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Abstract

Variation in gene expression can provide insights into organismal responses to environmental 

stress and physiological mechanisms mediating adaptation to habitats with contrasting 

environmental conditions. We performed an RNA-sequencing experiment to quantify gene 

expression patterns in fish adapted to habitats with different combinations of environmental 

stressors, including the presence of toxic hydrogen sulphide (H2S) and the absence of light in 

caves. We specifically asked how gene expression varies among populations living in different 

habitats, whether population differences were consistent among organs, and whether there is 

evidence for shared expression responses in populations exposed to the same stressors. We 
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analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana 
(nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of 

variation in gene expression was correlated with organ type, and the presence of specific 

environmental stressors elicited unique expression differences among organs. Shared patterns of 

gene expression between populations exposed to the same environmental stressors increased with 

levels of organismal organization (from transcript to gene to physiological pathway). In addition, 

shared patterns of gene expression were more common between populations from sulphidic than 

populations from cave habitats, potentially indicating that physiochemical stressors with clear 

biochemical consequences can constrain the diversity of adaptive solutions that mitigate their 

adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique 

system, in which adaptation to H2S and darkness coincide. Functional annotations of differentially 

expressed genes provide a springboard for investigating physiological mechanisms putatively 

underlying adaptation to extreme environments.
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1 | INTRODUCTION

High-throughput sequencing technologies have transformed the quantification of genome-

wide gene expression patterns in natural systems (Wang, Gerstein, & Snyder, 2009). While 

studies of gene expression cannot identify causal loci underlying adaptation, transcriptional 

variation between organisms exposed to contrasting environmental conditions can provide 

important clues about genes and physiological pathways contributing to plastic or adaptive 

responses to novel environments (e.g., Cheviron, Whitehead, & Brumfield, 2008; Guo et al., 

2016; López-Maury, Marguerat, & Bähler, 2008; Morris et al., 2014). Studies often focus on 

systems where evolutionarily replicated lineages are exposed to the same environmental 

conditions, which allows for the identification of shared and unique (i.e., lineage-specific) 

gene expression responses (Kelley et al., 2016; Whitehead, Pilcher, Champlin, & Nacci, 

2012). Shared differentially expressed genes among lineages exposed to the same 

environmental conditions represent prime candidates for loci and physiological pathways 

that may be modulated during acclimation or adaptation (Whitehead, 2012). However, the 

degree to which gene expression patterns are shared among lineages exposed to the same 

environmental conditions may be structured hierarchically across levels of organismal 

organization, with shared responses increasing at higher levels of organization. Such patterns 

have been well established by studies that illuminate the genetic basis of phenotypic 

convergence, which may be caused by the same mutation, different mutations in the same 

gene, mutations in different genes of the same developmental pathway, or genes in different 

developmental pathways (see Manceau, Domingues, Linnen, Rosenblum, & Hoekstra, 2010; 

Elmer & Meyer, 2011; Rosenblum, Parent, & Brandt, 2014 for reviews). Analogously, 

organismal and evolutionary gene expression responses to a common environmental stressor 

may be mediated by the differential expression of the same transcript, different transcripts 

derived from the same gene, different genes in the same physiological pathway, or genes in 

different physiological pathways. It remains largely unknown what factors determine how 
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shared expression responses are distributed across hierarchical levels, but the effects of 

specific sources of selection, phylogenetic history, demography, and genetic constraints have 

all been implicated as potential candidates (Rosenblum et al., 2014). Addressing this 

question requires integrative data analysis that explicitly considers the functional links 

among transcripts in genome-wide expression studies.

Another key challenge in the analysis of gene expression data from natural systems is that 

gene expression is notoriously plastic over short periods of time and in response to diverse 

endogenous and exogenous stimuli (Bajić & Poyatos, 2012; Lehner, 2010). At the same 

time, selective regimes even among apparently discrete habitat types are often multifarious 

(Holmstrup et al., 2010; Kaeuffer, Peichel, Bolnick, & Hendry, 2012). Nonetheless, we 

know relatively little about genome-wide expression responses in natural systems where 

closely related populations are exposed to multiple sources of selection that occur in 

different combinations. Organismal responses to multiple environmental cues may be 

additive such that their combined effects represent the sum of the effects of individual 

stressors (Folt, Chen, Moore, & Burnaford, 1999). Alternatively, multiple stressors may 

cause synergistic (responses greater than the sum of individual stressors) and antagonistic 

effects (responses smaller than the sum of individual stressors; Folt et al., 1999; Altshuler et 

al., 2011). Interactive effects and trade-offs that underlie nonadditive responses hamper our 

ability to identify shared gene expression patterns that may be indicative of adaptation and to 

predict organismal responses to environmental stress when multiple sources of selection 

coincide (Kopec et al., 2011; Shu, Kang, Yang, & Kaminski, 2003).

Understanding variation in gene expression in response to multiple stressors is also 

complicated by organ-specific responses. While single stressors with broad, systemic effects 

(e.g., thermal stress) may elicit relatively consistent expression responses across different 

organs (Akashi, Cádiz Díaz, Shigenobu, Makino, & Kawata, 2016), exposure to many 

physiochemical stressors—and especially combinations of different stressors—likely causes 

idiosyncratic patterns of gene expression that vary substantially among organs, tissues and 

even cell types (Bailey et al., 2013; Birnbaum et al., 2003; Bos, Pulliainen, Sundström, & 

Freitak, 2016). For example, expression responses to hypoxia exposure vary due to 

differences in the metabolic requirements among organs (Gracey, Troll, & Somero, 2001; 

Whitehead & Crawford, 2005). Disentangling the effects of multiple stressors on gene 

expression should therefore involve the analysis of multiple organs, which can also inform 

our understanding of how organ-specific expression changes relate to potential functional 

consequences and patterns of local adaptation (Oleksiak, Churchill, & Crawford, 2002).

