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Abstract

Machine learning methods provide a powerful approach for analyzing longitudinal data in which 

repeated measurements are observed for a subject over time. We boost multivariate trees to fit a 

novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are 

assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically 

utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a 

relatively simple in sample cross-validation method which can be used to estimate the optimal 

boosting iteration and which has the surprising added benefit of stabilizing certain parameter 

estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to 

covariance misspecification and unbalanced designs, and resistant to overfitting in high 

dimensions. Feature selection can be used to identify important features and feature-time 

interactions. An application to longitudinal data of forced 1-second lung expiratory volume 

(FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates 

the ease with which our method can find complex relationships in longitudinal data.
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1 Introduction

The last decade has witnessed a growing use of machine learning methods in place of 

traditional statistical approaches as a way to model the relationship between the response 

and features. Boosting is one of the most successful of these machine learning methods. It 

was originally designed for classification problems (Freund and Schapire, 1996), but later 

successfully extended to other settings such as regression and survival problems. Recent 

work has also sought to extend boosting from univariate response settings to more 

challenging multivariate response settings, including longitudinal data. The longitudinal data 

scenario in particular offers many nuances and challenges unlike those in univariate response 

modeling. This is because in longitudinal data, the response for a given subject is measured 

repeatedly over time. Hence any optimization function that involves the conditional mean of 

the response must also take into account the dependence in the response values for a given 
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subject. Furthermore, nonlinear relationships between features and the response may involve 

time.

An effective way to approach longitudinal data is through what is called the marginal model 

(Diggle et al., 2002). The marginal model provides a flexible means for estimating mean 

time-profiles without requiring a distributional model for the Y response, requiring instead 

only an assumption regarding the mean and the covariance. Formally, we assume the data is 

 where each subject i has ni ≥ 1 continuous response values yi = (yi,1, …, 

yi,ni)
T measured at possibly different time points ti,1 ≤ ti,2 ≤ … ≤ ti,ni and xi ∈ ℝp is the p-

dimensional feature. To estimate the mean time-profile, the marginal model specifies the 

conditional mean E(Yi|xi, ti) = μi under a variance assumption Var(Yi|xi) = Vi. Typically, Vi 

= φRi where Ri is an ni × ni correlation matrix parameterized by a finite set of parameters 

and φ > 0 is an unknown dispersion parameter.

The marginal model expresses the conditional mean μi as a function of features and time. 

Typically in the statistical literature this function is specified parametrically as a linear 

combination of features and time. In most cases, linear functions can be very restrictive, and 

therefore various generalizations have been proposed to make the model more flexible and 

less susceptible to model misspecification. These include, for example, adding two-way 

cross-product interactions between features and time, using generalized additive models 

(Hastie and Tibshirani, 1990) which allow for nonlinear feature or time effects, and time-

varying coefficient models (Hoover et al., 1998). Some of these extensions (e.g., generalized 

additive models, time-varying coefficient models) are referred to as being semi-parametric 

because the overall structure of the model is parametric, but certain low-dimensional 

components are estimated nonparametrically as smooth functions. Although these models 

are more flexible compared with linear models, unless specified explicitly, these models do 

not allow for non-linear interactions among multiple features or non-linear interactions of 

multiple features and time.

To overcome these limitations of standard statistical modeling, researchers have turned 

increasingly to the use of boosting for longitudinal data. Most of these applications are based 

on the mixed effect models. For example, using likelihood-based boosting, Tutz and 

