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A role for cellular senescence in birth timing

Jeeyeon M. Chaa,b and David M. Aronoff b,c,d

aDivision of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; bDepartment of Medicine, Vanderbilt
University Medical Center, Nashville, TN, USA; cDivision of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; dDepartment of
Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA

ARTICLE HISTORY
Received 30 June 2017
Revised 5 August 2017
Accepted 19 August 2017

ABSTRACT
Senescence contributes to the local and systemic aging of tissues and has been associated with age-
related diseases. Recently, roles for this process during pregnancy have come to light, the dysregulation of
which has been associated with adverse pregnancy outcomes such as preterm birth. Here, we summarize
recent advances that support a role for senescence in birth timing and propose new aspects of study in
this emerging field.
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The problem of preterm birth

Preterm birth, defined as delivery before 37 completed
weeks of gestation, has been a global health concern for far
too long. In the United States, nearly 12% of deliveries are
born preterm every year.1 Premature delivery accounts for
nearly 75% of early neonatal morbidity and mortality, with
15 million premature births and greater than 3 million still-
births worldwide.1-5

The coordinated events leading to normal, term parturi-
tion has been studied in depth. These include (1) transfor-
mation of the myometrium to highly contractile cells, (2)
cervical ripening, and (3) weakening and rupture of fetal
membranes in response to inflammation of the adjacent
decidua,5,6 triggering coordinated myometrial contractility
resulting in delivery of the fetus. These processes are associ-
ated with decidual and membrane activation, which com-
prise the anatomical and biochemical events towards the
withdrawal of decidual support for pregnancy, separation of
the chorioamniotic membranes from the decidua and even-
tually, membrane rupture.7,8 The transition from quiescence
to activation is characterized by a functional progesterone
withdrawal in the setting of unchanged serum progesterone
levels, resulting from epigenetic control of progesterone sig-
naling and reduced responsiveness, increased estrogen
effects, and increased contraction-associated protein (CAP)
expression in the myometrium, including oxytocin and gap
junction protein connexin 43, resulting in a proinflamma-
tory milieu towards coordinated uterine contractions.5,7,9,10

Mechanisms underlying preterm birth remain unclear. Risk
factors towards preterm delivery are wide-spanning and involve
gene-gene and gene-environment interactions. It is unknown
whether preterm birth harnesses the same pathways as normal
delivery. Variables that contribute to this multifactorial disor-
der include genetic predisposition (family history), infection/

inflammation, environmental inducers of oxidative stress (such
as cigarette smoking), short cervix, progesterone resistance,
extremes in maternal age (young and old), assisted reproduc-
tive technology, stretch signaling originating from multiple
pregnancy, short inter-pregnancy interval, socioeconomic fac-
tors resulting in late to no prenatal care, and prior preterm
birth.1,5,7,11

In spite of our best efforts, current strategies to prevent pre-
term birth have been limited. Despite years of investigation to
identify strategies against preterm birth, the most common
interventions implemented for the prevention or treatment pre-
term labor include bed rest, tocolytics, antibiotic treatment, and
cervical cerclage. These methods have proved to be of little or
no benefit in women with multiple risk factors.12 Progesterone
supplementation for women with particular risk factors such as
previous preterm delivery or a short cervix has shown promise
but has not shown improvement in women with other or addi-
tional risk factors.13,14

Further studies are required to study risk factors, singularly
or in combination, to determine whether signaling pathways
respond to risk factors differentially. This will help to differenti-
ate preterm birth into subtypes based upon etiology andmolecu-
lar signature.5,7 Our limited understanding of the mechanism(s)
underlying preterm birth and parturition has resulted in failure
to effectively detect and apply successful treatments or
interventions.5,12

These signaling pathways are thought to ultimately converge
upon the activation of fetal and maternal tissues to stimulate
myometrial contractions and/or rupture of the fetal mem-
branes. In recent years, cellular senescence of maternal-fetal tis-
sues has been proposed as a mechanism and common pathway
integrating multiple risk factors for birth timing. This article
will review our current understanding of this process in preg-
nancy events.
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Basic concepts of senescence

Senescence is a process by which cells enter a state of durable
growth arrest and irreversibly cease proliferation without
undergoing cell death (apoptosis). This process was first
described by Hayflick and Moorhead in cell culture who identi-
fied intrinsic factors that could limit cellular proliferation in
normal cells.15,16 They speculated that a molecular “stopwatch”
limiting proliferation and growth could regulate organismal
aging.