Here, we characterized gene expression variation in a system of extremophile fish that 

includes populations exposed to different combinations of environmental stressors. We asked 

whether the analysis of gene expression patterns in multiple organs (gill, liver and brain) and 

at multiple levels of organization (transcript, gene and physiological pathway) affects 

inferences about the putative functional consequences of expression variation. Poecilia 
mexicana (Poeciliidae) is a small live-bearing fish that has colonized sulphide springs and 

caves in Mexico’s Cueva del Azufre system, giving rise to a unique group of closely related 

populations living in geographically proximate habitat types with vastly different 

environmental conditions (nonsulphidic surface streams, sulphidic surface streams, a 
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nonsulphidic cave, and a sulphidic cave; see Figure 1; Parzefall, 2001; Tobler et al., 2008). 

Sulphidic habitats are characterized by high concentrations of hydrogen sulphide (H2S), a 

potent respiratory toxicant that binds to cytochrome c oxidase in the respiratory chain, 

effectively halting aerobic ATP production (Bagarinao, 1992; Cooper & Brown, 2008). 

Caves are characterized by the absence of light, which has direct effects on organismal 

function (e.g., sensory biology and circadian rhythms; Poulson & White, 1969; Langecker, 

2000; Niemiller & Soares, 2015). Both H2S and permanent darkness also shape the biotic 

environment, affecting resource availability as well as competition and predation regimes 

(Hüppop, 2000; Roach, Tobler, & Winemiller, 2011). Previous studies have indicated that 

populations of P. mexicana exposed to specific combinations of H2S and darkness are locally 

adapted, exhibiting phenotypic differences in behavioural (Parzefall, 2001), sensory (Tobler, 

Coleman, Perkins, & Rosenthal, 2010), physiological (Passow, Greenway, Arias-Rodriguez, 

Jeyasingh, & Tobler, 2015), morphological (Tobler et al., 2008) and life-history (Riesch, 

Plath, Schlupp, & Marsh-Matthews, 2010) characteristics. In addition, microsatellite 

analyses have indicated significant genetic differentiation and low rates of gene flow among 

populations in different habitat types (Plath et al., 2010), and reproductive isolation is in part 

mediated by natural and sexual selection against nonadapted migrants (Riesch, Plath, & 

Schlupp, 2011; Tobler, 2009; Tobler, Riesch, Tobler, Schulz-Mirbach, & Plath, 2009).

We performed transcriptome analyses on three different organs and populations exposed to 

all combinations of the presence and absence of H2S and light. We focused analyses on gills, 

liver and brain, because there are a priori expectations about the roles of these organs in 

adaptation to the environmental conditions encountered in the Cueva del Azufre system. 

Gills are an important organ involved in the maintenance of homeostasis in fish (Evans & 

Claiborne, 2006; Evans et al., 2011), and since they exhibit a high surface area directly 

suspended in the water, they provide an important access point for H2S exposure (Tobler, 

Passow, Greenway, Kelley, & Shaw, 2016). The liver plays roles in detoxification and the 

modulation of energy metabolism (Dorman et al., 2002; Green, Takahashi, & Bass, 2008), 

and both processes are relevant in the context of H2S and cave adaptation (Aspiras, Rohner, 

Martineau, Borowsky, & Clifford, 2015; Bagarinao & Vetter, 1990). Finally, the brain has 

previously been shown to play a role in adaptation to perpetual darkness (Langecker, 2000; 

Poulson, 2001), and H2S can have neurotoxic effects (Kombian, Warenyica, Mele, & 

Reiffenstein, 1988). In addition, brain morphology has been shown to vary among 

populations of Poecilia in the Cueva del Azufre system (Eifert et al., 2015). Analysing gene 

expression variation across habitats and organs, we specifically addressed the following 

questions: (i) How does gene expression vary among organs and populations living in 

different habitat types? We predicted significant differences in gene expression among fish 

from different habitat types, reflecting their exposure to starkly different environmental 

conditions. Considering that H2S impacts the function of mitochondria and can therefore 

have systemic effects (Li, Rose, & Moore, 2011), gene expression differences between 

sulphidic and nonsulphidic populations were expected to be relatively consistent across all 

organs. In contrast, we expected idiosyncratic, organ-specific gene expression differences 

between populations from cave and surface habitats. (ii) Is there evidence for shared 

expression responses in populations exposed to the same environmental conditions (presence 

of H2S or absence of light), and how do shared responses vary among hierarchical levels of 
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organismal organization? Shared responses between populations exposed to the same 

environmental conditions were expected to increase with increasing level organization (from 

transcript to gene to physiological pathway). At each level of organization, we also expected 

a higher degree of shared responses between the sulphidic populations than between the cave 

populations, because physiochemical stressors with clear molecular targets have been 

hypothesized to limit the diversity of organismal coping strategies. (iii) What inferences can 

analyses of differential expression provide about physiological mechanisms that are 

modulated during exposure to specific environmental conditions? We expected that 

physiological mechanisms associated with living in sulphidic and cave environments largely 

correspond to the findings of previous analyses. Transcriptome studies on organisms living 

in H2S-rich environments have focused on gill tissues and documented differential 

expression of genes associated with enzymatic H2S detoxification and the processing of 

sulphur compounds, as well as aerobic and anaerobic ATP production and energy 

metabolism (Kelley et al., 2016; Liu et al., 2015; Wong et al., 2015). Analysis of 

transcriptomes of cave dwellers have focused on eyes or whole organisms and revealed 

differential expression of genes associated with eye development and function, circadian 

rhythms and energy metabolism (Gross, Furterer, Carlson, & Stahl, 2013; Meng et al., 2013; 

Strickler, Byerly, & Jeffery, 2007).

