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Abstract

Discovering disease pathways, which can be defined as sets of proteins associated with a given 

disease, is an important problem that has the potential to provide clinically actionable insights for 

disease diagnosis, prognosis, and treatment. Computational methods aid the discovery by relying 

on protein-protein interaction (PPI) networks. They start with a few known disease-associated 

proteins and aim to find the rest of the pathway by exploring the PPI network around the known 

disease proteins. However, the success of such methods has been limited, and failure cases have 

not been well understood. Here we study the PPI network structure of 519 disease pathways. We 

find that 90% of pathways do not correspond to single well-connected components in the PPI 

network. Instead, proteins associated with a single disease tend to form many separate connected 

components/regions in the network. We then evaluate state-of-the-art disease pathway discovery 

methods and show that their performance is especially poor on diseases with disconnected 

pathways. Thus, we conclude that network connectivity structure alone may not be sufficient for 

disease pathway discovery. However, we show that higher-order network structures, such as small 

subgraphs of the pathway, provide a promising direction for the development of new methods.
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1. Introduction

Computational discovery of disease pathways aims to identify proteins and other molecules 

associated with the disease.1–3 Discovered pathways are systems of interacting proteins and 

molecules that, when mutated or otherwise altered in the cell, manifest themselves as 

distinct disease phenotypes (Figure 1A).4 Disease pathways have the power to illuminate 

molecular mechanisms but their discovery is a challenging computational task. It involves 

identifying all disease-associated proteins,2,5,6 grouping the proteins into a pathway,7–10 and 

analyzing how the pathway is connected to the disease at molecular and clinical levels.11,12 

Many of the main challenges facing the task arise from the inter-connectivity of a pathway’s 
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constituent proteins.2,13–15 This interconnectivity implies that the impact of altering one 

protein is not restricted only to the altered protein, but can spread along the links of the 

protein-protein interaction (PPI) network14 and affect the activity of proteins in the 

vicinity.4,15

As understanding each disease protein in isolation cannot fully explain most human 

diseases, numerous computational methods were developed to predict which proteins are 

associated with a given disease, and to bring them together into pathways using the PPI 

network (Figure 1B).2,5–10,16,17 These methods have accelerated the understanding of 

diseases, but have not yet fully succeeded in providing actionable knowledge about them.1 

For example, recent studies5,7,18 found that only a relatively small fraction of disease-

associated proteins physically interact with each other, suggesting that methods, which 

predict disease proteins by searching for dense clusters/communities of interacting proteins 

in the network, may be limited in discovering disease pathways. Analytic methods may thus 

be hindered by such issues, and unless specifically tuned, can lead to an expensive and time-

consuming hunt for new disease proteins. Furthermore, although numerous methods exist, 

protein-protein interaction and connectivity patterns of disease-associated proteins remain 

largely unexplored.4,12 Because of the huge potential of these methods for the development 

of better strategies for disease prevention, diagnosis, and treatment, it is thus critical to 

identify broad conceptual and methodological limitations of current approaches.

Present work

Here we study the PPI network structure of 519 diseases. For each disease, we consider the 

associated disease proteins and project them onto the PPI network to obtain the disease 

pathway (Figure 1A).1,4 We then investigate the network structure of these disease 

pathways.a

We show that disease pathways are fragmented in the PPI network with on average more 

than 16 disconnected pathway components per disease. Furthermore, we find that each 

component contains only a small fraction of all proteins associated with the disease. 

Through spatial analysis of the PPI network we find that proximity of disease-associated 

proteins within the PPI network is statistically insignificant for 92% (476 of 519) diseases, 

and that 90% of diseases are associated with proteins that tend not to significantly interact 

with each other, indicating that disease proteins are weakly embedded—rather than densely 

interconnected—in the PPI network.

