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Abstract

Coenzyme Q (CoQ, ubiquinone) is a redox active lipid produced across all domains of life that 

functions in electron transport and oxidative phosphorylation and whose deficiency causes human 

diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with 

unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple 

steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent 

progress toward filling these knowledge gaps through both traditional biochemistry and cutting-

edge “omics” approaches. To help fill the remaining gaps, we present questions framed by the 

recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ 

biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of 

numerous human diseases.
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Functions of Coenzyme Q and an Overview of its Biosynthesis

Coenzyme Q (CoQ; see Glossary and Box 1) plays a key role in an increasing number of 

biological processes, human diseases, and therapeutic regimens. While CoQ was discovered 

60 years ago in Madison, Wisconsin [1] and Cambridge, England [2], gaps in our knowledge 

of CoQ biosynthesis, metabolism, and transport continue to limit our understanding of 

CoQ’s role in human disease and our ability to treat these diseases. Spurred by an influx of 

new experimental technologies merged with traditional biochemical approaches, such gaps 

in knowledge are now being filled rapidly, and these efforts have opened promising new 

therapeutic avenues.
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Box 1

Nomenclature of CoQ Biosynthesis

CoQ8 vs COQ8? The nomenclature of CoQ biochemistry involves subtle, yet meaningful, 

differences in capitalization.

CoQ

Coenzyme Q (CoQ), also known as ubiquinone (UQ), is the redox active lipid shown in 

Figure 1A. The names “CoQ” and “UQ” derive from its quinone head group (CoQ and 

ubiquinone), its function as a coenzyme (CoQ), and its nearly ubiquitous presence across 

all domains of life (ubiquinone). “CoQ” is the general abbreviation. To specify the 

number of isoprene subunits in the lipid tail, a subscripted number is included (e.g., 

“CoQ10”, indicating 10 isoprene subunits). CoQ tail length varies by organism: humans 

predominantly produce CoQ10; mice, CoQ9; E. coli, CoQ8; and S. cerevisiae, CoQ6. The 

redox state of the lipid can also be specified: the fully reduced form (the hydroquinone) 

as “CoQH2” (ubiquinol, UQH2), the singly dehydrogenated radical form (the 

semiquinone) as “CoQH·” (ubisemiquinone, UQH·), and the oxidized form (the quinone) 

as “CoQ” (ubiquinone, UQ) (Figure 1B). “Q” can also be found in the literature as an 

abbreviation for CoQ, but “CoQ” is favored to avoid confusion with the standard 

abbreviation for the amino acid glutamine (Q).

COQ8

COQ8 is an example of a protein required for CoQ biosynthesis. Eukaryotic genes and 

proteins required for CoQ biosynthesis are typically given “COQ” or “Coq” names, while 

their prokaryotic homologs typically have “Ubi” names (for ubiquinone). “COQ” or 

“Coq” proteins with the same numbers are typically homologs (e.g., human COQ5 and 

yeast Coq5p are homologs). Capitalization follows the standard format for each species 

(e.g., human proteins COQ8A and COQ8B, human genes COQ8A and COQ8B, yeast 

protein Coq8p, yeast gene coq8, E. coli protein UbiB, and E. coli gene ubiB).

Complex Q

The biosynthetic complex that produces CoQ is termed “complex Q” (a name analogous 

to that of the mitochondrial oxidative phosphorylation complexes I–V) or the “CoQ-

synthome”. Complex Q is thought to contain proteins required for the terminal stage of 

CoQ biosynthesis (COQ3–COQ9), lipids (phospholipids and isoprenoid lipids), small 

molecule co-factors, and metal ions. However, a complete catalogue of the proteins, 

lipids, and metabolites that comprise complex Q remains to be determined.

CoQ is a lipid with exceptional biochemical properties (Figure 1). The chemical structure of 

CoQ includes an extraordinarily long polyisoprenoid lipid tail, which makes it one of the 

most hydrophobic molecules in life (Figure 1A). This tail is capped by a quinone head 

group, which is reduction-oxidation (redox) active (Figure 1B) [3, 4]. The redox activity of 

CoQ allows it to function as a cofactor for numerous enzymes, including those of the 

mitochondrial electron transport chain (ETC) (Figure 1C). In the ETC, CoQ relays electrons 

from oxidative phosphorylation (OxPhos) complexes I and II to complex III. The redox 
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chemistry of CoQ also involves protons (Figure 1B), the movement of which is part of the 

“Q-cycle” [5] that helps generate the proton motive force that drives ATP production via 

OxPhos.

In addition to CoQ’s fundamental role in OxPhos, which it performs across all domains of 

life [6], broader cellular functions for CoQ are increasingly recognized (Figure 1D). Within 

mitochondria, CoQ is a critical cofactor for uridine biosynthesis [7], fatty acid oxidation [8], 

and mitochondrial uncoupling proteins [9], and it is thought to regulate the permeability 

transition pore [10]. Moreover, an increasing number of extra-mitochondrial functions are 

coming to light for CoQ, which is found in nearly all eukaryotic cellular membranes [11]. 

For example, CoQ functions as a lipophilic antioxidant in yeast and in human plasma 

lipoproteins [12–14] and as a membrane stabilizer [15]. Furthermore, plastoquinone, a plant 

CoQ analog, can act as a retrograde chloroplast-to-nucleus signal [16], suggesting that 

mitochondrial CoQ may play an analogous role.

Given its widespread cellular functions, CoQ has powerful and complex effects on health 

and disease. On one hand, genetic defects in CoQ biosynthesis can cause diseases such as 

myopathies and ataxias (Box 2), and CoQ abundance decreases with age [17]. On the other 

hand, genetic disruption of CoQ biosynthesis or dietary depletion of CoQ in C. elegans [18–

21] or mice [22] can increase lifespan. The complex mechanisms driving these contrasting 

effects remain largely undefined [23], in part because of numerous gaps in our 

understanding of CoQ biochemistry.