2 | MATERIALS AND METHODS

2.1 | Sample collections

Samples for transcriptome analyses were collected in the Cueva del Azufre system that is 

located in the Rio Tacotalpa drainage near the village of Tapijulapa, Tabasco, Mexico 

(Figure 1a; Tobler et al., 2008). Fish were caught at four sites: Arroyo Bonita (nonsulphidic 

surface stream), El Azufre II (sulphidic surface stream), Cueva Luna Azufre (nonsulphidic 

cave) and Cueva del Azufre (sulphidic cave) (see Tobler et al., 2008 for a detailed 

description of these sampling sites). Upon capture, four adult females per site were 

immediately euthanized, weighed and measured (Table S1). Gills, livers, brains and eyes 

were then extracted using sterilized scissors and forceps and separately preserved and stored 

in Invitrogen RNAlater. Procedures for all experiments were approved by the Institutional 

Animal Care and Use Committee at Kansas State University (Protocol #3418).

2.2 | RNA extraction, cDNA library preparation and sequencing

We adopted a general protocol for transcriptome analyses that was previously developed for 

P. mexicana (Kelley et al., 2012). In brief, 10–30 mg of tissue were placed into a Covaris 

TT1 tissue TUBE (designed for <1 g of tissue), frozen using liquid nitrogen and then 

pulverized with a Covaris Cryoprep at setting 3. Total RNA was extracted using the Qiagen 

RNeasy Plus Mini Kit and quantified using both the Thermo Fisher Scientific Qubit RNA 

Assay Kit and Agilent RNA 6000 Nano total RNA kit on an Agilent 2100 Bioanalyzer. We 

then purified mRNA by depleting rRNA from 1 μg of total RNA using the Epicentre Ribo-

Zero Magnetic Gold Kit (human/mouse/rat). The remaining RNA was cleaned up twice 

using Beckman Coulter Life Sciences Agencourt RNAClean XP beads. The eluted RNA was 

then fragmented to 400 nucleotides using New England BioLabs (NEB) RNA fragmentation 

buffer, incubating at 94°C for 4 min. First-strand cDNA synthesis was performed by 

Passow et al. Page 5

Mol Ecol. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combining the fragmented mRNA with 1 μl of random hexamers: oligo-dT primers (3 μg:1 

μg), 4 μl of Invitrogen 5× first-strand reaction buffer, 2 μl of Invitrogen 0.1 M DTT and 1 μl 

of NEB 10 mM dNTP mix. We then added 1 μl Invitrogen SuperScript III Reverse 

Transcriptase to the mixture. The solutions were incubated at 25°C for 50 min and 

immediately placed on ice to terminate the reaction. For second-strand synthesis, we added 5 

μl of Invitrogen 5× first-strand buffer, 1 μl of Applied Biosystems DTT, 2 μl of 10 mM 

dNTP mix with dUTP, 15 μl of Invitrogen 5× second-strand reaction buffer and 3.75 μl of 

NEB second-strand enzyme mix. The reaction mix was incubated at 16°C for 2 hr. After 

second-strand synthesis, the reaction was cleaned up using Beckman Coulter Life Sciences 

Agen-court RNAclean XP beads and eluted into 50 μl of nuclease-free H2O. The double-

stranded cDNA was used as an input for the KAPA Biosystems KAPA HTP Library 

Preparation Kit for end-repair, A-tailing, adapter ligation with Illumina TruSeq barcoded 

adapters and library amplification. For the library amplification reaction, we ran the initial 

denaturation at 98°C for 45 seconds (s), followed by 12 cycles of denaturation at 98°C for 

15 s, annealing at 60°C for 30 s, and extension at 72°C for 30 s and finishing with a final 

extension at 72°C for 60 s. RNA-sequencing libraries were quantified using Thermo Fisher 

Scientific Qubit dsDNA HS Assay Kit and Agilent High Sensitivity DNA Analysis Kit on 

the 2100 Bioanalyzer. Libraries were pooled based on nanomolar concentrations and 

sequenced on an Illumina HiSeq 2000 across two lanes with paired-end 101 base pair (bp) 

reads. Due to low coverage, some samples were rerun on an additional Illumina HiSeq 2000 

lane, and reads were then concatenated together for each sample. Read mappings for eye 

samples were not sufficient for data analyses; thus, all analyses focused on gill, liver and 

brain samples.

2.3 | Reference transcriptome assembly and annotation

Reference transcriptome assembly and annotation generally followed previous published 

methods (Kelley et al., 2016). All raw RNA-seq reads were trimmed to remove primer 

dimers and low-quality bases using the program Trim Galore! (Krueger, 2014; Table S2). 

Trimmed reads were then mapped to the Poecilia mexicana reference genome (version 1.0, 

GenBank accession number: LMXC00000000.1) plus corresponding mitochondrial 

sequences (GenBank Accession Number: KC992991; Pfenninger et al., 2014) using BWA-

mem (Li, 2013; Li & Durbin, 2009), which yielded the highest alignment percentage (results 

from other aligners not shown). We then used the cufflinks package (version 2.2.1) to extract 

expressed regions, merge the regions for all individuals and create a multifasta file 

containing the reference transcriptome for further analyses (Trapnell et al., 2010). 

Transcripts were annotated using a BLASTx search against the human SwissProt database 

(critical E-value = 0.001). This database provides more informative functional annotations 

than other databases (e.g., NCBI nonredundant protein database), which facilitates 

downstream analyses (see below). We retained the top BLAST hit for further analyses, and 

sequences with a BLAST match were also annotated with Gene Ontology (GO) IDs (Gene 

Ontology Consortium 2004) using Blast2GO (Conesa et al., 2005).