We then consider state-of-the-art network-based methods for disease protein discovery 

(Figure 1B). These methods use the PPI network and a small set of known disease proteins 

to predict new proteins that are likely associated with a given disease. However, as we show 

here, current methods disregard loosely connected proteins when making predictions, 

causing many disease pathway components in the PPI network to remain unnoticed. In 

particular, we find that performance of present methods is better for diseases whose 

pathways have high edge density, are primarily contained within a single pathway 

aAll data and supplementary tables with results are at: http://snap.stanford.edu/pathways.
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component, and are proximal in the PPI network. However, our analysis shows that a vast 

majority of disease pathways does not display these characteristics.

The search for a solution to the better characterization of disease pathways has led us to 

study higher-order protein-protein interaction patterns4,19–21 of disease proteins. Following 

on from earlier work22 showing that higher-order PPI network structure around cancer 

proteins is different from the structure around non-cancer proteins, we find that many 

proteins associated with the same disease are involved in similar higher-order network 

patterns, even if disease proteins are not adjacent in the PPI network. In particular, we find 

that proteins associated with 60% (310 of 519) of diseases do exhibit over-representation for 

certain higher-order network patterns, suggesting that disease proteins can take on similar 

structural roles, albeit located in different parts of the PPI network. We demonstrate that 

taking these higher-order network structures into account can shrink the gap between current 

and goal performance of disease protein discovery methods.

In addition to new insights into the PPI network connectivity of disease proteins, our 

analysis on network fragmentation of disease proteins and their distinctive higher-order PPI 

network structure leads to important implications for future disease protein discovery that 

can be summarized as:

• We move away from modeling disease pathways as highly interlinked regions in 

the PPI network to modeling them as loosely interlinked and multi-regional 

objects with two or more regions distributed throughout the PPI network.

• Higher-order connectivity structure provides a promising direction for disease 

pathway discovery.

2. Background and related work

Next, we give background on disease pathways and on methods for disease protein 

prediction.

Disease pathways

Broadly, a disease pathway in the PPI network is a system of interacting proteins whose 

atypical activity collectively produces some disease phenotype.3,4,12,16 Given the PPI 

network . = (V, E), whose nodes . represent proteins and edges . denote protein-protein 

interactions, the disease pathway for disease . is an undirected subgraph Hd = (Vd, Ed) of the 

PPI network specified by the set of proteins Vd that are associated with ., and by the set of 

protein-protein interactions Ed = {(u, v)|(u, v) ∈ . and u, v ∈ Vd} (e.g., Adrenal cortex 

carcinoma pathway in Figure 4). To measure the specifics of protein interactions within and 

outside the pathway we define pathway boundary as the set Bd = {(u, v)|(u, v) ∈ ., . ∈ Vd, . 

∈ . \ Vd} consisting of all edges that have one endpoint inside Hd and the other endpoint 

outside Hd.

Network-based methods for disease protein discovery

Given a specific disease, the task is to take the PPI network and the disease proteins and to 

predict new proteins that are likely associated with the disease. Approaches for this task are 
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known as protein-disease association prediction or disease module detection methods 

(Figure 1B), and can be grouped intro three categories. (1) Neighborhood scoring and 

clustering methods4,5,7,9,10,12 assume that proteins that belong to the same network cluster/

community are likely involved in the same disease. In direct neighborhood scoring, each 

protein is assigned a score that is proportional to the percentage of its neighbors associated 

with the disease. To identify clusters that extend beyond direct neighbors, the methods start 

with a small set of disease proteins (seed proteins) and grow a cluster by expanding the 

seeds with the highest scoring proteins. However, few existing methods (e.g., connectivity 

significance-based method DIAMOnD) can work with seed proteins that are not adjacent in 

the PPI network.7 (2) Diffusion-based methods5,8,23 use seed proteins to specify a random 

walker that starts at a particular seed protein and at every time step moves to a randomly 

selected neighbor protein. Upon convergence, the frequency with which the nodes in the 

network are visited is used to rank the corresponding proteins. (3) Representation learning 

methods,6,16,17,21,24 such as matrix completion, graphlet degree signatures, and neural 

embeddings, construct representations for proteins (i.e., latent factors, embeddings) that 

capture known protein-disease associations and/or proteins’ network neighborhoods, and 

then use these representations as input to a downstream predictor. We consider a neural 

embedding approach24 that first learns a vector representation for each protein using a 

single-layer neural network and random walks and then fits a logistic regression classifier 

that predicts disease proteins based on these feature vectors. We also consider a matrix 

completion method6 that factorizes a protein-disease association matrix into a set of protein 

and a set of disease latent factors while also incorporating the PPI network. Predictions for a 

new disease are obtained as a function of the feature and latent factors.