Later studies showed that senescence occurs in response to a
range of physiological stresses and molecular damage when a
cell is under duress.17 These stress signals include genotoxic
stress in the forms of unrepaired DNA damage or telomere
loss, oxidative stress, and uncontrolled oncogenic signaling.
Senescence has since been identified in multiple metabolically
active tissues to halt cell proliferation and elicit local inflamma-
tory responses to stimulate macrophage recruitment for cell
clearance and tissue remodeling.18,19 Its involvement has been
reported extensively as the body’s protective response against
malignant growth but also in normal physiological processes
such as megakaryocyte maturation,20 hepatic growth,21 cellular
aging,22 and recently, in embryonic development and pattern-
ing.23,24 Whole body, organismal aging has also been shown to
be associated with increased numbers in DNA mutations25,26

and accumulation of senescent cells in aged tissues, diminishing
the regenerative properties of progenitor cells.19,27,28

As opposed to apoptosis, which is a controlled, programmed
cell death necessary for the homeostasis of multicellular organ-
isms, senescence, a form of biological aging, is a terminal differ-
entiation with reduced functional capacity of the cell. This is
characterized by changes in the cell’s gene and protein expres-
sion to influence the metabolic capacity of cells around it, thus
changing the extracellular environment to limit a tissue’s
potential for renewal.

All senescent cells appear to exhibit a flat, vacuolated mor-
phology, with increased senescent-associated beta-galactosidase
(SA-b-gal) staining associated with the accumulation of lyso-
somes.29 However, its molecular signature varies with the spe-
cific trigger for senescence. Molecular marks used to describe
senescent cells include telomere shortening;30 accumulation of
DNA damage and derepression of the INK4a/ARF locus;31 dys-
regulation by tumor suppressors p53 and retinoblastoma pro-
tein (Rb);18 markers of heterochromatin such as SAHF at
H3K9 methylation;32 altered levels of cell cycle regulators p21,
p16, p19, and HP1g;18 decreased expression of nuclear lamin
B1,33 loss of nuclear HMGB1 and its secretion into the extracel-
lular milieu,34 and enhanced unfolded protein response aka
proteostasis,35 among others.

Telomeres are short, tandemly repeated DNA elements at
the ends of linear chromosomes that protect the DNA ends
from degradation and/or recombination.30,36,37 DNA replica-
tion machinery is unable to copy the ends of linear molecules,
so telomeres become progressively shorter (telomere attrition)
with every round of cell division.38 Telomere attrition has been
implicated in cellular aging and aging-related diseases, and fac-
tors that may decrease longevity, including stress or obesity,
have been reported to decrease telomere length.39,40 Critically-
short or dysfunctional telomeres can elicit a DNA damage

response to initiate senescence or apoptosis and are marked
with phosphorylated histone H2AX, or gH2AX.41 Proteins that
comprise the shelterin complex normally protect the shortened
ends from p53-mediated DNA repair.42

The INK4a/ARF locus encodes two tumor suppressors,
p16INK4a and ARF, via different reading frames, both of which
are important inducers of cellular senescence.43 While
p16INK4a inhibits the activity of cyclin-dependent kinases
CDK4 and CDK6 by imposing a G1 cell cycle arrest, ARF
enhances p53 activity and stability through inactivation of the
p53-degrading ubiquitin ligase MDM2.31,44 Expression of the
INK4a/ARF locus is normally very low to undetectable in most
tissues in young organisms but increases with chronological
aging:45 the expression of p16INK4a and ARF markedly
increase with aging in rodent tissues and have been shown to
increase with aging in human kidney and skin cells.45-48 Mice
deficient in p16INK4a have increased regeneration potential of
stem cells,45,49,50 suggesting a contribution of p16INK4a to the
age-associated decline in tissue regeneration potential of mam-
malian aging. While the mechanisms responsible for the
increased expression of p16INK4a in aging tissues are not
completely understood, an association with Polycomb and
homeobox gene activity have also been proposed.51 The expres-
sion of the INK4a/ARF locus can also be accelerated by high
oncogenic activity, a phenomenon that has been called onco-
gene-induced senescence, or OIS.52,53 Protection from carcino-
genesis by activating the INK4a/ARF locus has been extensively
described elsewhere.31,44