2.4 | Quantifying gene expression variation

To analyse variation in gene expression among populations and organs, we mapped all 

trimmed reads to the multifasta file (reference transcriptome) using BWA-mem (Li, 2013; Li 
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& Durbin, 2009) and then estimated transcript abundance with eXpress (Roberts & Pachter, 

2013). Transcripts with very low expression (less than two counts per million in at least 

three samples) were removed from further analyses. To describe multivariate variation in 

gene expression, we conducted a weighted gene coexpression network analysis on the top 

10,000 expressed genes in the R package WGCNA (Langfelder & Horvath, 2008), as 

described in Oldham, Horvath, and Geschwind (2006). Before constructing the networks, we 

used the variance-stabilizing transformation function in the DESEQ2 package in R (Love, 

Huber, & Anders, 2014), which transforms data normalized for library size to a log2-scale 

(Anders & Huber, 2010), and set the soft threshold (i.e., power) to 3, which was the lowest 

value that optimized topology (Langfelder & Horvath, 2008). WGCNA quantifies 

correlations between the top 10,000 expressed genes using Pearson correlations, which are 

converted into measures of connection strength between the genes. Genes with similar 

connection strengths to other genes (i.e., high topological overlap) are identified and 

clustered together into modules. Once modules were identified, we constructed a consensus 

dendrogram based on the most significant modules and tested for associations between 

individual modules and predictor variables (organ, individual, population of origin, presence 

of H2S in natural habitat, absence of light in natural habitat) using Pearson correlation as 

implemented in WGCNA. Complementary to the weighted coexpression network analysis, 

we also conducted multidimensional scaling (MDS) of the top 10,000 expressed genes using 

plotMDS in the limma package in R. We analysed MDS scores with a multivariate analysis 

of variance (MANOVA) with “organ” and “population” as predictor variables. F-values were 

approximated using Wilks’ lambda and effect sizes by use of partial eta-squared ( ). To 

visualize potential differences in gene expression patterns among populations, we also 

conducted separate MDS for each organ.

To quantify differential gene expression among populations, we treated the ancestral, 

nonsulphidic surface population as a control and conducted pairwise comparisons with each 

of the populations inhabiting an extreme environment (sulphidic surface, nonsulphidic cave 

and sulphidic cave). Pairwise comparisons were conducted separately for each organ using 

the exactTest function in the Bioconductor package edgeR (Robinson, McCarthy, & Smyth, 

2010; Robinson & Oshlack, 2010). The false discovery rate was set to .05. These analyses 

provided a list of up- and downregulated transcripts for each extremophile population and 

organ as compared to the ancestral nonsulphidic surface population.

2.5 | Testing for organ-specific responses

We assessed whether gene expression responses to the same sources of selection were 

quantitatively and qualitatively consistent across organs or whether there are idiosyncratic, 

organ-specific responses. To do so, we first tested whether the number of differentially 

expressed transcripts varied among organs using analysis of variance (ANOVA). We 

included direction of differential expression (i.e., up- or downregulated), population and 

organ as independent variables. Furthermore, we tested whether the biological processes 

putatively associated with differentially expressed genes in each habitat were consistent 

among organs. To do so, we first performed a pathway enrichment analysis for each organ 

and population using the enrichPathway function from the ReactomePA package in R (Yu & 

He, 2016) to identify the enriched pathways (p-value cut-off .05). We then implemented the 
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compareCluster function in the CLUSTERPRO-FILER package in R (Yu, Wang, Han, & 

He, 2012), which calculates and compares enriched functional categories of each gene 

cluster among organs of the same population (p-value cut-off .05). Using gene ratios 

(proportion of genes enriched in each category) and adjusted p-values, we constructed a dot 

plot in R to visualize variation among organs of the same population. Finally, we 

implemented the rcorr function in the HMISC package in R to compute a matrix of 

Pearson’s r rank correlation coefficients (r) and significance levels (p-value) based on the 

gene ratios in the enriched pathways to evaluate the consistency of responses among all 

organ pairs (gill vs. liver, gill vs. brain and brain vs. liver).

2.6 | Identifying shared expression responses in H2S and cave environments

We tested for shared expression responses to H2S and perpetual darkness by comparing 

differentially expressed genes between the sulphidic surface and sulphidic cave populations 

(shared responses to H2S), as well as between the nonsulphidic and the sulphidic cave 

populations (shared responses to darkness). Because theory predicts that the degree of 

shared responses should be a function of the level of biological organization (see 

Introduction), we quantified shared responses at the level of the transcript (transcript ID 

based on our reference transcriptome), gene (same BLAST hit in SwissProt) and function 

(same GO terms in biological processes associated with the BLAST hit). The number of 

shared and unique up- and downregulated transcripts, genes and functions was quantified by 

generating Venn diagrams with the vennCounts and vennDiagram functions in the package 

LIMMA in R (see Fig. S1 for the cave populations and Fig. S2 for the populations from 

sulphidic habitats). The distribution of values in these Venn diagrams was then summarized 

for quantitative analysis using the Jaccard index, which was calculated as the size of the 

intersection between two samples (number of responses in the intersection of the Venn 

diagrams) divided by size of the union between two samples (total number of responses, 

unique and shared, in the Venn diagrams) (Krebs, 1999; Pfenninger et al., 2015). Jaccard 

indices (log10-square-root-transformed) were analysed using ANOVA. We included 

expression direction (i.e., up- and downregulated), environmental factor (i.e., H2S and 

darkness), organization level and organ as independent variables.

2.7 | Biological functions associated with differentially expressed genes

We assessed the biological functions of differentially expressed genes to explore potential 

functional consequences associated with adaptation to H2S and perpetual darkness. To do so, 

we conducted a GO term enrichment analysis (p-value cut-off .001) as implemented in 

GOrilla (Eden, Navon, Steinfeld, Lipson, & Yakhini, 2009). Enrichment analyses were 

conducted separately for each population and organ.

3 | RESULTS

3.1 | Reference transcriptome

We obtained 133,785,284 reads for gill tissues (14 individuals in final data set), 95,374,496 

reads for brain tissues (11 individuals in final data set) and 136,779,442 reads for liver 

tissues (16 individuals in final data set; see Table S2 for details). Due to low coverage, we 

excluded five brain and two gill samples. Mapping against the reference genome resulted in 
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a total of 63,590 unique transcripts from 38,764 unique loci (see Table S3 for additional 

summary statistics). The total length of the merged transcriptome was 225,876,000 bp, with 

an N50 of 5,290 bp. BLAST against the human SwissProt database resulted in matches for 

48,242 transcripts (75.9% of transcripts; see Table S4) corresponding to 14,005 unique 

SwissProt entries, 13,504 of which were associated with Gene Ontology (GO) terms.