Box 2

CoQ Deficiency in the Clinic

Primary CoQ deficiencies—genetic diseases due to mutations in genes encoding CoQ 

biosynthesis proteins—are known to be caused by nuclear DNA mutations in COQ2 
[145–148], COQ4 [149, 150], COQ6 [151, 152], COQ7 [153], COQ8A (ADCK3) [136, 

154–158], COQ8B (ADCK4) [118, 159], COQ9 [160, 161], PDSS1 [162], or PDSS2 
[163, 164] (Figure IA). These diseases variably disrupt multiple organ systems. 

Commonly affected organs include the brain (e.g., encephalopathy, seizures, or cerebellar 

ataxia), the heart (e.g., hypertrophic cardiomyopathy), the kidneys (e.g., nephrotic 

syndrome), and skeletal muscles (e.g., myopathy)—organs with high demand for 

mitochondrial oxidative phosphorylation.

Mutations in some COQ genes (e.g., COQ2) can affect nearly all organ systems. In 

contrast, other COQ gene mutations have more selective effects. For example, mutations 

in COQ8A (ADCK3) primarily disrupt brain function, with cerebellar ataxia as the 

predominant presentation, while mutations in COQ8B (ADCK4) primarily disrupt kidney 

function, with steroid resistant nephrotic syndrome (SNRS) as the primary feature. Why 

mutations in different COQ genes have such distinct effects remains unclear. Tissue-

specific differences in gene expression or metabolism-regulated protein-protein 

interactions may play a role [87, 117].

Different mutations within an individual COQ gene can also have widespread clinical 

presentations with highly variable age of onset—ranging from the day of birth to late 
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adulthood—and differentially affected organ systems. Even the same COQ point 

mutation can present variably across different patients, potentially due to differences in 

heteroplasmic mitochondrial DNA (mtDNA) pools, which can affect mitochondrial-

nuclear genome interactions. Together, these factors create an extremely complicated 

scenario for affected families, clinicians, and scientists.

CoQ deficiency can also occur secondary to mutations in genes not directly linked to 

CoQ biosynthesis such as ETFDH [165], MUT [166], APTX [167], and BRAF [168] 

(Figure IB), but the underlying mechanisms are unclear. Some drugs, such statins, may 

also cause secondary CoQ deficiency [169], and gene-drug interactions have been 

suggested by case reports [170].

Over half of the reported clinical cases of CoQ deficiency lack a molecular diagnosis (an 

identified causative gene mutation) [171]. Recent biochemical work in model systems 

nominates additional genes as candidates for currently undefined primary CoQ deficiency 

syndromes (Figure IC), providing an important foundation for ongoing investigations. 

Further basic science studies are needed to complete the list of candidate COQ disease 

genes.

The outstanding knowledge gaps and highly variable gene-phenotype relationships of 

CoQ deficiencies are an important microcosm of similar multifactorial complexity 

observed in essentially all mitochondrial diseases [172]. Ongoing research has great 

potential to help guide treatment strategies (Box 3) and genetic counseling.

Figure I. CoQ Deficiency in Human Health and Disease
(A) Network of phenotypes and genes associated with primary CoQ deficiency. Lines 

indicate phenotypes reported to be caused by mutations in the indicate gene(s). (B) 

Diseases, conditions, drugs, and genes linked to secondary CoQ deficiency. (C) 

Candidate disease genes for potential primary CoQ deficiencies that have not yet been 

reported to exist in patients. “(?)” indicates an unproven ortholog relationship to a yeast 

gene that has been linked to CoQ biosynthesis. Additional uncharacterized (orphan) 
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genes may also be linked to CoQ biosynthesis (e.g., the gene that encodes the 

unidentified C1 hydroxylase).

CoQ is synthesized endogenously by organisms across all domains of life [6]. Moreover, 

nearly every mammalian cell produces CoQ, likely because CoQ is poorly absorbed into 

cells and tissues [24]. The poor absorption of CoQ hinders treatment of CoQ deficiencies in 

the clinic, but new strategies to bypass this problem are under development (Box 3). Most 

eukaryotic CoQ is generated at the inner mitochondrial membrane [25], but some CoQ may 

be produced outside of mitochondria [26–28]. Here, we focus on eukaryotic mitochondrial 

CoQ biosynthesis, with an emphasis on CoQ production in mammals and in the yeast 

Saccharomyces cerevisiae, which has been a workhorse model organism for studying CoQ. 

However, many of the principles discussed also apply to prokaryotic [29, 30] and extra-

mitochondrial CoQ production.

Box 3

Therapeutic Strategies for Treating CoQ Deficiency

Early diagnosis of primary CoQ deficiencies is critical because they are among the very 

few mitochondrial diseases that can be treatable. Therapy should be initiated as soon as 

possible to limit irreversible tissue damage [173]. The urgency is such that prior to 

diagnostic tests, newborn siblings of affected individuals have been treated [148].

The first-line therapy for CoQ deficiency is oral supplementation with high dose 

exogenous CoQ10. Oral CoQ10 treatment has been at least partially successful in a 

number of cases of primary CoQ deficiency including those caused by some mutations in 

COQ2 [145, 173], COQ4 [149], COQ6 [151], COQ7 [153], and COQ8B [118, 159]. 

However, clinical response to CoQ10 is highly variable, and treatment failure is 

unfortunately common.

Delivering CoQ to specific cells in need, such as cerebellar Purkinje cells [87], is a major 

challenge. Exogenous CoQ is efficiently taken up by liver [174, 175], ovarian [176], and 

brown adipose tissues [177]. However, tissues commonly disrupted by CoQ deficiency, 

such as the brain and muscle (Box 2), poorly uptake CoQ [178] (Figure IA). Moreover, 

exogenous CoQ must traverse multiple subcellular compartments to reach the inner 

mitochondrial membrane (Figure IB). Work in yeast [79, 80, 179] and mouse [174, 175] 

model systems demonstrates that such CoQ transport is possible, with potential 

involvement of the endomembrane system [131, 132], but the precise mechanisms are 

unclear. A recent study showed improved delivery of reduced CoQ (CoQH2) compared to 

oxidized CoQ [180]. However, uptake is still considered to be inefficient, and new 

strategies for enhancing CoQ delivery are needed.

