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Abstract

Mosquito-transmitted arthropod-borne viruses (arboviruses) such as dengue virus, chikungunya 

virus, and West Nile virus constitute a major public health burden and are increasing in severity 

and frequency worldwide. The microbiota associated with mosquitoes (comprised of viruses, 

bacteria, fungi and protozoa) can profoundly influence many host phenotypes including vector 

competence, which can either be enhanced or suppressed. Thus, the tripartite interactions between 

the mosquito vector, its microbiota and the pathogens they transmit offer novel possibilities to 

control arthropod-borne diseases.

Introduction

It is becoming increasingly apparent that organisms do not function in isolation. A complex 

consortium of microbes resides within a host, which influences the individual's phenotype. 

This holds true for mosquitoes that transmit medically important arboviruses such as dengue 

virus (DENV), chikungunya virus (CHIKV), and West Nile virus (WNV). Interactions 

within the mosquito holobiome (host and associated microbes) can profoundly impact many 

phenotypes, including vector competence for pathogens. Here, we highlight recent advances 

in our understanding of how the microbial members of the mosquito holobiome influence 

arbovirus transmission. We focus our attention on bacteria with extracellular phases 

predominantly found within the mosquito gut, rather than obligate intracellular bacteria of 

mosquitoes that have been extensively reviewed elsewhere [1–3].
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Composition of the mosquito microbiome

Comprehending the diversity and dynamics of the microbial community is imperative in 

understanding the relationships within the mosquito holobiome. Studies exploiting high 

throughput sequencing have revealed that the bacterial microbiome of mosquito vectors has 

low diversity but is highly variable. Most studies thus far have focused on Anopheles 
mosquitoes [4•,5,6•,7••,8••,9], and while the number of studies examining the bacterial 

microbiomes from Aedes and Culex mosquitoes is growing [6•,8••,10], this is an area that 

needs further attention. Although not as comprehensive, culture dependent approaches have 

been used for characterization of the microbiome of important Aedes and Culex arboviral 

vectors [11,12]. Bacterial members that appear abundant across a range of mosquito species 

include aerobes and facultative anaerobes within the Gammaproteobacteria, Flavobacteria 

and Alphaproteobacteria [6•]. The variability within the mosquito microbial community 

appears to be influenced by environmental factors such as diet and host factors such as sex, 

species and developmental stage. While distinct differences are notable, there does appear to 

be some commonality, and in particular, Aedes and Anopheles vectors share common taxa 

including Pseudomonas, Asaia, Serratia and Enterobacter [6•,8••]. These bacteria are often 

located in the mosquito gut, meaning they are proximal to any ingested arboviruses, but they 

may also infect other tissues including the germline, salivary glands and malpighian tubules 

[13–15]. Intriguingly, the salivary glands of Anopheles culicifacies harbors a more diverse 

microbiota compared to the gut [15]. Whereas obligate intracellular symbionts such as 

Wolbachia are predominantly maternally transmitted, extracellular bacteria found in the gut 

likely have intracellular stages enabling their vertical transmission route (see [16] describing 

paternal transmission) and can also be horizontally acquired. In an elegant study, Coon et al. 
[8••] demonstrated that bacteria are transstadially transmitted in the important viral vector, 

Aedes aegypti.

While most studies have focused on bacteria, other organisms contribute to the species 

richness of the mosquito microbiome, including viruses, fungi and protozoans. Shotgun 

metagenomic sequencing offers a PCR-independent high throughput method to characterize 

these taxa and has been used to identify novel viruses within the Bunyaviridae and 

Rhabdoviridae in addition to many genera of fungi in the arboviral vector Culex pipiens 
[17]. Studies such as this fuel the growing appreciation that non-bacterial microbes 

contribute meaningfully to mosquito biology. To this end, insect-specific viruses have been 

discovered in several mosquito species [18–20], while culture dependent methods identified 

yeast species in Aedes and Anopheles mosquitoes [12,21]. Although the role of both insect-

specific viruses and yeast in mosquito biology is unclear, there is evidence that these 

microbes can influence vector competence [22,23].