3.2 | Organ-specific gene expression

Weighted gene coexpression network analysis revealed five modules of coexpressed 

transcripts (Fig. S3). Organ identity was significantly correlated with all modules, while 

none of the other predictor variables (presence or absence of H2S, presence or absence of 

light, population and individual) exhibited any significant associations (Figure 2a; Table 1). 

This general pattern was also evident by visualizing the MDS results on the full data set, 

which indicated a clear separation of different organs in multivariate space (Fig. S4). 

Multivariate analyses of variance using MDS scores as the dependent variables confirmed 

the strong effect of organ on gene expression patterns (F,56 = 3516.07, p < .001, ) 

and also indicated a significant interaction between organ type and population of origin 

(F12,56 = 2.01, p = .040, ). Population as a main factor had no significant effect 

(F6,56 = 1.021, p = .421, ). Gene expression consequently varied substantially 

among organs, while effects of environmental conditions were comparatively subtle. Hence, 

we analysed among population variation in gene expression separately for each organ. 

Visualization of MDS on each organ indicated significant differences in gene expression 

patterns among populations from different habitat types (Figure 2b–d).

Comparing the number of differentially expressed genes among populations from the 

different extreme habitats (relative to the ancestral, nonsulphidic surface population) 

indicated that organ and the interaction between organ and habitat type explained the 

majority of variation (Table 2). In the two sulphidic habitats, the number of differentially 

expressed genes was the highest in the gills (Figure 3). In the nonsulphidic cave, however, 

the number of differentially expressed genes was greatest in the liver and lower in the brain 

and gills (Figure 3).

We also found significant differences in the enrichment of physiological pathways 

associated with differentially expressed genes across organs (Fig. S5). Overall, positive 

correlations in the enrichment of functional classes across organs were relatively rare, 

indicating that the nature of differentially expressed genes is organ-specific. Among the few 

exceptions were similar functional responses in upregulated transcripts between brain and 

liver in the nonsulphidic cave, upregulated transcripts between brain and gill in the sulphidic 

surface habitat, upregulated transcripts between liver and gills in the sulphidic cave and 

downregulated transcripts between brain and liver in the sulphidic cave. When detected, 

correlations in the functional responses between organs were primarily driven by genes 

associated with metabolism and metabolism of lipids and lipoproteins (Fig. S5).
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3.3 | Shared expression responses in H2S and cave environments

By comparing differentially expressed transcripts between populations, we identified shared 

responses to H2S-rich and cave environments. The extent of shared responses was a function 

of interactive effects between environmental factors, organs and the level of biological 

organization (Table 3). As predicted, the number of shared responses generally increased 

with level of biological organization (Figure 4a). However, the amount of shared responses 

at each level of organization and the magnitude of increase from one level to the next 

significantly differed between environmental factors. In cave environments, there were very 

few shared differentially expressed transcripts and only about 20% of GO terms associated 

with differentially expressed genes were shared between populations (Fig. S1). In contrast, 

shared responses were much higher between sulphidic environments at each level of 

organization, with about 40% of GO terms associated with differentially expressed genes 

appearing in both sulphidic populations (Fig. S2). Population differences in the sulphidic 

and cave-adapted fish were also evident among organs (Figure 4b). While there were no 

differences in the degree of shared responses among organs in the two cave populations, 

shared responses were significantly more prevalent in gills between the two sulphidic 

populations as compared to the brain and liver.

3.4 | Biological functions associated with differentially expressed genes

To identify functional changes potentially associated with adaptation to the different 

environmental conditions, we conducted a GO term enrichment analysis for up- and 

downregulated genes for each tissue and population (Table S5). For brevity, we only discuss 

enriched terms that are shared between both sulphidic or both cave habitats.

While no GO terms were enriched across all organs in the two sulphidic habitats (Table S6), 

several genes associated with H2S detoxification and sulphur metabolism were consistently 

upregulated in the gills (Table S6A). This included terms associated with sulphur (GO:

0044272, GO:0006790) and glutathione metabolism (GO:0006749). In addition, upregulated 

genes in the gills of sulphidic populations were enriched in terms associated with oxidative 

stress responses (GO:0006979). Downregulated genes in the gills were predominately 

associated with the transport of ions and other molecules (GO:0030001, GO:0006814, GO:

0006811 and associated terms; Table S6B). In the livers of sulphidic populations, 

downregulated genes were disproportionally associated with metabolism of lipids and fatty 

acids (GO:0035337, GO:0006631, GO:003583 and associated terms; Table S6B). In the 

brains of sulphidic populations, upregulated genes were enriched for processes associated 

with energy metabolism and ATP production (GO:0006096, GO:00016051, GO:00006757; 

Table S6A). Downregulated genes in the brain were associated with the organization of the 

extracellular matrix and DNA integration (GO:0030198, GO:0015074).

No GO terms were significantly enriched in all organs of the two cave populations. In the 

gills, up- and downregulated genes were primarily involved in ion transport and the 

regulation of pH (Table S6C, D). In the livers of the two cave populations, we found no 

shared enrichment in upregulated genes, and downregulated genes were associated with 

responses to chemicals and the regulation of biological quality and protein secretion (GO:
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0042221, GO:0065008 and associated terms; Table S6D). There was no consistent 

enrichment in any GO term for the brains of the two cave populations (Table S6C,D).

4 | DISCUSSION

Transcriptome analyses among closely related fish populations in proximate but 

environmentally distinct habitat types uncovered significant variation in gene expression. 