Although many methods exist for predicting disease proteins, surprisingly little is known 

about the PPI network structure of disease pathways and how it relates to the power of these 

methods.

3. Data

We continue by describing the datasets used in this study.

Human protein-protein interaction network

We use the human PPI network compiled by Menche et al.18 and Chatr-Aryamontri et al..25 

Culled from 15 databases, the network contains physical interactions experimentally 

documented in humans, such as metabolic enzyme-coupled interactions and signaling 

interactions. The network is unweighted and undirected with . = 21,557 proteins and . = 

342,353 experimentally validated physical interactions. Proteins are mapped to genes and 

the largest connected component of the PPI network is used in the analysis. We also 

investigate two other PPI network datasets to make sure that our findings are not specific to 

the version of the PPI network we are using. Unless specified, results in the paper are stated 

with respect to the first dataset. The other two PPI networks are from the BioGRID 

database25 and the STRING database.26 Both of these networks are restricted to those edges 

that have been experimentally verified.
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Protein-disease associations

A protein-disease association is a tuple (u, d) indicating that alteration of protein . is linked 

to disease .. Protein-disease associations are pulled from DisGeNET, a platform that 

centralized the knowledge on Mendelian and complex diseases.2 We examine over 21,000 

protein-disease associations, which are split among the 519 diseases that each has at least 10 

disease proteins. The diseases range greatly in complexity and scope; the median number of 

associations per disease is 21, but the more complex diseases, e.g., cancers, have hundreds of 

associations.

Disease categories

Diseases are subdivided into categories and subcategories using the Disease Ontology.27 The 

diseases in the ontology are each mapped to one or more Unified Medical Language System 

(UMLS) codes, and of the 519 diseases pulled from DisGeNET, 290 have a UMLS code that 

maps to one of the codes in the ontology. For the purposes of this study, we examine the 

second-level of the ontology; this level consists of 10 categories, such as cancers (68 

diseases), nervous system diseases (44), cardiovascular system diseases (33), and immune 

system diseases (21).

Altogether, we use human disease and PPI network information that is more comprehensive 

than in previous works,7,18,22 which focused on smaller sets of diseases and proteins.

4. Connectivity of disease proteins in the PPI network

We start by examining the network connectivity of disease proteins. We then analyze disease 

protein discovery methods and contextualize their performance using disease pathway 

network structure.

4.1. Proximity of disease proteins in the PPI network

We begin by briefly describing network measures that we use to characterize connectivity of 

disease proteins, both within disease pathways and with respect to the rest of proteins in the 

PPI network.

PPI network distance and concentration measures—We consider the following 

measures to characterize PPI connectivity of disease proteins for each disease . and its 

associated pathway Hd:

• Size of largest pathway component: Fraction of disease proteins that lie in Hd’s 

largest pathway component (i.e., the relative size of the largest connected 

component (LCC) of Hd).

• Density of the pathway: It is calculated as: 2|Ed|/(|Vd|(|Vd|−1)) and takes values 

in [0, 1]. A higher density indicates a higher fraction of edges (out of all possible 

edges) appear between nodes in Hd.

• Distance of pathway components: For each pair of pathway components (Figure 

1A), we calculate the average shortest path length between each set of proteins, 

and then, the average of this is taken over all pairs of the components.
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• Conductance:28 It is calculated as: |Bd|/(|Bd| + 2|Ed|) and takes values in [0, 1]. A 

lower conductance indicates the pathway is a more well-knit community 

separated from the rest of the network.