Influence on vector competence

The bacterial microbiome is a potent modulator of mosquito vector competence. While 

several studies have investigated the effect of the bacterial microbiome on Plasmodium 
infection in Anopheles mosquitoes [24,25], it is also evident the microbiome modulates 

arboviral vector competence. Most studies employ antibiotic treatment or reinfection of 

cultured microbes to perturb the microbiome. While antibiotic treated mosquitoes are far 
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from aseptic [7••], this dysbiosis is sufficient to influence viral pathogen dynamics. For 

example, DENV serotype 2 (DENV-2) titer decreased when A. aegypti were supplemented 

with a cocktail of antibiotics [26]. Similarly, when bacterial isolates were administered to 

mosquitoes, DENV-2 titers within A. aegypti were reduced. A Chromobacterium isolated 

from field caught A. aegypti colonized the midgut upon reinfection when fed to mosquitoes 

in a sugar meal and significantly reduced DENV-2 replication [27•]. Likewise, bacteria in the 

genus Proteus and Paenibacillus also inhibited DENV-2 density when administered to 

mosquitoes in the blood meal [28]. Proteus also inhibited DENV-2 titer when administered 

in a sugar meal [28]. In contrast to these findings, some microbes increase arboviruses in 

mosquitoes [29–31]. A Serratia odorifera isolate has been shown to increase both DENV and 

CHIKV replication [30,31]. Similarly, elegant work has shown that the resident microbiota 

are essential for O'nyong nyong virus (ONNV) to infect Anopheles [32••]. It was further 

demonstrated that infection of ONNV was rescued in antibiotic treated mosquitoes when 

supplementing the blood meal with a live culture of midgut bacteria, but not a heat killed 

culture [32••]. Using a comparative approach, the midgut bacterial composition was found to 

be different in three A. aegypti lines that vary in their susceptibility to DENV [33], although 

antibiotic treatment of these strains did not effect DENV vector competence [34]. These 

reinfection studies demonstrate the utility of culture-based approaches for dissecting the 

influence of microbes on arboviruses in mosquitoes and the mechanisms behind such traits.

Microbiota influence on vectorial capacity

In addition to direct and indirect effects on vector competence, the microbiota can also alter 

other mosquito traits that can influence vectorial capacity. These include various 

physiological traits like nutrition, reproduction and development. For example, antibiotic 

treatment of larvae results in aborted development, however this effect can be rescued by 

bacterial supplementation [8••,35]. In another case, bacteria isolated from the midgut of A. 
aegypti have been shown to influence blood digestion and egg development [36]. Parameters 

such as mosquito survival, development time, and reproductive capacity can have large 

influences on the population-level vectorial capacity for arboviruses that are equal or greater 

than the direct effects on vector competence.

Influence of virus infection on the microbiome

While it is evident that the microbiome affects arboviruses, there is evidence that the 

reciprocal interaction also occurs. In the Asian tiger mosquito Aedes albopictus, CHIKV 

infection increases the abundance of bacteria in the family Enterobacteriaceae and reduces 

Wolbachia and Blattabacterium [37]. Whether bacterial titers are responding directly to 

CHIKV or changing in response to other stimuli remains to be determined. For example, 

CHIKV is known to suppress the Toll pathway [38], and virus-mediated immune modulation 

inhibits the overall bacterial abundance in A. aegypti [28]. Alternatively, bacteria in the 

Enterobacteriaceae may be expanding in response to the reduction of Wolbachia and 

Blattabacterium.
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Microbial interactions

While we recognize that important interactions occur between microbiota and arboviruses 

within mosquitoes, less is known regarding the interplay between the other members of the 

mosquito microbiome. However, some intriguing results are beginning to illuminate this 

field. This is important given the impact of the microbiome on many aspects of mosquito 

biology. The acetic acid bacterium Asaia interferes with Wolbachia transmission in 

Anopheles mosquitoes [7••], and recent work suggests this antagonism extends into Culex 
and Aedes species [39]. Culture-based experiments have also found inhibition between 

bacterial isolates from mosquitoes [27•,40], although this interplay needs to be confirmed in 
vivo. Contrary to these inhibitory interactions, a positive correlation was seen between Asaia 
and Acinetobacter in the midgut of A. albopictus [41].