Gene expression variation was primarily correlated with organ type, and the number and 

function of differentially expressed genes in each habitat type was also organ-specific. As 

predicted by theory, shared responses between the two sulphidic and the two cave habitats 

increased with the level of biological organization, from relatively few shared patterns at the 

level of differentially expressed transcripts to higher levels of overlap in physiological 

pathways associated with differentially expressed transcripts. However, shared responses at 

any level of organization were much more pronounced in the H2S-rich habitats than the cave 

habitats, highlighting that H2S impacts gene regulation in a more predictable manner than 

the absence of light. Our analyses provided insights into transcriptional variation in a unique 

system with coinciding sources of selection, and functional annotation of differentially 

expressed genes provides a springboard for investigating physiological mechanisms 

putatively underlying adaptation to extreme environments.

4.1 | Expression variation among organs and environments

Considering different organs are fulfilling vastly different functions despite being composed 

of cells with the same genome, it was not surprising that the majority of variation in gene 

expression was observed among organ types. However, the gene expression responses to the 

presence of H2S and to the absence of light in caves also significantly varied among organs, 

both in terms of the number of genes that were differentially expressed and their function 

(Figure 3 and Fig. S5). So, even though H2S-rich and cave environments are often assumed 

to exert strong selection (Niemiller & Soares, 2015; Tobler et al., 2016), and H2S has 

specific and well-documented biochemical and physiological effects (Olson, 2012), the 

consequences of exposure to these environments are not systemic and uniform but specific 

to particular organs. In the nonsulphidic cave for example, the majority of differentially 

expressed genes occurred in the liver (Figure 3), and the enrichment in Reactome pathways 

differed among organs (especially gills vs. liver and brain; Fig. S5). In both sulphidic 

habitats, differentially expressed genes were mostly concentrated in the gills (Figure 3), 

which are directly exposed to environmental H2S (Tobler et al., 2016). Furthermore, genes 

associated with H2S detoxification and the metabolic processing of sulphur were primarily 

differentially expressed in the gills but not the brain or the liver. This may suggest that the 

bulk of H2S is detoxified peripherally in the gills (rather than the liver as in other 

vertebrates; Dorman et al., 2002), potentially shielding internal organs from the toxic effects. 

Some organisms exposed to H2S in marine environments have also been hypothesized to 

sequester sulphide peripherally in external mucosa in order to minimize toxic effects 

(Goffredi, Jones, Erhlich, Springer, & Vrijenhoek, 2008; Oeschger & Vetter, 1992). In 

addition, modification of the integumentary system may be common during exposure to 

environmental stressors in general (Ao et al., 2015; Micallef et al., 2012).
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Our results indicate that the choice of tissue substantially affects inferences about gene 

expression variation in nature. Many studies still focus on the analysis of single organs 

(Narum & Campbell, 2015; Wang et al., 2014), whole organisms (Gross et al., 2013) or lack 

formal analyses of how gene expression varies among organs (Hinaux et al., 2013; Uyhelji, 

Cheng, & Besansky, 2016). This is not necessarily problematic when a priori hypotheses are 

being tested, but a focus on single organs may also lead to skewed or misleading results that 

affect our inferences about organismal responses to environmental variation. The advent of 

single-cell sequencing (Gawad, Koh, & Quake, 2016)—which is now commonly applied in 

the biomedical sciences—will provide increasing resolution to understand the nature of 

organismal responses to environmental stressors in the future.

Our analyses also indicated that gene expression responses in populations exposed to 

multiple stressors are not the mere sum of the responses to individual stressors. Although the 

sulphidic cave population (exposed to H2S and darkness) had the highest total number of 

differentially expressed genes, the number of differentially expressed genes in the gills was 

higher in the sulphidic surface population, and the number of differentially expressed genes 

in the liver was higher in the nonsulphidic cave population (Figure 3). In addition, only a 

subset of responses in the sulphidic cave were actually shared with the sulphidic surface and 

the nonsulphidic cave population (see below) such that the functional overlap of responses 

was lower than what a comparison of mere numbers implied. This result highlights that there 

are likely interactive, nonadditive effects between H2S exposure and living in a cave 

environment. Such interactions have also been documented in experimental studies that 

manipulated exposure to multiple physiochemical stressors (Garcia-Reyero et al., 2012; 

Maes et al., 2013; Yang et al., 2007) and will complicate our ability to predict organismal 

responses along complex environmental gradients.

4.2 | Shared responses and the predictability of gene expression in different environments

The number of shared responses between the two sulphidic and the two cave populations 

increased with levels of biological organization (from transcript to gene to function; Figure 

4a). This was particularly evident in the two cave populations that did not share a single 

differentially expressed transcript in some organs, yet differentially expressed genes shared 

about 20% of their functional attributes (GO terms). The increase in shared responses with 

level of organization is predicted by theory (Elmer & Meyer, 2011; Manceau et al., 2010; 

Rosenblum et al., 2014), and it has been documented in a variety of studies that investigated 

patterns of molecular evolution or the genetic basis of convergent trait evolution (Linnen, 

Kingsley, Jensen, & Hoekstra, 2009; Rosenblum, Römpler, Schöneberg, & Hoekstra, 2010; 

Shapiro et al., 2004). Hierarchical structuring in the context of gene expression is less 

explored both conceptually and empirically (but see Fong, Joyce, & Palsson, 2005; 

Mallarino, Linden, Linnen, & Hoekstra, 2017). However, expression changes of different 

transcripts or genes may lead to equivalent organismal performance (see Arnold, 1983; 

Losos, 2011; Wainwright, Alfaro, Bolnick, & Hulsey, 2005 for analogous concepts involving 

different levels of organismal integration), just like different mutations in the same gene or 

mutations in different genes can lead to equivalent phenotypic changes (e.g., Chen, DeVries, 

& Cheng, 1997; Hoekstra, Hirschmann, Bundey, Insel, & Crossland, 2006; Wilkens & 

Strecker, 2003). The key—but largely unexplored—difference is that differential gene 
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expression may occur plastically over short periods of time, opening the possibility that 

individuals can embark on different solutions to cope with an environmental stressor 

(Koolhaas, 2008; Schulte, 2014). From a transcriptome perspective, future research needs to 

address how plastic and evolved changes in gene regulation affect our inferences about the 

hierarchical structuring of responses to specific environmental stressors.