Recently, an alternative treatment strategy has emerged that uses CoQ “bypass” 

precursors to sidestep enzymatic defects. This strategy leverages water soluble CoQ head 

group precursors, which are predicted to be more bioavailable than CoQ. Mice with 

defective COQ7 were treated with 2,4-dihydroxybenzoate (2,4-DHB), an unnatural CoQ 

head group precursor, which was able to bypass the COQ7-catalyzed C6-hydroxylation, 
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elevate CoQ levels, and extend lifespan [181] (Figure IC). 2,4-DHB treatment was 

similarly effective in human fibroblasts with COQ7 mutations [153] and mice with 

COQ9 mutations [182]. Building on pioneering work in yeast [89], a similar strategy 

using vanillic acid or 3,4-dihydroxybenzoate can likewise bypass defects in COQ6 [152]. 

Importantly, this bypass strategy appears to be limited to COQ mutations that disrupt 

enzyme activity but maintain complex Q stability, and to select unnatural head group 

precursors [111].

New strategies for boosting CoQ levels could have widespread impact beyond treatment 

of primary CoQ deficiencies. CoQ10 supplementation is ubiquitous in the treatment of 

diverse mitochondrial diseases [183], often as part of a “mitochondrial cocktail” [184], 

and CoQ10 has been proposed as a therapy for numerous common diseases including 

Azheimer’s, Parkinson’s, and Huntington’s diseases [185, 186].

Figure I. Strategies for Treatment of CoQ Deficiency
(A) Efficient uptake of exogenous CoQ into rat tissues after intraperitoneal injection is 

limited to white blood cells, liver, and spleen. Lesser uptake occurs in other tissues. Data 

in figure from Bentinger et al [178]. (B) Exogenous CoQ must be transported across 

multiple lipid membranes and multiple aqueous compartments to reach the mitochondrial 

inner membrane, but the mechanisms facilitating this CoQ transport are unclear. (C) An 

example of the “CoQ intermediate bypass strategy” for treating select CoQ deficiencies. 

4-hydroxybenzoate (4-HB) is the natural CoQ head group precursor. 2,4-

dihydroxybenzoate (2,4-DHB) be used as an alternative head group precursor to bypass a 

defect in COQ7 [181].

CoQ biosynthesis requires: (i) head group production, (ii) tail production—including 

isoprene biosynthesis and tail polymerization, (iii) attachment of the tail to the head group, 

and (iv) a series of head group modifications (Figure 2, Key Figure, and Table 1). In general, 

CoQ biosynthesis intermediates become increasingly lipophilic as they progress through the 
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pathway, which spans multiple cellular compartments and numerous “omic planes” (e.g., 

metabolome, lipidome), making it well-suited for investigation with emerging multi-omic 

technologies (Box 4). Many questions about CoQ biosynthesis remain unanswered, as 

framed here in the context of existing knowledge about each phase of the pathway.

Box 4

Multi-omic Investigation of Mitochondrial Pathways

A grand challenge in mitochondrial biology is to completely characterize the functions of 

all ~1,200 mammalian mitochondrial proteins, ~20% of which are currently 

“mitochondrial uncharacterized (x) proteins” (MXPs) [117]. Accomplishing this goal 

would enhance understanding of how mitochondria impact human health and disease. 

Proven approaches for characterizing MXPs include both traditional biochemical 

methods and cutting-edge “omics” methods (Figure I).

As complex organelles composed of dynamic and intertwined populations of proteins, 

lipids, and soluble metabolites, mitochondria are also prime targets for emerging “multi-

omic” (“transomic”) approaches. Multi-omic investigations integrate data across multiple 

“omic planes” (Figure I), which can provide deeper and more confident insight than that 

of an individual omic method. Large-scale multi-omic approaches were recently used to 

discover previously unknown facets of mitochondrial biochemistry in mice [187] and 

yeast [42].

The CoQ biosynthesis pathway provides a salient example of a multi-omic mitochondrial 

process. CoQ-related molecules span numerous omic planes (Figure I). Early CoQ 

precursors are small soluble metabolites, the terminal CoQ intermediates are lipids, and 

COQ proteins (e.g., the enzymes in the pathway) form a protein complex (complex Q) 

and are encoded byCOQ mRNAs and COQ genes. As such, the outstanding gaps in 

knowledge about CoQ biosynthesis are aptly positioned for study using multi-omics.

A large-scale multi-omic project in yeast recently uncovered a role for the enzyme Hfd1p 

in producing the CoQ head group precursor 4-hydroxybenzoate (4-HB) (Figure I) [42]. 

Notably, this function of Hfd1p was independently validated and co-discovered via an 

orthogonal genetic approach [34]. The discovery via multi-omics hinged on integration of 

both metabolomics, which uncovered diagnostic changes in the metabolites 4-HB and 4-

hydroxybenzaldehyde, and lipidomics, which revealed telltale changes in lipid CoQ 

intermediates. The large-scale nature of this work also helped highlight the biological 

importance of a statistically significant, but small in magnitude, decrease in 4-HB 

observed in yeast that lack Hfd1p because this change was unique across all strains in the 

study. We hypothesize that similar multi-omic approaches will be central to filling the 

remaining knowledge gaps in CoQ biosynthesis and, more broadly, key for completely 

mapping mitochondrial biology.
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Figure I. A Multi-Omic Approach to Mitochondrial Biochemistry
Overview of methods used for multi-omic investigation of mitochondrial pathways, using 

CoQ biosynthesis as a key example. The cartoon indicates gaps in knowledge (?) that 

were recently filled using a multi-omic approach (Hfd1p) [34, 42] or that are targets for 

linking a currently undefined mitochondrial uncharacterized protein (MXP) to CoQ 

biosynthesis.

CoQ Head Group Biosynthesis

In mammals, the CoQ head group is derived from the essential amino acid phenylalanine, 

which is converted into tyrosine (Tyr) and, subsequently, 4-hydroxybenzoate (4-HB) [31–

33], but the responsible enzymes are unidentified (Figure 2). A Tyr-to-4-HB pathway also 

operates in yeast [34]. However, unlike mammals, bacteria and yeast can produce 4-HB de 
novo through the shikimate pathway [30, 35–38]. Yeast can also use p-aminobenzoate 

(pABA) as an alternative head group precursor [39, 40]. Because typical yeast culture media 

contain either 4-HB (in rich media) or pABA (in synthetic media), the Tyr-to-4-HB pathway 

is often not required for growth under laboratory conditions. It is likely for this reason that 

the responsible genes have been bypassed in many genetic screens. Recognizing this 

technical barrier and using distinct methods, two independent studies recently identified the 

first and last enzymes in the yeast Tyr-to-4-HB pathway [34, 41, 42].