Senescence associated secretory phenotype

Two hallmarks of cellular senescence are an irreversible
arrest of cell proliferation and the development of a pro-
inflammatory and pro-tumorigenic local environment,
which is now referred to as senescence-associated secretory
phenotype (SASP) aka immuno-senescence.17,54 Although
senescent cells are no longer mitotic, they remain metaboli-
cally active and capable of shaping the secretory cytokine
milieu to influence the local microenvironment. This
explains how a small number of senescent cells can promote
aging phenotypes and pathologies via local and systemic
effects. SASP was first described as an entity in 2001 when
it was discovered that senescent human fibroblasts could
stimulate neighboring premalignant and malignant cells to
proliferate in culture and form tumors in mice.55,56 How-
ever, multiple prior works had already identified the syner-
gistic effect of the altered microenvironment to enable
premalignant cells to become fully malignant.57-59

SASP entails the secretion of a collection of potent biological
factors that promote inflammation, invasion, angiogenesis, and
ironically, cell proliferation on neighboring cells and the sur-
rounding tissue.17 Several constituents comprising SASP have
been identified to date: cytokines, chemokines, MMP’s, and
constitutents of the TGFb, IGF, and VEGF signaling path-
ways.18,60 Recently, attention has also been focused on extracel-
lular vesicles as conveyors of senescence signals outside the
cell.61 These composite mediators create a microenvironment
that facilitates the progression of senescent cells, induces
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proliferation or epithelial-to-mesenchymal transformation and
invasion in neighboring cells, and reinforces the senescence growth
arrestthroughautocrineandparacrinemechanisms.24,54,62,63

SASP involvement in parturition and preterm delivery has
been proposed since there is overlap in the SASP signature with
factors known to stimulate coordinated myometrial contractil-
ity, particularly pro-inflammatory cytokines and prostaglan-
dins. In addition to local paracrine effects, senescence of
maternal-fetal tissues appear to have a mechanical contributory
role towards delivery: senescence of maternal tissues weaken
the decidual anchor of the placenta to the mother while senes-
cence in the fetal membranes weaken this barrier in preparation
for rupture. Furthermore, triggers for cellular senescence such
as DNA damage and oxidative stress are also known to be risk
factors for preterm birth, making this an alluring hypothesis.

Senescence in reproductive tissues

Placental senescence

The placenta is an embryonically-derived, discoid organ that
serves as the interface between the fetus and the mother, pro-
viding functions necessary for fetal survival, growth, and devel-
opment64. Grossly, it is comprised of the fetal placenta which is
genetically identical to the fetus, and the maternal decidual
basalis, which developed from maternal stromal tissue (see
below: “Decidual senescence”). Its functions are numerous,
including nutrient uptake, waste elimination, gas exchange,
thermo-regulation of the fetus, barrier against infection, hor-
monal production, among others.64

Placental “aging” has been implicated in functional insuffi-
ciency to meet the needs of the fetus and thus compromise fetal
viability,65 resulting in abnormal pregnancy outcome. However,
this concept has not been mechanistically investigated. Placen-
tal aging has been correlated with women with advanced
maternal age in the form of increased gross and histologic calci-
fication66 and accumulation of lipofuscin pigments67 and fibri-
noid material comparable to amyloid.68 Sonographic changes
during late gestation were suspected to reflect decline in placen-
tal function secondary to physiological stress rather than nor-
mal maturational development.69 Indeed, pregnancy itself can
impart stress (oxidative, hypoxic and nitrative stress) to alter
placental development. These stressors can be further exacer-
bated by smoking, intrauterine growth restriction (IUGR), pre-
eclampsia or in miscarriage.65,70

While previous studies have denoted physiological “senes-
cence” to be synonymous with aging and functional decline,
placental senescence in the molecular sense has only recently
been investigated. Several older studies denote senescence/
aging to encompass placental apoptosis which increases with
pregnancy progression.71 Molecular studies have identified pla-
cental apoptosis in the setting of either reduced or unchanged
telomerase activity.72-74 While placental apoptosis has been
deemed normal for the formation of villous trophoblast bilayer
and syncytiotrophoblast formation, it is yet unclear whether
cellular senescence in the placenta itself is implicated in patho-
logic pregnancies such as preeclampsia, preterm birth or IUGR.
Recently, studies have shown that fetal growth restriction is
associated with telomere shortening and increased expression

in cell senescence markers such as p21, p16 and elongation fac-
tor 1a in decidual-placental samples taken near the umbilical
cord.75 Further studies are warranted to investigate whether (1)
the positive staining was in the decidua vs. placenta or both; (2)
placental senescence itself exists independently of placental
maturation, and if so, (3) whether senescence can induce path-
ological pregnancy states.