The proportion of shared responses was also significantly higher between the two sulphidic 

than the two cave habitats. This was particularly evident at the levels of transcripts and genes 

(>20% of responses shared between sulphidic habitats, <3% of responses shared between 

cave habitats), but substantial differences were also observed at a functional level (37% vs. 

20%). There are three non-mutually exclusive hypotheses about the mechanisms that could 

be driving this pattern. (i) The number of shared differentially expressed genes may be a 

function of phylogenetic relatedness; that is, shared responses may have been higher 

between the two sulphidic populations, because they are more closely related (Rohlfs, 

Harrigan, & Nielsen, 2013). To test this, we identified single nucleotide polymorphisms 

(SNPs) in our data set and analysed the relationship among populations (see supplementary 

material for details). The results indicated that the three extremophile populations were 

closely related, and unlike analyses based on microsatellites (e.g., Plath et al., 2010), there 

was no evidence for significant population structure in the coding portion of the genome 

(Fig. S6). Nonetheless, inference of population splits indicated that the two cave populations 

were more closely related to each other than to the sulphidic surface population (Fig. S7). 

Hence, phylogenetic history alone is unlikely to explain the low level of shared responses 

between the two cave populations. (ii) Our classification of habitats into discrete types may 

be an oversimplification of complex ecological gradients (see Kaeuffer et al., 2012). Besides 

the presence of H2S and the absence of light, there are likely additional sources of selection 

in the nonsulphidic cave that we have not considered and may have shaped the distinct 

patterns of gene expression. For example, despite their proximity, the two caves differ in 

ambient temperature, the ionic composition of the water (other than the presence of H2S) 

and the availability of trophic resources (see Tobler & Plath, 2011 for a review). (iii) Some 

sources of selection may elicit more predictable evolutionary responses than others. At least 

in the organs investigated here, the presence of H2S—unlike the absence of light—has clear-

cut molecular targets (e.g., cytochrome c oxidase in the respiratory chain and haemoglobin) 

that affect specific physiological functions (e.g., energy metabolism, oxygen transport and 

oxidative stress; Li et al., 2011; Olson, 2012; Tobler et al., 2016). H2S’s direct interaction 

with specific proteins could constrain the diversity of adaptive solutions that mitigate the 

toxic effects, ultimately leading to more predictable outcomes in gene expression variation 

in replicated populations. Indeed, previous studies have found that sulphide spring 

populations exhibit positive selection on and differential expression of genes associated with 

highly conserved pathways involved in H2S toxicity and detoxification (Kelley et al., 2016; 

Pfenninger et al., 2014, 2015). Furthermore, the notion that H2S elicits more predictable 

organismal responses is supported by the level of shared responses between populations 

being disproportionally high in the gills, which are directly exposed to environmental H2S 

(Tobler et al., 2016). Physiochemical stressors with clear molecular targets eliciting 

predictable patterns of genetic evolution have also been documented in other organisms, 

such as killifish adapted to anthropogenic pollutants (Reid et al., 2016), insects adapted to 
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secondary plant metabolites (Dobler, Dalla, Wagschal, & Agrawal, 2012) and poison frogs 

adapted to their own skin toxins (Tarvin, Santos, O’Connell, Zakon, & Cannatella, 2016).

4.3 | Potential mechanisms mediating adaptation to extreme environments

Functional annotations of differentially expressed genes provided insights about potential 

regulatory and physiological mechanisms mediating adaptation to sulphidic and cave 

environments. Populations in sulphidic environments upregulated key enzymes involved in 

enzymatic H2S detoxification, including multiple components of the sulphide: quinone 

oxidoreductase and the glutathione pathways (Hildebrandt & Grieshaber, 2008; Jackson, 

Melideo, & Jorns, 2012). In addition, we found evidence for upregulation of genes 

associated with the toxic effects of H2S. Specifically, H2S negatively affects aerobic ATP 

production and creates oxidative stress through the interruption of the mitochondrial 

respiratory chain (Cooper & Brown, 2008; Eghbal, Pennefather, & O’Brien, 2004), and 

genes associated with energy metabolism, anaerobic ATP production and oxidative stress 

responses were consistently upregulated. Enrichment analysis also indicated downregulation 

of ion transporters in the gills, genes associated with lipid and fatty acid metabolism in the 

liver and extra-cellular matrix components in the brain. Since the sulphidic surface and cave 

habitats also differ from normal surface streams in a variety other aspects of the environment 

(e.g., salinity, pH and oxygen concentrations; Tobler & Plath, 2011), some of the 

documented gene expression changes may have arisen in response to these correlated 

environmental variables. Future studies will need to address the potential functional 

consequences of these expression changes and test how they actually affect organismal 

performance in sulphidic environments.