Tyrosine Transamination by Aro8p or Aro9p

The yeast aromatic amino acid transaminases Aro8p and Aro9p were recently linked to the 

first step of the Tyr-to-4-HB pathway, initially through either hypothesis-driven heavy atom 

tracing studies [34] or unbiased global protein co-expression studies [42] (Figure 2). The 

analogous mammalian enzymes remain unidentified, but the Aro8p/Aro9p homolog AADAT 

and the tyrosine aminotransferase TAT are candidates.
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4-Hydroxybenzaldehyde Dehydrogenation by Hfd1p

While steps after the tyrosine transamination remain unclear, Hfd1p was recently discovered 

to catalyze the final step in the Tyr-to-4-HB pathway—dehydrogenation of 4-

hydroxybenzaldehyde (4-HBz) to generate 4-HB (Figure 2) [34, 42]. One of four human co-

orthologs of Hfd1p, ALDH3A1, was also shown to catalyze 4-HB production in vitro and to 

rescue the growth defect of yeast that lack Hfd1p. However, whether ALDH3A1 participates 

in endogenous CoQ biosynthesis in mammalian cells remains unknown. The independent 

and complementary approaches used to discover this activity for Hfd1p and ALDH3A1 are 

summarized in Box 4.

Because Hfd1p is localized to the mitochondrial outer membrane [43] and exogenous 4-HB 

can rescue CoQ production in yeast lacking Hfd1p, we predict that 4-HB is the head group 

precursor that is transported across the inner mitochondrial membrane into the mitochondrial 

matrix, but this has not yet been demonstrated. Moreover, the putative mitochondrial 

membrane transporter for the head group precursor remains unidentified (Figure 2).

Biosynthesis and Attachment of the Polyisoprenoid Tail

In mammals, the isoprene subunits for CoQ biosynthesis are generated through the 

mevalonate pathway [32, 44–46], stitched together by head-to-tail polymerization [47, 48], 

and attached to the head group via an electrophilic aromatic substitution [49] (Figure 2). The 

responsible prenyltransferases, Coq1p (PDSS1 and PDSS2) and Coq2p (COQ2) (see 

Glossary and Box 1 for “COQ” nomenclature) are localized to the inner mitochondrial 

membrane [25, 50–59], a key point marking the switch from cytosolic precursor generation 

to mitochondrial CoQ biosynthesis. Coq1p, which independently determines the CoQ tail 

length [60], is peripherally associated with the matrix face of the inner mitochondrial 

membrane [56], while Coq2p is an integral membrane protein [59, 61].

The mechanism by which the highly polar isopentenyl pyrophosphate (IPP) molecule is 

transported from the cytosol to the mitochondrial matrix is unknown. We hypothesize that an 

IPP transporter exists in the inner mitochondrial membrane (Figure 2), but it remains 

unidentified. An allylic pyrophosphate is also needed for the isoprene polymerization 

reactions. In vitro evidence suggests that Coq1p can use dimethylallyl pyrophosphate 

(DMAPP), geranyl pyrophosphate (GPP), or farnesyl pyrophosphate (FPP) [51], but which 

is used in vivo is unclear. DMAPP could potentially be formed by IPP isomerase activity, 

which has been inferred to exist in mitochondria [25] (Figure 2), but the presence and 

identity of this enzyme is unclear. If an IPP isomerase is not active in the mitochondrial 

matrix, then a transporter for the allylic pyrophosphate is also likely to exist.

The Terminal Stage of CoQ Biosynthesis – Head Group Modifications

In the terminal stage of CoQ biosynthesis, the head group is modified by a decarboxylation 

and a series of hydroxylations and methylations (Figure 2). In bacteria and in yeast, the 

added methyl groups and hydroxyl groups derive from S-adenosyl methionine (SAM) [62] 

and O2 [63, 64], respectively, and the same is predicted to be true in mammals. The 
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proposed order of these reactions is based on isolation of CoQ intermediates from various 

strains of bacteria [65–69] and yeast [52, 53, 70–72].

Hypothesized Chemical Logic

The proposed sequence of CoQ head group modifications (Figure 2) follows the chemical 

logic of electrophilic aromatic substitution (EAS) reactions. First, the C4-hydroxyl of 4-HB 

acts as an ortho-directing group to enhance EAS at C3 and C5. Second, the C4-hydoxyl acts 

as a para-directing group to enhance EAS at C1. Third, the newly installed C1-hydroxyl 

group acts as an ortho-directing group to enhance EAS at C2 and C6. This EAS chemistry, 

combined with substrate orientation in enzyme active sites, likely affords the regioselectivity 

needed to produce CoQ, yet these hypotheses are untested in vitro. A precise understanding 

of this chemistry could assist design of new CoQ intermediate “bypass precursors” for 

treating primary CoQ deficiencies (Box 3).

Sub-cellular Location of COQ Proteins

The proteins required for the terminal phase of CoQ production localize to the mitochondrial 

matrix. Mammalian COQ3–COQ9 were localized to mitochondria in the “MitoCarta” study 

[57], and COQ3, COQ5, COQ6, COQ8A/B, and COQ9 were localized to the mitochondrial 

matrix via an “APEX” study [58]. Biochemical fractionation studies localized yeast Coq3p–

Coq9p to the mitochondrial matrix and, importantly, showed that they are peripherally 

associated with the matrix face of the inner membrane [59, 73–84]. An exception to this 

peripheral association is COQ8A, which has a transmembrane helix [85–87], although its 

yeast ortholog Coq8p may be peripherally associated [59, 81].