The concept of placental aging has been controversial.
Indeed, when the concept of placental aging is tested against
the definition of true aging (progressive, irreversible loss of
functional capability) versus maturational, time-related
changes (with increased functional capacity), it elicits more
questions than answers.71 Placental senescence in its truest
sense would be intriguing, since the embryo and its placenta
represent genetically identical tissues which age at different
rates.76 The focal thinning of the villous syncytiotrophoblast
found in terminal villi has often been cited as evidence of syn-
cytial senescence however these thinned areas are optimally
adapted to increase trophoblastic surface area and facilitate gas
transfer.77 Placentae from women with severe pre-eclampsia
appear more mature for the length of gestation and has been
classed as “premature aging” but pathologically would be more
accurately regarded as accelerated maturation to increase the
diffusion capacity of the placenta in the setting of an adverse
maternal environment.71 Although placental growth does slow
in the last few weeks of gestation, its growth does not cease and
trophoblast cells can proliferate, repair and replace cells in
unfavorable maternal milieu or ischemic damage.78,79

Decidual senescence

The maternal decidua is a transiently-lived, terminally-differen-
tiated organ that begins to form immediately after embryo
implantation. During the attachment phase of implantation in
rodents, the physical and molecular interaction of the embry-
onic trophectoderm with the uterine epithelium initiates differ-
entiation of the underlying stromal cells (decidualization). The
role of decidual stromal cells has been posited to direct placen-
tal development and nourish the developing embryo as a read-
ily-available glycogen source released upon phagocytosis by the
trophoblast as the nascent placenta develops.80-82 The decidua
acquires an epithelioid phenotype with upregulation of epithe-
lial markers such as ZO1 and cadherins; thus, it is also pre-
sumed to slow the progression of trophoblast invasion, as
unopposed invasion would be detrimental to maternal
health.80,81,83,84 The decidua remains in close proximity to the
chorion/amnion and is the maternal component of the fetal-
maternal interface for the remainder of pregnancy. In rodents,
decidualization is maximal on day 8, then ceases to proliferate
and thins to accommodate the growing fetus for the remaining
duration of pregnancy.

In line with its supportive role, the terminal differentiation
of both decidual stromal cells and interspersed trophoblast
giant cells results in marked cellular polyploidy, which is a
widespread physiological phenomenon and is part of the nor-
mal developmental program for the formation of highly differ-
entiated cells, including megakaryocytes, cardiomyocytes,
Purkinje fibers, retinal ganglion cells, and hepatocytes.20 Poly-
ploid cells in each tissue type can form in response to stress or
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injury, or if unscheduled, can trigger carcinogenesis by induc-
ing chromosomal instability. Polyploid cells can form by vari-
ous mechanisms, including cell fusion (osteoclasts, skeletal
muscles), endomitosis (megakaryocytes) and endoreduplication
(proposed for decidual cells and trophoblast giant cells, in
which cells alternate S and G phases without undergoing mito-
sis). Whatever the mechanism driving polyploidy, the increase
in cellular DNA content leads to increased synthetic capacity.
Notably, polyploidy has also been associated with senescence
and SASP.85

The contribution of decidual aging in birth timing has been
recently reported. A genetic mouse model of spontaneous
preterm birth was developed harboring a conditional deletion
of tumor suppressor p53 in uterine tissues (uterine Trp53
deletion D p53d/d dams).8,86-89 Notably, p53 activity diminishes
in mice as they age,90 and decreased Trp53 expression with ter-
minal differentiation is observed in developing organs in mouse
embryos.91