There were only a few shared enriched GO terms in the two cave populations. Changes in 

the expression of ion transporters and the regulation of pH were likely driven by variation in 

water chemistry and not sources of selection that are typically associated with cave 

environments, although some ion channels have been associated with the development of 

pigmentation (Bellono, Escobar, Lefkovith, Marks, & Oancea, 2014), and both cave 

populations exhibit significant reductions of pigmentation in the skin (Joachim, Riesch, 

Jeffery, & Schlupp, 2013). Despite the lack of shared responses, it is important to note that 

there was evidence for significant enrichment in each cave population for several functions 

typically associated with cave adaptation. This includes genes associated with energy and 

lipid metabolism that could be related to resource scarcity in caves (Hüppop, 2000), with 

regulation of circadian rhythms that are likely related to the absence of light (Beale et al., 

2013; Koilraj, Sharma, Marimuthu, & Chandrashekaran, 2000) and with neuronal 

development and axon guidance that may be related to changes in the brain anatomy of 

cavefish (Eifert et al., 2015). While the high proportion of shared responses between the two 

sulphidic habitats facilitated the identification of potential physiological pathways 

contributing to adaptation to H2S, the largely unique expression patterns in the two caves 

make inferences about the molecular underpinnings of adaptation to perpetually dark 

habitats much less straightforward. This is somewhat surprising because evolution in caves 

is typically associated with strong patterns of convergent phenotypic evolution (Jeffery, 

2009; Porter & Crandall, 2003), and regressive evolution of pigmentation in cavefish is even 

caused by convergent molecular modifications (Protas et al., 2006). Perhaps, other organs 
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not investigated here (e.g., eyes and skin) exhibit a higher degree of shared gene expression 

differences between the two cave populations.

5 | CONCLUSIONS

Overall, this study has documented significant variation in gene expression among spatially 

proximate and genetically closely related populations. Gene expression varied among 

populations in an organ-specific manner, suggesting that regulatory changes are likely 

important in coping with the environmental stressors present in this system (see Fay & 

Wittkopp, 2008; Romero, Ruvinsky, & Gilad, 2012). In addition, shared gene expression 

responses in H2S-rich and cave habitats increase significantly with level of organismal 

organization, which indicates that alternative transcriptional responses—albeit often in the 

same physiological pathways—mediate organismal responses to life in different 

environments. A key question remaining is whether the transcriptional variation among 

populations is a consequence of population-specific, plastic induction of gene expression in 

response to ambient environmental conditions, or whether there are evolved changes in gene 

regulation. Laboratory experiments using two of the extremophile populations studied here 

(nonsulphidic and sulphidic surface) have indicated that both plastic and evolved changes in 

gene regulation contribute to gene expression variation in natural habitats (Passow et al., 

unpublished data). Future studies will need to address how plasticity and evolution shape 

gene expression in the cave populations and identify potential regulatory mutations that 

could contribute to transcriptional variation among populations. Considering the rampant 

variation in functional traits among closely related populations, the fish of the Cueva del 

Azufre system provide a unique opportunity to study the genetic basis of complex 

phenotypic variation in nature, including patterns of gene expression. Accordingly, future 

studies should focus on identifying mechanisms linking genomic variation to phenotypes 

and organismal function (Barrett & Hoekstra, 2011; Storz & Wheat, 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(a) Overview of the study area near the village of Tapijulapa, Tabasco, Mexico. Depicted are 

the four focal populations: nonsulphidic surface (blue), sulphidic surface (yellow), 

nonsulphidic cave (red) and sulphidic cave (green). The insert indicates the study region 

within Mexico. (b) The sulphidic surface stream and (c) the sulphidic cave in which fish 

were collected for this study. (d) Phenotypic differences are evident between fish from the 

sulphidic surface (left) and the sulphidic cave habitat (right). Photographs are courtesy of 

Robbie Shone (http://www.shonephotography.com) [Colour figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 2. 
(a) Results of the weighted gene coexpression network analysis (WGCNA) indicated that 

gene expression variation among samples was primarily driven by organ type (see Table 1). 

(b–d) MDS on each organ separately revealed significant differences in gene expression 

patterns among fish from different habitat types. MDS plots depict mean scores along axes 1 

and 2 (± standard error). Data from different habitat types are colour-coded as indicated in 

the legend in panel (b) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3. 
The number (estimated marginal means ± standard error) of differentially expressed genes 

(up and downregulated) among populations and organs. Estimated marginal means were 

derived from the ANOVA model in Table 2
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FIGURE 4. 
The proportion (estimated marginal mean of Jaccard index ± standard error) of shared 

differences (a) across populations and levels of biological organization and (b) across 

populations and organs. Estimated marginal means were derived from the ANOVA model in 

Table 3
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TABLE 2

Results of analyses of variance (ANOVA) comparing the number of differentially expressed genes among 

habitat types (sulphidic surface, nonsulphidic cave, sulphidic cave), organs (gills, liver, brain) and expression 

direction (up vs. downregulated)

Term df F p

Habitat type 2 4.3 .101 .682

Organ 2 19.5 .009 .907

Expression direction 1 0.1 .724 .035

Habitat × Expression direction 2 0.8 .501 .292

Organ × Expression direction 2 1.6 .313 .441

Habitat × Organ 4 18.0 .008 .947

The number of differentially expressed genes varied among organs, but in a habitat-specific manner (see Figure 3). Effect sizes were estimated with 

partial eta-squared ( ), and significant effects (p < .05) are high-lighted in bold font.
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TABLE 3

Results of analyses of variance (ANOVA) comparing the proportions of shared responses (Jaccard index) 

among environmental factors (sulphidic vs. cave environments), organs (gills, liver, brain), expression 

direction (up vs. downregulated) and level of organismal organization (transcript, gene, gene function)

Term df F p

Expression direction 1 0.3 .619 .016

Environmental factor 1 450.4 <.001 .966

Level of organization 2 152.7 <.001 .950

Organ 2 24.4 <.001 .753

Expression direction × Environmental factor 1 2.0 .178 .111

Expression direction × Level of organization 2 0.7 .489 .086

Expression direction × Organ 2 2.3 .128 .227

Environmental factor × Level of organization 2 27.7 <.001 .776

Environmental factor × Organ 2 15.2 <.001 .655

Level of organization × Organ 4 0.5 .711 .118

The amount of shared responses increased with level of organization, but shared responses were higher for sulphidic than for cave populations 
(Figure 4a). In addition, the amount of shared responses also varied between sulphidic and cave populations in an organ-specific manner (Figure 

4b). Effect sizes were estimated with partial eta-squared ( ), and significant effects (p < .05) are highlighted in bold font.
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