• Spatial network association:29,30 It measures concentration/localization of 

disease proteins in the PPI network by quantifying how strongly disease proteins 

co-cluster within the PPI network and whether this co-clustering is stronger than 

expected by random chance. It is calculated as: 

, where pi is a binary indicator 

indicating if node . represents a .-associated protein, , and .(ℓG(i, j) 
< .) equals 1 if the shortest path length between . and . is less than . and 0 

otherwise. If all disease proteins lie in one PPI network region, most of them are 

found for small values of ., while for uniformly spread proteins in the PPI 

network Kd(.) achieves larger values only for large values of .. The significance 

of Hd’s concentration is determined by computing the area under the Kd(.) 

curve29 for .-associated proteins and comparing it to curves obtained by applying 

the same statistic to sets of random proteins.

• Network modularity:31 Fraction of edges that fall within/outside the pathway 

minus the expected fraction if edges were randomly distributed: 

, where ki is the degree of ., 

and δ(pi, pj) is 1 if pi and pj are equal and 0 otherwise.

PPI network structure of disease pathways—First, we find that disease pathways are 

fragmented in the PPI network, with a median of 16 connected components per disease and 

a median of only 21% of the proteins lying in the largest pathway component (Figure 2A). 

Only approximately 10% of pathways have over 60% of their proteins in the largest pathway 

component. We also find that disease pathways are not particularly well connected internally 

with only a median density of 0.07 (the overall PPI network density is 0.0015), and 90% of 

diseases have a density below 0.17 (Figure 2B). Furthermore, they are rather well connected 

externally, having a median conductance of 0.96, meaning that the disease pathway has 

relatively as many edges pointing outside the pathway to the rest of the PPI network as it has 

edges lying inside the pathway. The median distance between the pathway components is 

almost 2.9 (Figure 2C). These results counter expectations as they show that disease 

pathways do not have the PPI network structure one expects of a traditional network cluster/

community, which is well connected internally and has few edges pointing outside the 

cluster.14,31

To statistically test how well disease pathways are localized in the PPI network, we conduct 

spatial analysis of the PPI network. We find no significant pathway localization for 92% of 

diseases (Figure 3A), suggesting that these diseases have pathways that are multi-regional 

with two or more regions of disease proteins in different parts of the PPI network. The 

presence of multiple regions suggests that each disease might be comprised of several 

groups of proteins that are located in weakly connected or disconnected regions of the PPI 

network and thus may be functionally distinct.1,4 We find that only 43 of 519 (8%) diseases 
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are region-specific (examples in Figure 4), i.e., they significantly associate with only one 

local neighborhood and can be found in a single region of the PPI network. We also observe 

that the number of edges within a disease pathway rarely exceeds the number expected on 

the basis of chance (Figure 3B). The median modularity of disease pathways is only 

4.6×10−4, reflecting there is no significant concentration of edges within disease pathways 

compared with random distribution of edges between all proteins regardless of pathways. 

These results suggest that integration of disconnected regions of disease proteins into a 

broader disease pathway will be crucial for a holistic understanding of disease mechanisms.

Finally, we note that these findings can be reproduced in three PPI network datasets (Section 

3), suggesting that our key results are robust against potential biases in the PPI network data.

4.2. Connections between PPI network structure and disease protein discovery

Next, we study disease protein discovery methods based on some of the most frequently 

used principles for identifying disease proteins,14 and evaluate them through PPI pathway 

network structure.

Methods and experimental setup—We consider five methods: direct neighborhood 

scoring,5 neural embeddings,24 matrix completion,6 network diffusion,8,23 and connectivity 

significance (DIAMOnD).7 See Section 2 for details on the methods. We use disease-centric 

ten-fold cross-validation. For each disease, the set of all proteins is randomly split into ten 

folds, with each fold containing an equal number of proteins associated with that disease. In 

each of the ten runs, the goal is to predict disease proteins in the test fold, assuming 

knowledge of disease proteins in the nine other folds. Each method assigns a score to each 

protein in the network representing the probability that the protein is associated with the 

disease. 20 diseases are set aside for hyperparameter selection, and the remaining 499 are 

used for testing. For evaluation, recall-at-. is measured to quantify what fraction of all the 

disease proteins are ranked within the first . predicted proteins (e.g., . = 25, 100). We also 

calculate the mean reciprocal rank (MRR) for all of the algorithms in order to get an overall 

measure of method performance. Measures range between 0 and 1, and a higher score 

indicates better performance.