p53d/d dams have normal ovulation, fertilization, and
implantation but found to have decidual growth restriction
and increased decidual polyploidy compared to control lit-
termates8. Intriguingly, p53d/d dams had a strong predilec-
tion towards preterm delivery, with 50% of females
exhibiting spontaneous preterm delivery with 100% still-
birth, compared to none in control littermates.8 Post-
implantation decidual cells in p53d/d dams showed prema-
ture terminal differentiation and senescence-associated
growth restriction with increased levels in p21, pAkt, cyclo-
oxygenase (COX)-2, and prostaglandin F synthase (PGFS)/
prostaglandin (PG)F2a. This group showed that premature
decidual senescence in p53d/d dams was secondary to
heightened mammalian target of rapamycin (mTORC1) sig-
naling, as determined by increased levels of phospho-S6.
When pregnant females were fed intermittent doses of rapa-
mycin (a selective mTORC1 inhibitor), they demonstrated
reduced decidual mTORC1 activity and decidual growth
restriction, normalized progression of decidual senescence,
and the prevention of preterm birth in this susceptible
model.86

Due to the strong association of infection/inflammation
with preterm birth, p53d/d dams were exposed to LPS to
evaluate their susceptibility to inflammatory insults. Indeed,
even a low dose of ultrapure lipopolysaccharide (LPS;
10mg), which had no effect on wild type dams, resulted in
preterm birth in 100% of p53d/d females assessed. Pretreat-
ment with mTORC1 inhibitor with progesterone supple-
mentation prevented preterm birth in p53d/d females
without notable adverse effects to either mother or pups in
treated control or p53d/d females.87 Later studies showed
that pretreatment with metformin, an antidiabetic agent
with mTORC1 inhibitory and AMPK activating properties,
also showed protection against preterm birth in combina-
tion with progesterone.88 These results show that targeting
gene-environment interactions by combination therapy with
mTORC1 inhibition with progesterone supplementation
could prevent preterm birth.

Of note, historical studies have shown that decidualization is
less robust in aged mice and associated with poor pregnancy
outcome.92,93 Intriguingly, the limited decidual cell response in

aged mice has been reported to be partially overcome by ovari-
ectomy or caloric retriction, implicating mTOR-mediated
activity prior to molecular evidence.94

The accumulation of senescent decidual cells results in
enhanced local SASP, which can stimulate myometrial contrac-
tility, fetal membrane activation and weakening in the presence
of proinflammatory cytokines and mechanical weakening with
enhanced of myometrial contractility. Indeed the progression
of decidual senescence was noted in WT dams in term preg-
nancy, but at an accelerated rate in p53d/d females.86 What is
more, treatment of primary decidual cells in culture with an
mTORC1 inhibitor plus progesterone limited the activity of
COX-2 and reduced SASP-associated and labor-promoting
cytokines IL-6 and IL-8.87 Proteomics analysis in p53d/d decid-
uae showed downregulation of a cluster of antioxidant
enzymes, suggesting increased oxidative stress in these mice as
a cause of preterm birth.89 Finally, increased decidual senes-
cence was shown to be present in preterm laboring women in a
Japanese cohort compared to term women.87 Collectively, these
data provide support for a role of decidual senescence in driv-
ing preterm labor.

It is intriguing that, in contrast to its role in tumorigenesis,
the absence of uterine p53 results in heightened senescence
mediated by mTOR signaling.60 Previous reports have shown
that p53 inhibits mTOR signaling95,96 and, in recent reports,
Trp53 deletion appears to paradoxically drive senescensce via
increased mTORC1 signaling in a human fibrosarcoma cell
line.97 Roles for p53 in development such as during embryo-
genesis or in reproduction, which can reactivate developmental
pathways in a controlled fashion, may differ from its well-
described roles in cancer with uncontrolled proliferation. These
data, along with our present observations, suggest differential
roles and regulation of p53 between physiologic (adult and
embryonic) and pathophysiologic (malignant) systems.

Senescence in fetal membranes

Juxtaposed to an outer layer of maternally-derived decidual
stromal cells, the fetal membranes are comprised principally by
the embryonically-derived inner amnion and outer chorion.98

The membranes are not vascularized, thus limiting the ability
to transfer nutrients between mother and fetus.6 While both
the amnion and chorion can synthesize prostaglandins (PG’s),
the chorion expresses 15-hydroxyprostaglandin dehydrogenase
(PGDH), which inactivates bioactive PGs and blocks amniotic
PGs from accessing the myometrium.6 The initiation of partu-
rition is associated with decreased PGDH activity in the cho-
rion to allow PG’s to reach the myometrium. Fetal
glucocorticoid action can stimulate COX-2-mediated PG pro-
duction while cortisol can inhibit PGDH expression/activity to
coordinate maternal-fetal interactions to initiate parturition.6,99