COQ enzymes might also co-localize to extra-mitochondrial locations. A nuclear form of 

COQ7 was suggested to function in mitochondrial-nuclear retrograde signaling [88], but this 

remains debated [21]. Additionally, the COQ2 homolog UBIAD1 localizes to the Golgi 

membrane, where it supports Golgi CoQ production [28]. Whether the downstream CoQ 

biosynthesis proteins (COQ3–9) also localize to the Golgi is unclear, but, interestingly, 

Golgi dysmorphology was observed in mice that lack COQ8A [87].

C5-Hydroxylation by COQ6

The C5-hydroxylation is catalyzed by COQ6 in eukaryotes [89] (Figure 2) and UbiI in 

prokaryotes [90]. Coq6p is a predicted flavin-dependent monooxygenase that uses flavin 

adenine dinucleotide (FAD) as a cofactor and NAD(P)H as a coenzyme for reduction of 

FAD [89]. A structure of truncated UbiI revealed a Rossman-like fold—a widespread 

structural fold that can bind nucleotide cofactors—with a FAD binding site [90], but no in 
vitro enzymology was reported.

In yeast, the C5-hydroxylation requires the ferredoxin Yah1p—an essential iron-sulfur 

protein that mediates electron transfers in numerous pathways—and the ferredoxin reductase 

Arh1p [40], which are predicted to provide electrons to Coq6p (Figure 2). FDXR and FDX2 

are the mammalian orthologs of Arh1p and Yah1p, respectively, but whether they function in 

mammalian CoQ biosynthesis is unknown.
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O-Methylation by COQ3

The O-methylations are catalyzed by COQ3 in eukaryotes [70, 91, 92] and UbiG in 

prokaryotes [73, 93–95]. Purified UbiG or mitochondrial extracts containing COQ3 can 

catalyze both CoQ head group O-methylations in vitro in a reaction that depends on SAM 

and a divalent cation (e.g., Zn2+ or Co2+) [73, 92, 94, 95]. The molecular basis for the 

regioselectivity of COQ3 for each of its reactions (e.g., selective methylation of the DMeQ 

C6-hydroxyl over the C1-hydroxyl, see Figure 2) is unknown.

An Unidentified Decarboxylase

UbiD catalyzes the decarboxylation in prokaryotes [96], but the eukaryotic decarboxylase 

remains unidentified. Evidence for the mammalian decarboxylation was demonstrated by 

lack of radioactivity in CoQ when [carbonyl-C14]-4-HBz was used as a precursor [97]. 

Polyprenyl-vanillic acid (Figure 2) has been isolated from a mutant yeast strain [71], 

suggesting that C5-methoxy group installation occurs before the decarboxylation. A second 

prokaryotic enzyme, UbiX, was recently shown to support the decarboxylation by 

generating a previously unknown prenylated-FMN (prFMN) cofactor used by UbiD [98–

100]. Whether prFMN functions similarly in eukaryotes is unclear [101]. No sequence 

homolog of UbiD or UbiX exists in humans and, thus, the decarboxylation appears to be a 

mechanistic deviation between prokaryotes and eukaryotes. A possibility to consider is that 

the eukaryotic C1-hydroxylation could be part of the decarboxylation mechanism.

An Unidentified Hydroxylase

UbiH catalyzes the C1-hydroxylation in Escherichia coli [69], but the eukaryotic enzyme 

has not been identified. Unlike the C5-hydroxylation described above, the eukaryotic C1-

hydroxylation does not require Arh1p and Yah1p and may not require FAD [40], suggesting 

a different enzyme mechanism. In contrast, prokaryotic UbiH is likely a flavin-dependent 

monooxygenase, as it shares 30% sequence identity with UbiI, the C5-hydroxylase 

described above [90].

C2-Methylation by COQ5

The C2-methylation is catalyzed by COQ5 in eukaryotes [75–77, 102] and UbiE in 

prokaryotes [103, 104]. Lysates containing Coq5p or UbiE can catalyze demethoxy-

demethyl-CoQ (DDMQ) C2-methylation in vitro in a reaction that depends on SAM and 

NADH [75]. Why NADH enhances this reaction is unclear, but we hypothesize that NADH 

helps keep the head group in the reduced state, which would enhance electrophilic aromatic 

substitution. Recently, X-ray structures of Coq5p revealed a Rossmann-like fold with a 

SAM-dependent methyltransferase domain [105], but no in vitro activity was reported.

C6-Hydroxylation by COQ7

The C6-hydroxylation is catalyzed by COQ7 in eukaryotes [19, 79, 106, 107] and UbiF in 

prokaryotes [103]. COQ7 is a carboxylate-bridged diiron hydroxylase [107], and its 

mechanism involves NADH passing electrons through demethoxy-CoQ (DMQ) to the diiron 

center [108, 109]. In contrast, E. coli UbiF is predicted to be a flavin-dependent 

monooxygenase similar to UbiI and UbiH, the C5- and C1- hydroxylases described above 
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[90]. Why prokaryotes use highly similar enzymes for all three CoQ head group 

hydroxylations [110], but eukaryotes use different enzyme chemistries, is unknown.

The CoQ Biosynthetic Complex

The enzymes in the terminal phase of CoQ biosynthesis form a biosynthetic complex termed 

complex Q (or the “CoQ-synthome”), which is located on the matrix face of the inner 

mitochondrial membrane.

The presence of a yeast CoQ biosynthetic complex was initially suggested by genetic studies 

that showed interdependence between Coq proteins: deleting any one of the genes coq3–9 
caused depletion of numerous Coq proteins and accumulation of the same CoQ precursor, 

PPHB [72, 111, 112] (Figure 2). Subsequently, physical evidence for complex Q was 

uncovered through protein-protein interaction studies and native gel electrophoresis 

experiments [59, 84, 113–115]. These studies also demonstrated that lipids, including CoQ 

and CoQ intermediates, are part of complex Q [115].