Prediction performance in the context of disease pathway structure—Figure 5 

shows performance of disease protein discovery methods as a function of PPI connectivity 

of disease proteins. We observe that the higher the degree of agglomeration of disease 

proteins within the PPI network, the higher the performance of prediction methods. In 

particular, across all five methods, performance correlates positively with density and 

percent of proteins in the largest pathway component, and negatively with the distance 

between pathway components. These correlations are weaker for the Neural embeddings 

than for the other four methods, but the overall direction of the trends is the same across all 

of them. For example, the correlation between density and recall-at-100 is ρ = 0.45 for the 

Neural embeddings and between ρ = 0.54 and ρ = 0.63 for the other four methods (Figure 

5B).

Across all diseases, random walk-based methods are the best performers, as evaluated by 

both mean reciprocal rank (MRR = 0.061 and MRR = 0.050 for Random walk and Neural 
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embeddings, respectively) and recall (Recall-at-100 = 0.356 and Recall-at-100 = 0.300 for 

Random walk and Neural embeddings, respectively). However, we see that Random walk 

method is particularly dependent on the percent of disease proteins in the largest pathway 

component (Figure 5A). The difference in recall between the Random walk method and the 

Neural embeddings is positively correlated (ρ = 0.26) with that percentage. Since random 

walks and other diffusion-based variants are very popular, it is problematic that they are 

reliant on properties that are not typical of disease pathways.

Neighborhood scoring performs the worst by both metrics (MRR = 0.029, Recall-at-100 = 

0.242). The superior performance of random walk-based methods indicates that the 

assumption that the neighborhood method makes in calculating scores based only on 

protein’s neighbors is too restrictive when defining disease locality.5 Though DIAMOnD 

does not outperform Random walk, we observe that it has a comparable recall in its higher-

ranked predictions (recall-at-25 = 0.186, compared to Random walk’s 0.199), but its 

performance lags considerably for lower-ranked predictions (Recall-at-100 = 0.300, 

compared to Random walk’s 0.356).

We see the most complementarity between Neural embeddings, Matrix completion and the 

other methods, which makes sense given that the other three methods are all based on direct/

indirect network neighborhood scoring, while Neural embeddings and Matrix completion 

more flexibly capture network structure and neighborhoods of disease proteins.6 For 

example, we can examine the disease pathway for Juvenile myelomonocytic leukemia in 

which Neural embeddings method performs far better than Random walk (Recall-at-100 = 

0.550, compared to Random walk’s 0.200). The pathway consists of nineteen nodes, but 

there exists only three edges within the pathway (network density = 0.008). Therefore, the 

Neural embeddings method is able to capture latent features about pertinent nearby nodes 

that Random walk struggles to find, given that Random walk is highly dependent on the 

edges near the seed proteins. On the other hand, the pathway for Squamous cell carcinoma is 

more accurately detected by Random walk than by Neural embeddings (Recall-at-100 = 

0.540, compared to Neural embeddings’ 0.120). This can be explained by higher 

interconnectivity of Squamous cell carcinoma pathway in the PPI network (network density 

= 0.034) suggesting that there are advantages to focusing on local edge connectivity.

