Absentia Homologue 2 (SIAH2), a RING finger E3
ubiquitin ligase, was identified to catalyze ubiquitination of
Plk3 and to promote Plk3 degradation.55 SIAH2 apparently
interacts with Plk3 through two domains that closely resemble
the consensus SIAH2 binding motif.55-57 One of these domains
is located within the KD of Plk3 whereas the other one resides
slightly N-terminal of the PBD.55 The domain near the PBD
seems to be the main site for the interaction and Plk3 degrada-
tion.55 SIAH2 has been shown to be activated and induced by
hypoxia and in turn mediates the ubiquitination and degrada-
tion of PHDs.58,59 SIAH2 appears to regulate Plk3 in a similar
fashion. Given that both PHDs and Plk3 negatively regulate the
stability of HIF-1a, SIAH2 may regulate HIF-1a via both
PHDs and Plk3. More interestingly, Plk3 also destabilizes
SIAH2 in a kinase activity-dependent manner.55 Thus, a
mutual regulatory mechanism exists between Plk3 and SIAH2,
which may functions to fine-tune the HIF-1 signaling.

USP28, a deubiquitinase that suppresses the stability of
MYC and HIF-1a,36,60,61 also appears to indirectly contribute
to suppression of Plk3 by hypoxia and nickel.55 It has been
shown that USP28 can be suppressed by nickel via HIF-, the
ubiquitin-proteasome system-, and DNA methylation-depen-
dent mechanisms.62 USP28 prevents the suppression of Plk3
by nickel, suggests that suppression of Plk3 deubiquitination
by USP28 in response to nickel could contribute to the ele-
vated degradation of Plk3 by the ubiquitin-proteasome sys-
tem. However, the effect of USP28 on Plk3 is likely indirect
as a direct interaction between Plk3 and USP28 was not
detected.55 Of note, although USP28 has been reported to
mediate HIF-1a stability, a direct interaction between the
two was also undetectable.36

Taken together, the newest findings reveal a novel mutual
regulatory mechanism between Plk3 and SIAH2 and support
a complex role of Plk3 in regulating the cellular hypoxic
response through HIF-1a: under normoxia, Plk3 suppresses
the hypoxic response by phosphorylating and destabilizing
HIF-1a and SIAH2; under hypoxia or the hypoxia-like condi-
tion induced by nickel, the level and/or activity of SIAH2
increases and the level of USP28 decreases, which suppress

the protein levels of Plk3 and PHDs; Reduced expression of
Plk3 and PHDs in turn helps maintain HIF-1a and SIAH2 pro-
teins at higher levels. This mutual regulatory network high-
lights a potentially important role of Plk3 in a signaling
network that functions to fine-tune the cellular hypoxic
response.

Implication of the regulatory network of Plk3, SIAH2,
and HIF-1a in tumorigenesis

Evidence collected thus far has established a tumor suppressive
role of Plk3 through a mechanism independent of its previously
discovered functions on cell cycle regulation. Despite the
observed functions of Plk3 in multiple biological processes
associated with cell cycle progression at the cellular level, the
PLK3 null mouse is largely normal.9 Discernable phenotypes of
PLK3 null mice are the slightly larger sizes and the higher ten-
dency of developing highly vasculated tumors in multiple
organs.9 These phenotypes are consistent with the findings on
the regulation of PTEN and HIF-1 pathways by Plk3 as these
pathways are known to regulation cell growth, cell survival, and
tumor angiogenesis.1-3,39,63 In vivo data also imply that many
Plk3 functions described earlier based on molecular and cellu-
lar studies are largely dispensable for normal mouse physiology.
This is likely a result of the functional redundancy of Plk3 with
other members of the Plk family. However, the phenotypes of
PLK3 null mice on tumor burden and the hypoxic response
strongly suggest that Plk3 may suppress spontaneous tumori-
genesis and tumorigenesis induced by carcinogens, particularly
those mimicking hypoxia, such as nickel compounds and other
metal carcinogens.

SIAH2 is considered an oncogene in multiple tissues, including
the lung.59,64 Elevated expression of SIAH2 has been detected in
lung cancers.64,65 SIAH2 promotes tumorigenesis through the Ras
signaling pathway by targeting the Ras inhibitor Sprouty 2 for deg-
radation as well as through the hypoxic response pathway.58,64 The
finding that Plk3 destabilizes SIAH2 in a kinase activity-dependent
manner highlights an additional mechanism underlying the role of
Plk3 in tumorigenesis. In conclusion, recent studies have provided
new mechanistic insights on how Plk3 may contribute to tumori-
genesis and tumor progression (Figure 1).
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Figure 1. Plk3, hypoxic responses, and tumorigenesis.
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Perspectives

Unlike Plk1, the prototype of the mammalian Plk kinase family,
the biology of Plk3 and its role in tumor biology is much less
studied and understood. Recent discoveries on the new func-
tions of Plk3 in the HIF pathway have shed fresh light on the
importance and mechanisms of this protein in tumorigenesis
and tumor progression. While Plk1 has been viewed as an
attractive target for cancer therapy based on its well define
functions in cell cycle progression, the potential of Plk3 in this
regard has not been fully appreciated. Given the role of Plk3 in
the hypoxic response, it is conceivable that this protein kinase
can be a very significant player in tumorigenesis and thus serve
as a therapeutic target and/or tumor biomarker. Further studies
on the biological significance and detailed mechanisms of Plk3
in regulating the hypoxic pathway and tumorigenesis, particu-
larly in vivo, are highly warranted.
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