Recently, evidence for a mammalian complex Q has also been revealed. Global mass 

spectrometry proteomics studies demonstrated that deletion of Coq8a or Coq9 in mice 

causes selective and significant depletion of numerous COQ proteins [87, 116], not just that 

encoded by the deleted gene. Furthermore, a mitochondria-focused affinity enrichment mass 

spectrometry (AE-MS) study revealed a dynamic network of protein-protein interactions 

between COQ3–COQ9 [117]. Numerous complex Q interactions were also confirmed by 

cell-free protein expression and purification studies [117], and by immunoprecipitation-

immunoblot studies of COQ5 [77], COQ8A [87], and COQ8B [118]. Additionally, native 

gel electrophoresis studies tracking COQ5 suggested the presence of a high molecular 

weight complex Q in human cells [102]. Select lipids and small molecules have also been 

shown to bind to individual complex Q proteins, such as COQ9 and COQ8A [87, 116], 

suggesting that mammalian complex Q contains nonproteinacious components. Together, 

these studies provide robust support for complex Q in mammals.

Similar “metabolons”, defined as “supramolecular complexes of sequential metabolic 

enzymes and cellular structural elements” [119], have been observed in other systems, such 

as the tricarboxylic acid cycle [120], the purinosome [121], dhurrin biosynthesis [122], and 

steroid biosynthesis [123]. Identifying the functions of such metabolon organization remains 

an active area of research with multiple hypotheses. First, metabolons are thought to enhance 

flux via enzyme proximity, local concentration of substrates, or substrate channeling. 

Second, metabolons may sequester potentially toxic biosynthetic intermediates (e.g., redox 

active CoQ intermediates) or help keep potentially poisonous enzymes (e.g., the hydroxylase 

COQ7) from escaping and promiscuously disrupting other processes. Third, metabolons 

may be key for regulation via allosteric enzyme activation, post-translational modifications, 

or organizing assembly in time and space. Finally, metabolons could also help solve 

biophysical problems, such as the barriers to CoQ biosynthesis and transport discussed in 

the next section.
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While numerous exciting questions about complex Q components, structure, assembly, 

regulation, and activity remain unanswered (Figure 3 and Outstanding Questions), the 

discovery of this CoQ metabolon has dramatically altered the way that we think about each 

individual COQ protein and the biosynthetic process as a whole.

Outstanding Questions Box

• What enzymes catalyze the undefined steps in the Tyr-to-4-HB pathway in 

yeast and in mammals?

• How are the CoQ biosynthesis precursors—4-HB and isoprenoid subunits—

transported into mitochondria?

• What eukaryotic enzymes catalyze the C1 decarboxylation and the C1 

hydroxylation of CoQ biosynthesis? In eukaryotes, does the C1 hydroxylation 

occur before, after, or in concert with the C1 decarboxylation?

• What are the precise biochemical functions of the MXPs COQ4, COQ8, 

COQ9, COQ10, and Coq11p in CoQ biosynthesis?

• How are lipophilic CoQ intermediates extracted from the membrane to be 

acted upon by COQ enzymes?

• What proteins, lipids, and metabolites constitute complex Q? What is their 

stoichiometry?

• What is the three-dimensional structure of complex Q?

• How is complex Q anchored to the mitochondrial membrane?

• Can a functional complex Q be reconstituted in vitro?

• Does complex Q activity require its endogenous context on the inner 

mitochondrial membrane?

• What is the complex Q assembly pathway? Are assembly factors required? 

How is complex Q assembly seeded?

• What benefit does organizing the COQ proteins in a biosynthetic complex 

provide? Does complex Q enable substrate channeling? Does complex Q 

sequester CoQ intermediates or promiscuous COQ enzymes?

• Does complex Q localize to a specific region of the inner mitochondrial 

membrane?

• Does complex Q interact with any of the oxidative phosphorylation 

complexes?

• How is complex Q activity regulated and coordinated with other 

mitochondrial processes, such as mitochondrial biogenesis and OxPhos?

• How is CoQ abundance regulated through biosynthesis and turnover?

• How are COQ proteins regulated transcriptionally, post-transcriptionally, and 

post-translationally?
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• Do canonical COQ proteins function in extra-mitochondrial CoQ 

biosynthesis?

• How is CoQ transported from the inner mitochondrial membrane to the outer 

mitochondrial membrane?

• How is CoQ transported from mitochondria to other organelles throughout the 

cell?

Biophysical Barriers in CoQ Biosynthesis

Transmembrane Transport of Polar Precursors and Proteins

The precursors for building CoQ are negatively charged small molecules that cannot 

passively cross the inner mitochondrial membrane (Figure 2). How these polar CoQ 

precursors are transported from their site of production outside of mitochondria into the 

mitochondrial matrix is unclear.

The COQ proteins, which are encoded by nuclear DNA, must also be transported into the 

mitochondrial matrix. Mitochondrial protein import and processing is a complex process 

that can help coordinate and regulate biochemical pathways [124]. Although some 

transcriptional regulators [125] and post-transcriptional coordinators [126] of CoQ 

biosynthesis have been identified, the specific mitochondrial import and processing 

pathways of COQ proteins are incompletely defined (Figure 3A). As leads for future work, 

the import of yeast Coq2p is mediated by the Tim9p-Tim10p complex [127], the import of 

mouse COQ7 requires a mitochondrial targeting sequence and ATP, but not the 

mitochondrial membrane potential [128], and a recent large-scale study linked the 

mitochondrial intermediate peptidase Oct1p to CoQ biosynthesis [42].

Lipophilic Quinone Inaccessibility

CoQ resides primarily in the midplane of the lipid bilayer [129, 130], between the distal 

ends of the phospholipid tails (Figure 3B). This creates a biophysical problem for its 

transport to membranes outside of the mitochondria, where it is known to be present [11]. 

We predict that a series of CoQ lipid transport pathways exist (Figure 3A), likely involving 

both specific lipid transport proteins and the endomembrane system [131, 132]. These CoQ 

transport pathways are also likely to function in the reverse process—transport of 

extracellular CoQ into mitochondria—which has important implications for treatment of 

CoQ deficiency via delivery of exogenous CoQ (see Box 3 for further discussion of this 

point and evidence for CoQ transport).