Performance variation across disease categories—We observe strong differences 

in performance across disease categories indicating that diseases should not be considered as 

a monolithic category, given the very different mechanisms behind them. The same 

performance patterns hold across all five of the methods, suggesting that none of the 

assumptions each method makes about pathway structure correspond to any of the particular 

mechanisms that tend to be more specific to one disease category. Furthermore, because of 

the similar performance among methods over easy32 (e.g., median recall-at-100 = 0.720 for 

Mendelian diseases) and difficult32 (e.g., median recall-at-100 = 0.360 for cancer diseases) 

disease categories, the assumptions made by current methods do not seem to accurately 

reflect the uncertainty associated with a protein’s true association with a disease.
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5. Higher-order connectivity of disease proteins in the PPI network

We showed in Section 4 that proximity of disease proteins in the PPI network is likely 

insufficient for the disease protein discovery task as disease pathways have rather low PPI 

density and a rather high conductance. To look past just edge connectivity for the prediction 

of disease proteins, we in vestigate what higher-order PPI network structures disease 

proteins are likely to be involved in, and then incorporate this structure information to 

augment prediction capability of current methods.

Motif signatures of disease proteins

The analysis of higher-order PPI network structure can be formalized by counting network 

motifs, which are subgraphs that recur within a larger network. We here focus on 

graphlets,19,20,22,33 connected non-isomorphic induced subgraphs (examples shown in 

Figure 6). There are 30 possible graphlets of size 2 to 5 nodes. The simplest graphlet is just 

two nodes connected by an edge, and the most complex graphlet is a clique of size 5. By 

taking into account the symmetries between nodes in a graphlet, there are 73 different 

positions or orbits for 2–5-node graphlets, numerated from 0 to 72. For each node in the PPI 

network we count the number of orbits that the node touches. Motif signature of a protein is 

thus a set of 73 numbers, hi (. = 0, 1, …, 72) representing the number of induced subgraphs 

the corresponding node is in, in which the node took the .-th orbital position. We use this 

signature to represent protein’s higher-order connectivity in the PPI network.

We conduct permutation tests, comparing the median of the orbit distribution values for 

proteins associated with a given disease to the medians for 5,000 random samples of sets of 

proteins of the same size as the disease pathway. These values are used to calculate p-values 

for each disease at each orbit position. An orbit position for a disease is considered 

significant if there is an over-representation of counts in the disease proteins compared to the 

99% of random samples (i.e., α = 0.01).

Characterization of motifs around disease proteins

We find that there is a characteristic higher-order PPI network structure around disease 

proteins (Figure 6), indicating that disease proteins display significance in terms of the orbit 

positions they tend to inhabit, which could point towards the underlying mechanisms they 

participate in. We see that 60% (310 of 519) of diseases do show orbit signatures that differ 

from background proteins and are significantly greater than what one would expect at 

random. Therefore, even though proteins associated with these diseases may not be adjacent 

in the PPI network, the diseases do show overall over-representation for certain orbit 

positions indicating that proteins in disease pathway may take on similar structural roles, 

albeit in non-adjacent regions in the PPI network.

We can note that orbit position 0 corresponds to subgraphs of two nodes (only an edge), 1 

through 3 correspond to subgraphs of three nodes, 4 through 14 correspond to subgraphs of 

four nodes, and the rest correspond to induced subgraphs of five nodes. Therefore, although 

the distribution of smaller subgraphs such as nodes and triangles are not significant in many 

diseases, almost 50% of diseases have disease pathways that contain proteins that are over-
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represented for the most complex orbit positions. For example, orbit position 14 is 

statistically significantly over-represented in approximately 50 diseases, and position 72 is in 

over 200 of the diseases (Figure 6, examples in Table 1). We note that we also statistically 

test for under-representation of the orbit counts, no statistically significant results are 

observed.

Characterization of motifs for disease categories

We also want to investigate whether the orbit signatures are characteristic of diseases in 

general, or whether there are also differences that could be attributed back to the category 

the disease belongs to. In order to test this, for each of the 73 orbit positions and for each 

disease category, we find the statistical significance of the difference in distributions using a 

two-sample Kolmogorov-Smirnov test. The first sample consists of all the orbit counts for 

the proteins that are found in at least one disease in a given category, and the other sample 

consists of all the orbit counts for the proteins that are not associated with any disease in the 

category. After applying the Bonferroni correction, we then consider a p-value of α = 0.01 to 

be significant.