Mode of action

Experimental evidence suggests there are several mechanisms by which bacteria affect 

arboviruses in mosquitoes (Figure 1). These fall into the categories of immunity [26,32••], 

production of metabolites [27•], resource competition [42] and regulating miRNAs [43,44], 

however it is likely that further mechanisms will be uncovered in the future.

Host immunity

There is a complex interplay between the resident microbiota and the insect immune system. 

Insights from Drosophila indicate the microbiome primes and matures host immunity while 

the immune system keeps microbial levels under tight control [45]. While less is known 

about the role of bidirectional cross talk in mosquito immune homeostasis, it is clear that 

immune pathways that ward off invading arboviruses also influence the microbiota. For 

example, overlap exists within the JAK-STAT pathway which is elicited by bacteria and 

fungi, but is also effective against DENV and WNV [46,47]. Similarly, the Toll pathway is 

activated by gram-positive bacteria and has anti-viral properties [26], while the IMD 

pathway has been shown to influence Serratia and ONNV densities in An. gambiae [32••,

48•]. Another important class of immune molecules, which also have complex interactions 

with pathogens and the microbiota, are reactive oxygen species (ROS). ROS has anti-

pathogenic properties, regulates the microbiota density, and can activate the Toll pathway 

[49•,50]. RNAi is another major antiviral defense of mosquitoes [51], however the interplay 

between this pathway and the microbiota is yet to be determined. These complex 

interactions between host immunity, the microbiome and invading pathogens has led to the 

`holo-immunome' concept [52], which emphasizes the role of the microbial community's 

(and pathogenic microbes) influence on the immune status of an organism.

Metabolites

Bacteria produce secondary metabolites with anti-viral properties. Several bacterial isolates 

from the A. albopictus midgut produce bioactive compounds that inhibit La Crosse virus 

[53]. Additionally, a Chromobacterium isolated from field A. aegypti mosquitoes possesses 

anti-dengue and anti-Plasmodium activity [27•]. These compounds are promising candidates 
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for anti-viral drugs. However, further work is required to examine the biological relevance of 

these metabolites in vivo and their effect on arbovirus dissemination into the mosquito gut.

Resource competition

Both arboviruses and bacteria scavenge for resources in mosquitoes. Cholesterol and lipids 

are common molecules required by these microbes. In Drosophila, Spiroplasma utilizes 

lipids and vitamins from the host for replication [54], while Wolbachia sequesters 

cholesterol in mosquitoes [55]. Studies on the interplay between the gut microbiota and 

cholesterol in insects are limited, but evidence from a murine model system suggests 

microbes regulate cholesterol homeostasis [56]. DENV is known to perturb host lipid levels 

to facilitate replication, while cholesterol is essential for flavivirus replication [57,58]. 

Supplementation of exogenous cholesterol ablated the viral protection effect of Wolbachia in 

flies suggesting there is competition between these microbes for this molecule [42].

miRNA

The endosymbiotic bacterium Wolbachia modulates miRNA expression in A. aegypti [43]. 

Wolbachia has also been found to express miRNAs that manipulate mosquito gene 

expression [44]. Host derived miRNA can influence viral dynamics in A. albopictus [59]. 

However, it is unknown if gut bacteria influence mosquito miRNA expression, but insights 

from mammalian models suggest the microbiota has the capacity to modulate host miRNA 

levels [60].