We predict that the hydrophobic quinone-containing CoQ intermediates (Figure 2) are also 

localized to the lipid bilayer midplane (Figure 3B). In contrast, CoQ biosynthesis enzymes 

are primarily peripheral membrane proteins, located at the membrane surface. How these 

peripheral membrane enzymes access substrates located deep in the midplane of the lipid 

bilayer is unclear (Figure 3B). One or more of the biochemically uncharacterized COQ 

proteins could potentially help solve these biophysical problems.
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Uncharacterized Proteins in CoQ Biosynthesis

A number of genes that support CoQ biosynthesis encode proteins of unknown molecular 

function. These CoQ-related mitochondrial uncharacterized (x) proteins (MXPs) include 

COQ4, COQ8A (ADCK3), COQ8B (ADCK4), COQ9, COQ10A, COQ10B, and Coq11p.

COQ4 – Complex Q Scaffold?

Coq4p stabilizes complex Q and is required for efficient CoQ biosynthesis [113, 133], but 

the underlying mechanism is undefined. Coq4p has homologs in some proteobacteria, which 

share a motif predicted to bind a divalent cation [133], but the specific biochemical functions 

of Coq4p remain unclear. The current model is that COQ4 is a complex Q scaffold protein 

that binds both proteins and lipids, as suggested by an X-ray structure of a COQ4 homolog 

that co-crystallized with geranylgeranyl monophosphate (PDB 3KB4).

COQ8 – ATPase or Kinase?

The ancient UbiB family of enzymes [134], which includes COQ8, is found across all 

domains of life. E. coli UbiB [96, 135], yeast Coq8p [80], and mammalian COQ8A 

(ADCK3) [87, 136] and COQ8B (ADCK4) [118] each enhance CoQ biosynthesis, but their 

precise biochemical activities remain obscure. Coq8p is required for complex Q integrity, 

and Coq8p overexpression has a remarkable ability to rescue complex Q stability in various 

mutant yeast strains that would otherwise be complex Q deficient [59, 111]. Yet, how Coq8p 

stabilizes complex Q is unknown. A physical and functional interaction between COQ8 and 

COQ5 may be particularly important, as suggested by robust physical interactions between 

COQ8A and COQ5 [87, 117], and the common occurrence of prokaryotic operons 

containing both ubiB and ubiE [30], the COQ8 and COQ5 orthologs, respectively.

Coq8p and its UbiB family members fit within the protein kinase-like (PKL) superfamily 

[137], which includes protein kinases, lipid kinases, and ATPases. Initially, Coq8p was 

hypothesized to be a protein kinase. Indeed, phosphorylation of Coq3p, Coq5p, and Coq7p 

is altered in Δcoq8 yeast [81, 82], but whether this effect is caused directly by the absence of 

Cop8p is unclear. More recently, an X-ray structure of COQ8A revealed a PKL fold with 

unique features that inhibit protein kinase activity and afford an unusual preference for 

binding ADP over ATP [86]. Furthermore, COQ8A was shown to lack canonical protein 

kinase activity in trans, and to instead bind lipid CoQ intermediates and have ATPase 

activity that is enhanced by binding to cardiolipin-containing liposomes [87, 138]. Based on 

these findings, new models for COQ8A function were presented [87], including the 

possibility that it acts primarily as an ATPase, or that its ATPase activity is indicative of 

small molecule or lipid kinase activity against an undiscovered substrate. Yet, precisely how 

COQ8’s ATPase activity (or kinase activity) and lipid binding function might stabilize 

complex Q to enhance CoQ biosynthesis remains an open question.

COQ9 – Lipid Sensor or Precursor Presenter?

Coq9p and COQ9 stabilize complex Q through an unclear mechanism [83, 84, 116, 139]. 

Recently, an X-ray structure of COQ9 revealed a lipid-binding pocket that is important for 

function in vivo [116], but the endogenous lipid ligands remain undefined. Coq9p interacts 
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physically and functionally with Coq7p to enhance the C6-hydroxylation reaction [116]. 

Coq9p also appears to enhance Coq6p activity and the deamination of CoQ intermediates 

derived from pABA [64, 140]. Our current model is that COQ9 helps extract hydrophobic 

CoQ intermediates from the membrane and presents them to other COQ enzymes, such as 

COQ7. An alternative model is that COQ9 is a lipid sensor that allosterically regulates 

complex Q upon ligand binding.

COQ10 – Lipid Transporter?

Coq10p, COQ10A, and COQ10B localize to mitochondria [57, 141]. Coq10p contains a 

conserved lipid-binding domain that binds CoQ and CoQ intermediates in vitro [141, 142]. 

CoQ biosynthesis is less efficient in yeast with coq10 mutations, and the CoQ produced is 

used less efficiently for OxPhos [142], but the molecular basis for these effects is unclear. 

Neither Coq10p nor Coq9p has a known homolog in E. coli. However, the recently 

discovered E. coli CoQ biosynthesis proteins UbiJ and UbiK, which physically bind each 

other and a lipid [143, 144], could be functional homologs of Coq10p or Coq9p.

Coq11p – Dehydrogenase or Reductase?

Yeast Coq11p (YLR290c) was recently linked to CoQ biosynthesis via immunoprecipitation 

studies of complex Q [115]. Unlike most coq gene deletion yeast strains, yeast lacking 

Coq11p retain respiratory growth and are not completely CoQ deficient [42, 115]. The 

primary sequence of Coq11p places it in the short chain dehydrogenase/reductase (SDR) 

superfamily [115], but its biochemical activity is unclear.

We hope that the specific questions and knowledge gaps highlighted by this review, 

especially those related to complex Q function and biophysical barriers (Figure 3), will help 

guide ongoing research to definitively characterize the molecular functions of these CoQ-

related MXPs.

Concluding Remarks and Future Perspectives

In recent years, the known functions of CoQ in human health and disease have expanded, 

rekindling the drive to fully define its biosynthesis. CoQ now has numerous defined 

functions outside of its primary role in mitochondrial OxPhos, including regulation of 

mitochondrial and possibly extra-mitochondrial functions (Figure 1). Likewise, human 

diseases with links to CoQ biosynthesis have expanded to include common diseases such as 

Parkinson’s disease, rare diseases such as a cerebellar ataxia, and even the aging process 

itself (Box 2), elevating the potential impact of therapies that boost CoQ levels (Box 3).