We find that the most significant differences tend to occur in the more complex motifs. Table 

2 shows orbit positions that are considered most characteristic for each disease category, and 

the graphlets they appear in, which could indicate inherent differences in the manifestations 

of different classes of diseases.

6. Prediction of disease proteins using higher-order PPI network structure

Higher-order PPI network structure is generally not taken into account in current disease 

protein discovery, although, as showed in Section 5, this structure does encode distinct 

information about disease proteins. Earlier work showed that motif signatures provide useful 

signal for biological function prediction,22,33 but here we want to examine whether they 

provide additional signal past what edge connectivity in the PPI network already contributes, 

and if they specifically work for disease protein discovery task.

Setup and results

We conduct a logistic regression experiment in which we augment the Neural embeddings 

(Section 4.2) with information about motif signatures (Section 5). In particular, for each 

protein we concatenate its neural embedding with its motif signature. Instead of using the 

motif signature directly, we concatenate the embedding with .′, where , 

for . = 0, 1, …, 72.

We find that neural embeddings augmented by motif signatures performed on average 11% 

better than neural embeddings alone (Recall-at-100 = 0.332, compared to Neural 

embeddings’ 0.300). For example, in the case of Hearing loss, the disease that has the 

greatest increase in performance after the inclusion of higher-order structure, we observe 

that the recall-at-100 jumps from 0.03 to 0.77 (and the recall-at-100 is at most 0.10 for the 

four other prediction methods in Section 4.2). If we examine the signature of Hearing loss, 

as calculated in Section 5, we see that the Hearing loss pathway is significant across all 73 
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orbit positions, meaning it has a particularly unique signature compared to the background 

distribution. Though such improvement in performance is not typical across all diseases, this 

analysis identifies the opportunity to systemically identify diseases which are likely to 

benefit the most from the inclusion of higher-order PPI network information.

7. Conclusion

The overall goal of network biology is to develop approaches that use genomic and other 

network information to better understand human disease. Given the complexity of this goal, 

we focused on studying the PPI network structure of disease pathways, defined through sets 

of proteins associated with diseases. We found that disease pathways are fragmented and 

sparsely embedded in the PPI network, and that spatial clustering of disease pathways within 

the PPI network is statistically insignificant. To better understand broad caveats of current 

methodology for disease protein discovery we evaluated the performance of leading methods 

and found that their assumptions do not fully capture PPI network structure. We showed, 

however, that there is detectable higher-order PPI network structure around disease proteins 

that can be leveraged to boost algorithm performance. These findings provide new insights 

into the disease pathway PPI network structure and can guide methodological advances in 

disease protein discovery.
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Fig. 1. Network-based discovery of disease proteins
A Proteins associated with a disease are projected onto the protein-protein interaction (PPI) 

network. In this work, disease pathway denotes a (undirected) subgraph of the PPI network 

defined by the set of disease-associated proteins. The highlighted disease pathway consists 

of five pathway components. B Methods for disease protein discovery predict candidate 

disease proteins using the PPI network and known proteins associated with a specific 

disease. Predicted disease proteins can be grouped into a disease pathway to study molecular 

disease mechanisms.
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Fig. 2. Protein interaction connectivity of disease pathways
The distribution of (A) the network densities of each disease pathway, (B) the relative size of 

the largest pathway component calculated as a fraction of disease proteins that lie in the 

largest pathway component, and (C) the average shortest path length between disparate 

pathway components in the PPI network.
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Fig. 3. Spatial clustering and modular structure of disease pathways in the PPI network
The distribution of (A) the spatial clustering calculated for each disease pathway as the 

strength of association29 between the set of disease proteins and the PPI network (shaded 

area indicates significant spatial clustering at α = 0.05 level), and (B) the modularity31 of 

disease pathways in the PPI network.
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Fig. 4. Disease pathways in the wider PPI network
A small PPI subnetwork highlighting physical interactions between disease proteins 

associated with (A) Mitochondrial complex I deficiency, (B) Noonan syndrome, (C) 