Microbes for applied vector control

By far the most developed strategy for microbial control of arboviruses is the use of the 

intracellular bacterium Wolbachia (comprehensively reviewed [1–3]). However, other 

microbes of mosquitoes also have great potential for applied control strategies. These 

include not only harnessing their innate anti-viral abilities, but also to engineer microbes to 

interfere with pathogens; essentially using microbes as a delivery platform for the 

production of anti-viral molecules that either target the virus, mosquito pathways essential 

for virus replication, or to induce mosquito pathways antagonistic to arboviruses. This 

process, termed paratransgenesis, is being investigated in mosquitoes mainly for control of 

malaria parasites, but this application has the potential to be used for arbovirus control. In 

addition to bacteria, fungi and viruses are also promising candidates for use in 

paratransgenic control [61,62]. Excitingly, bacteria have been used to generate and transfer 

dsRNA to manipulate mosquito gene expression, offering new prospects for paratransgenesis 

strategies to reduce arboviruses [63•,64•]. The ability to deliver RNAi into field mosquito 

populations would be highly desirable and enable the development of a myriad of control 

approaches. The findings that close relatives of genetically tractable model bacteria are 

found in field mosquitoes [6•,7••,8••], that these model bacteria appear to be beneficial to the 

mosquito host [8••], and translocate into numerous mosquito tissues [65] will further 

enhance research in this field.
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Future prospects

Studies perturbing the mosquito microbiome have elucidated its role in arboviral 

transmission. The next challenge in this area is to determine the biological relevance of these 

manipulations, and how this relates to natural variation of the mosquito microbiome in the 

field. Studies in an Anopheles–Plasmodium system suggest that the variability in the 

microbiome in field mosquitoes influences vector competence [9]. While we are beginning 

to characterize the bacterial microbiome in mosquitoes, we have a poor understanding of the 

viral and fungal communities, and this needs to be urgently addressed. Further to this, the 

role of bacteriophage in shaping the gut microbiome of mosquitoes or other insects is 

virtually unknown. This is an area of increasing interest in the vertebrate community [66], 

and insight from these systems may provide stimulus for studies in mosquitoes. Elucidating 

the core microbiome from transient microbes within mosquitoes and determining their 

influence upon the host, and whether bacterial members have functional redundancy are 

further challenges. While a mechanistic understanding of these tripartite interactions is 

desirable, the development of high throughput in vitro assays capable of assessing host–

microbe–pathogen interactions will undoubtedly be useful in this regard [67,68]. 

Alarmingly, recent work suggests it is possible that the medicinal use of antibiotics and other 

products is also perturbing the microbiota within mosquitoes [69••,70]. Mosquitoes that fed 

upon humans treated with antibiotics were shown to have an altered microbiome compared 

to mosquitoes imbibing a blood meal from humans not using antibiotics [69••]. Similarly, the 

expulsion of antibiotics and other personal products from humans into the environment was 

shown in laboratory experiments to modify the larval microbiome of mosquitoes [70]. These 

findings suggest anthropogenic alteration of the environment by antibiotics and 

pharmaceutical products could manipulate the microbiota of mosquitoes, thus have wide-

reaching implications for mosquito biology and pathogen transmission. This area of research 

warrants further investigation.

Conclusions

The influence of the microbiome on host biology is a burgeoning area of research. For 

mosquitoes that transmit arboviruses, this question is of great and timely importance, not 

only to increase our basic understanding of host–microbe interactions but also for its 

relevance for vector control. Given the increase in arboviral disease, novel microbial control 

approaches offer promising strategies to combat these pathogens.
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Figure 1. 
Schematic illustrating the tripartite interactions between the mosquito host, the microbiome 

and arboviruses. Members of the microbiome can directly impede viruses (1), or can 

stimulate basal immunity leading to virus suppression (2). Conversely, some bacterial 

species can enhance viruses (3). Intracellular bacteria such as Wolbachia can also stimulate 

immunity by production of reactive oxygen species (ROS) (4). ROS can also be generated 

by the mosquito host and members of the microbiome and suppresses bacteria and 

pathogens (5). Intracellular bacteria can also manipulate host miRNA expression (6). 

Arboviruses can both suppress and enhance members of the microbiome (7) while bacterial 

interactions also influence the microbiome composition (8).
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