Given the importance of CoQ in human biology and the fact that it was discovered 60 years 

ago [1, 2], it may be surprising that we still do not fully understand its biosynthesis. This 

apparent disconnect highlights the challenges associated with studying CoQ biosynthesis, 

which include unstable membrane-bound proteins, fleeting biosynthetic intermediates, 

highly hydrophobic lipids, and numerous undefined biochemical components. Fortunately, 

advances in protein and lipid biochemistry, X-ray crystallography, mass spectrometry, and 

multi-omic systems biology (Box 4) are rising to meet the challenge. Yet, numerous 

knowledge gaps still exist (Figures 2 and 3 and Outstanding Questions). We hope that this 
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review—by defining gaps in knowledge about CoQ biosynthesis at the biochemical level—

will catalyze further progress toward understanding CoQ in human health and disease.
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Glossary

CoQ
Coenzyme Q (CoQ) is the redox-active lipid product of the biosynthetic pathway discussed 

here. See Box 1 for further explanations of CoQ nomenclature.

COQ5
COQ5 is an example of a human enzyme required for CoQ biosynthesis.

Coq5p
Coq5p is an example of a yeast enzyme required for CoQ biosynthesis.

Complex Q (CoQ-synthome)
Complex Q, also known as the CoQ-synthome, is the biosynthetic complex that produces 

CoQ.

MXP
A mitochondrial uncharacterized (x) protein (MXP) is a protein that localizes to 

mitochondria but lacks a well-defined molecular or cellular function in mitochondria.
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Trends Box

• A biosynthetic complex for producing coenzyme Q (CoQ) was recently 

revealed in yeast and mammals. This complex likely contains proteins, lipids, 

and polar small molecules, but its precise composition, structure, and 

activities remain largely unknown.

• Multiple mitochondrial uncharacterized proteins (MXPs) have been linked to 

CoQ biosynthesis, and multiple steps in the pathway are enabled by currently 

unidentified proteins.

• Recent progress was made toward understanding the biochemistry of a 

dehydrogenase, a deaminase, a lipid-binding protein, and a protein kinase-like 

enzyme in the CoQ pathway.

• CoQ biosynthesis spans multiple “omic” planes—the metabolome, the 

lipidome, and the proteome—and thus has proven to be a prime target for 

investigation with emerging multi-omic technologies.

• Mapping CoQ biochemistry recently spurred new therapeutic strategies.
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Figure 1. Chemical and Biological Functions of Coenzyme Q
(A) Chemical structure of coenzyme Q10 (CoQ10). (B) Reduction-oxidation reactions of the 

CoQ head group. “R” indicates the polyisoprenoid tail. (C) Cartoon indicating the central 

role of CoQ in the electron transport chain and mitochondrial oxidative phosphorylation 

(OxPhos). I–V, OxPhos complexes I–V; Cyt c, cytochrome c; TCA cycle, tricarboxylic acid 

cycle. (D) Overview of the widespread cellular functions of CoQ. Within mitochondria, CoQ 

supports and/or regulates the mitochondrial permeability transition pore (PTP) [10], 

mitochondrial uncoupling proteins [9], uridine biosynthesis [7], fatty acid oxidation [8], and 

OxPhos. More broadly, CoQ functions as a lipophilic antioxidant [12–14] and a membrane 

stabilizer [15]. In plants, plastoquinone functions as a retrograde signal from chloroplasts to 

the nucleus [16], suggesting that mitochondrial CoQ could play an analogous role.
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Figure 2. Current Model for the Eukaryotic CoQ Biosynthesis Pathway
Scheme of eukaryotic CoQ biosynthesis with currently unidentified enzymes indicated by 

question marks. The primary CoQ pathway, which is conserved from yeast to humans, is 

depicted. A secondary CoQ pathway in yeast uses para-aminobenzoate (pABA) as the head 

group precursor instead of 4-hydroxybenzoate (4-HB) [39, 40], and Coq6p and Coq9p 

subsequently support C4-deamination via C4-hydroxylation [64, 140]. ‘R’ indicates the 

polyisoprenoid tail (Figure 1A), which would likely be anchored in the mitochondrial inner 

membrane. “+” symbol by the arrow from COQ8 and COQ9 indicates a hypothesized 

supportive role for the indicated reaction. AADAT, mitochondrial alpha-aminoadipate 

aminotransferase; ALDH3A1, aldehyde dehydrogenase 3A1; FDXR, adrenodoxin reductase; 

FDX2 (FDX1L), mitochondrial ferredoxin 2 (ferredoxin 1-like); PDSS1, prenyl 

(decaprenyl) diphosphate synthase subunit 1; TAT, tyrosine aminotransferase; DMAPP, 

dimethylallyl pyrophosphate; GPP, geranyl pyrophosphate; FPP, farnesyl pyrophosphate; 

IPP, isopentenyl pyrophosphate; 4-HPP, 4-hydroxyphenylpyruvate; 4-HBz, 4-

hydroxybenzaldehyde; PPHB, polyprenyl-hydroxybenzoate; PPDHB, polyprenyl-

dihydroxybenzoate; PPVA, polyprenyl-vanillic acid; DDMQ, demethoxy-demethyl-

coenzyme Q; DMQ, demethoxy-coenzyme Q; DMeQ, demethyl-coenzyme Q.
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Figure 3. Models Framing Outstanding Questions and Knowledge Gaps in CoQ Biochemistry
(A) Model framing questions about complex Q assembly, regulation of CoQ biosynthesis, 

and mechanisms for CoQ transport. (B) Model for a biophysical barrier to accessing 

lipophilic CoQ intermediates, highlighting the currently unclear mechanism for solving this 

problem. CoQ and hydrophobic CoQ intermediates are predicted to reside near the lipid 

bilayer midplane (i) with some movement (gray arrows) toward the bilayer surface (ii), but 

not beyond the glycerol backbones [129, 130]. Biochemical mechanisms for moving CoQ 

intermediates past the layer of glycerol backbones and polar lipid head groups are unclear. 

(C) Models framing unanswered questions about complex Q biochemistry. (D) Summary of 

the currently incomplete state of complex Q structural biology. X-ray structures have been 

reported for Coq5p (PDB IDs 4OBW and 4OBX) [105], COQ8A (ADCK3) (PDB IDs 

4PED and 5I35) [86] [87], and COQ9 (PBD ID 4RHP) [116].
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