Recent work in mice has also illuminated the contribution of
embryo-derived surfactant to signal birth timing, suggesting
that embryonic signals help coordinate birth timing.99

In most term pregnancies in women, uterine contractions
precede fetal membrane rupture. It is thought that uterine con-
tractions mechanically weaken the fetal membranes in prepara-
tion for delivery.6 This process involves matrix remodeling
via MMP’s and fetal membrane apoptosis. Typically, the
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choriodecidua ruptures first, followed by the amnion.6 How-
ever, this sequence is not stereotypical, with nearly 10% of
women having fetal membrane rupture prior to contractions
(e.g., PPROM). Fetal membrane apoptosis has been associated
with infection/inflammation, cigarette smoking, uterine over-
distension, decidual hemorrhage, and genetic predisposition.100

In addition to progressive apoptosis, senescence has also
been identified in the fetal membranes prior to delivery. To
evaluate fetal membrane senescence in vivo, term pregnant WT
mice were evaluated for cellular senescence by SA-b-gal stain-
ing and for p53 and MAPK/p38 activity.101 Fetal membranes
were shown to senesce from day 12 of pregnancy until day 18.
Decidual senescence was also evaluated in these mice and was
present from day 10 until day 15–18. These studies showed
active p53 on day 18 on fetal membranes, while no change was
observed in phosphorylated p53 from placental and decidual/
uterine samples. It would be interesting to evaluate for apopto-
sis as well, since p53 is known to induce apoptosis in the setting
of oxidative or genotoxic stress.

Senescence of primary amniotic cells in vitro was evalu-
ated after exposure to oxidative stress with cigarette smoke
extract, which showed activation of ASK1, P-p38 MAPK
and p19(Arf) which correlated with percentage of SA-b-gal-
positive cells.102 Telomere length in fetal leukocytes and pla-
cental membrane cells were also shown to be shortened in
tissues from preterm babies compared to those from term
babies, implicating telomere shortening as a surrogate for
oxidative stress and senescence.103 Thus, further study is
warranted to evaluate the contribution of senescence in fetal
membranes in preterm birth and across different etiologies
of preterm delivery.

It has been proposed that labor signaling originates from the
fetal membranes via increased fetal membrane senescence.104

This process is thought to activate the decidua to secrete proin-
flammatory cytokines and PGs, triggering a pathway towards
myometrial contractility for labor. The initiating factor to cause
fetal membrane senescence remains to be determined; pro-
posed initiators include cell free DNA, telomere shortening,
soluble HMGB1.105,106 Notably, patients with high levels of cell
free DNA in the mid-trimester are at increased risk for sponta-
neous preterm delivery.107

So far, clinical markers for placental/fetal membranes aging
as a risk factor of preterm birth or PPROM have not been iden-
tified. Interestingly, in p53d/d females presented above, senes-
cence in fetal membranes was identified at similar degrees in
both control and p53d/d mice, suggesting that its contribution
did not significantly influence preterm birth phenotype in this
model. Notably, placental senescence was not identified in
p53d/d females, suggesting that placental aging was not influ-
enced by decidual senescence. Nonetheless, the contribution of
such membrane aging to parturition timing and interplay with
decidual senescence is an exciting field and warrants further
study.

Future perspectives

In this article, we summarize recent reports highlighting a
potential role for cellular senescence in birth timing. Recent
findings show that (1) cellular senescence is present in both

fetal and maternal tissues and accumulates as pregnancy
approaches delivery, and (2) that the premature progression of
senescence and SASP may contribute to the myometrial con-
tractility and fetal membranes-decidual activation seen in pre-
term birth in mice and women.8,82,86,106,108,109

The concept of molecular senescence contributing to the tim-
ing of labor and delivery was identified in murine models as
early as 20108. In mice, the authors identified that the decidua
undergoes progressive cellular senescence with SA-b-gal staining
and noted that p53d/d dams showed accelerated senescence; no
difference in senescence was noted in the fetal membranes in
this model and SA-b-gal staining was not evident in placental
tissues, suggesting that decidual senescence was the primary
driver of preterm birth in this model. These studies also suggest
that environmental factors that accelerates the rate of senescence
(e.g. infection, inflammation, environmental insults) to limit
decidual growth and lifespan can result in preterm delivery, thus
showing that gene-environment interactions underlie preterm
delivery. Proof of principle studies using this animal model
exhibiting accelerated decidual senescence, spontaneous preterm
birth and heightened sensitivity to LPS-triggered preterm birth
showed that premature senescence could be targeted (both by
pharmacologic and genetic means) to prevent preterm birth.87,88