Cholangiocarcinoma, and (D) Adrenal cortex carcinoma. Shown are selected disease 

pathways whose spatial clustering29 within the PPI network is statistically significant (p-

values shown; entire distribution of the p-values is shown in Figure 3A) and is also among 

the strongest (top-30 diseases) in the disease corpus.
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Fig. 5. Prediction quality versus PPI connectivity of disease proteins
Each point represents one disease; its location is determined by the quality of predicted 

disease proteins (y-coordinate), and by the connectivity of disease proteins in the PPI 

network (x-coordinate). Across all five methods, the trends uniformly indicate that (A) the 

bigger the largest pathway component, (B) the more densely interconnected the disease 

pathway, and (C) the lower the average shortest path length between disparate pathway 

components, the better the predictions. The shaded areas represent the space in which 95% 

(494 of 519) of all diseases reside.
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Fig. 6. Over-representation of motifs in disease modules
A The number of diseases (out of 519 possible) for which the associated proteins are 

significantly over-represented at each orbit position. A disease is deemed significant at a 

given orbit position if the median number of times a disease protein matching that position 

was significant at α = 0.01, as compared to permutation testing over random sets of proteins 

of the same size. Pictured above are selected motifs (red node represents the orbit position, 

i.e., the location where the node touches the motif). B The relative frequency distribution of 

orbit 44 for disease proteins (green) and non-disease proteins (red).
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Table 1
Examples of disease-associated motifs

Shown are 6 orbits (orbit position, i.e., the location where the node touches the motif, is shown in red) whose 

over-representation is found in most diseases.

Significant orbit # of diseases Examples of diseases with significant orbits

78 Neoplastic cell transformation, Celiac disease, Non-small cell lung carcinoma, Squamous cell carcinoma, 
Prostatic neoplasms

62 Neoplastic cell transformation, Stomach neoplasms, Restless legs syndrome, Celiac disease, Prostatic 
neoplasms

62 Neoplastic cell transformation, IGA glomerulonephritis, Precancerous conditions, Prostatic neoplasms, 
Liver neoplasms

88 Peroxisome biogenesis disorders, Crohn disease, Mitochondrial encephalomyopathies, Venous 
thromboembolism, Myopia

229 Amphetamine-related disorders, Mitochondrial myopathies, Cocaine-related disorders, Nuclear cataract, 
Polycystic ovary syndrome

228 Amphetamine-related disorders, Leber congenital amaurosis, Craniofacial abnormalities, Hyperalgesia, 
Respiratory hypersensitivity
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Table 2
Characteristic motifs for disease categories

Shown are 5 orbits whose over-representation is found in most diseases belonging to a disease category. The 

orbit position of a node is marked in red.

Disease category Significant orbits Orbit positions

Urinary system diseases e.g., Hyperhomocysteinemia, Nephrosis 26, 20, 33, 30, 47

Acquired metabolic diseases e.g., Methylmalonic acidemia, 
Hyperinsulinism

23, 33, 44, 7, 48

Monogenic diseases e.g., Marfan syndrome, Bardet-Biedl syndrome 20, 30, 11, 42, 58

Cancer e.g., Tumor of salivary gland, Papillary thyroid carcinoma 33, 23, 30, 21, 61

Gastrointestinal system diseases e.g., Eosinophilic esophagitis, 
Oral fibrosis

3, 11, 2, 44, 16

Inherited metabolic disorders e.g., Leigh disease, Mitochondrial 
complex deficiency

33, 2, 30, 42, 44

Immune system diseases e.g., Deficiency syndromes, 
Hypersensitivity

33, 7, 11, 42, 44

Musculoskeletal system diseases e.g., Muscular atrophy, Muscular 
dystrophy

23, 13, 11, 42, 26

Nervous system diseases e.g., Peripheral neuropathy, Nerve 
degeneration

33, 7, 11, 23, 26

Cardiovascular system diseases e.g., Dilated cardiomyopathy, 
Tachycardia

58, 14, 11, 48, 67
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