Additional studies have identified fetal membrane senes-
cence in in vitro studies and in normal rodent parturition.103

As the decidua and fetal membranes age and undergo cellular
senescence, local SASP is enhanced with secretion of proin-
flammatory cytokines, soluble factors, and prostaglandins to
achieve a senescence threshold which can trigger a common
pathway of fetal membranes activation and myometrial con-
tractility (Figures 1 and 2). This observation would be a para-
digm shift in our understanding of preterm birth.110

While the implications of these preliminary studies are allur-
ing, further investigation to their relevance across human pop-
ulations is required. We have previously shown that in mice,
normal parturition is correlative with a progressive accumula-
tion of decidual senescence,86 but this phenomenon has not yet
been investigated in depth in women. Increased decidual senes-
cence was noted in preterm laboring women in a Japanese
cohort compared to term women.87 However, do these findings
extend into other populations with heterogenous backgrounds
and different exposures? Is it truly a driver of preterm delivery
or merely a consequence after labor signaling has begun? Is it
associated with a progression of a normal physiological process
in women, or is its presence pathological? Do several processes
converge on senescence to attain a threshold of senescence or is
labor the additive result of parallel pathways? If it is the result
of converging processes, can we target senescence as a preven-
tative measure early in pregnancy in high risk women or even
in women with no risk factors? Establishing placental biobanks
to study the degree of senescence by molecular markers in
laboring versus medically indicated, Caesarian section-derived
preterm tissues will help elucidate the incidence and contribu-
tion of this process to labor across populations.

These murine studies also raise the question for the role of
p53 itself in preterm birth. Do women with higher risk of pre-
term birth have genetic mutations or SNPs in p53 or the
mTOR pathway? Increased gH2AX and polyploidy seen in
p53d/d decidua suggest heightened genotoxic stress and
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increased oxidative stress as profiled by proteomics89. These
suggest a central feature of genotoxic and oxidative stress-
induced senescence in the decidua underlying preterm birth
phenotype. Genetic and molecular screens in women with pre-
term birth to evaluate for the presence of mutations or oxida-
tive stress will require further investigation and benefit from
the establishment of placental biobanking.

Proof-of-principle studies in rodents show that the inhibi-
tion of mTORC1 signaling with rapamycin or metformin has
slowed the progression of senescensce, improved decidual
health and allowed pregnancy to complete to term without neg-
ative effects on neonatal pups. Metformin has already been
deemed safe for clinical use during human pregnancy, and
investigation towards repurposing this relatively inexpensive
drug in pregnancy is feasible. It remains to be seen whether
these compounds can be safe for use in pregnancy and can
inhibit decidual and fetal membrane aging for prematurity pre-
vention. Once molecular characterization of this cellular pro-
cess in pregnancy is established, it will become feasible to
envisage preterm birth as a collection of disorders and stratify
cases by molecular signature to target the cellular processes
that ultimately trigger preterm birth rather than attempting to
stop labor once it has begun. By doing so, we may potentially
identify biomarkers to develop novel tests or employ predictive
calculators to help stratify women at risk of delivering preterm
with known risk factors.
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factors pathologically push decidual senescence toward the threshold. Furthermore, normal parturition involves cervical ripening along with myometrial activation in
preparation for parturition, which does not occur in the p53d/d females: these females exhibit dystocia and stillbirth. Rapamycin, an inhibitor of mTORC1 signaling, can
attenuate premature decidual senescence seen in p53d/d females and rescue preterm labor (Adapted from 110).

Figure 2. A scheme showing the potential contributions of senescence in various
intrauterine tissue compartment to the process of parturition and preterm birth.
Progressive senescence in the maternal decidua can structurally weakens its
anchoring role to the mother, while senescence in the fetal membranes results in
mechanical weakening and can lead to rupture of membranes. Myometrial con-
tractility can also promote decidual and fetal membrane weakening via mechanical
shear stress, which can be heighted by local, intrauterine SASP, resulting in parturi-
tion. SASP, senescence-associated secretory phenotype.
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