Reithinger (2007) described mixed effects modeling using semiparametric splines for fixed 

effects, while Groll and Tutz (2012) considered generalized additive models subject to P-

splines (see Tutz and Binder, 2006, for background on likelihood-based boosting). The R-

package mboost, which implements boosting using additive base learners for univariate 

response (Hothorn et al., 2010, 2016), now includes random effect base learners to handle 

longitudinal data. This approach was used by Mayr et al. (2012) for quantile longitudinal 

regression. All of these methods implement componentwise boosting where only one 

component is fit for a given boosting step (an exception is mboost which allows tree base 

learner for fitting multiple features simultaneously). Although componentwise boosting has 

proven particularly useful for high dimensional parametric settings, it is not well suited for 

nonparametric settings, especially if the goal is to nonparametrically model feature-time 

interactions and identify such effects using feature selection.
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1.1 A semi-nonparametric multivariate tree boosting approach

In this article we boost multivariate trees to fit a flexible marginal model. This marginal 

model allows for nonlinear feature and time effects as well as nonlinear interactions among 

multiple features and time, and hence is more flexible than previous semiparametric models. 

For this reason, we have termed this more flexible approach “semi-nonparametric”. Our 

model assumes the vector of mean values μi = (μi,1, …, μi,ni)
T satisfies

(1)

Here, β0 and  represent fully unspecified real-valued functions of x and  are a 

collection of prespecified functions that map time to a desired basis and are used to model 

feature-time interactions. Examples of  basis functions include the class of low-rank 

thin-plate splines (Duchon, 1977; Wahba, 1990), which correspond to semi-nonparametric 

models of the form

(2)

where κ1 < ··· < κd−1 are prespecified knots. Another example are truncated power basis 

splines of degree q (Ruppert, Wand and Carroll, 2003):

Another useful class of families are B-splines (De Boor, 1978). In this manuscript we will 

focus exclusively on the class of B-splines.

According to (1), subjects with the same feature x have the same conditional mean trajectory 

for a given t as specified by a spline curve: the shape of the curve is altered by the spline 

coefficients, . Two specifications maximize the flexibility of (1). First, each spline 

coefficient is a nonparametric function of all p features (i.e., βl(.) is a scalar function with 

multivariate input). Second, similar to the penalized spline literature, we use a large number 

of basis functions to ensure the flexibility of the conditional mean trajectory (Ruppert, Wand 

and Carroll, 2003). While (1) is in principle very general, it is worth pointing out that 

simpler, but still useful, models are accommodated within (1). For example, when d = 1 and 

b1(ti,j) = ti,j, model (1) specializes to β0(xi)+ β1(xi)ti,j, which implies that given the baseline 

features xi, the longitudinal mean trajectory is linear with intercept β0(xi) and slope β1(xi). 

This model may be useful when there are a small number of repeated measures per subject. 

When both β0(xi) and β1(xi) are linear combinations of xi, the model reduces to a parametric 
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longitudinal model with linear additive feature and linear two-way cross-product interactions 

between features and time.

Let β(x) = (β0(x), β1(x), …, βd(x))T denote the vector of (d + 1)-dimensional feature 

functions from (1). In this manuscript, we estimate β(x) nonparametrically by boosting 

multivariate regression trees, a method we call boostmtree. While there has been much 

recent interest in boosting longitudinal data, there has been no systematic attempt to boost 

multivariate trees in such settings. Doing so has many advantages, including that it allows us 

to accommodate non-linearity of features as well as non-linear interactions of multiple 

features without having to specify them explicitly. The boostmtree approach is an extension 

of Friedman’s (Friedman, 2001) tree-based gradient boosting to multivariate responses. 

Section 2 describes this extension and presents a general framework for boosting 

longitudinal data using a generic (but differentiable) loss function. Section 3 builds upon this 

general framework to describe the boostmtree algorithm. There we introduce an ℓ2-loss 

function which incorporates both the target mean structure (1) as well as a working 

correlation matrix for addressing dependence in response values.

The boostmtree algorithm presented in Section 3 represents a high-level description of the 

algorithm in that it assumes that parameters such as the correlation coefficient of the 

repeated measurements are fixed quantities. But in practice in order to increase the 

efficiency of boostmtree, we must estimate these additional parameters. In this manuscript, 

all parameters except  are referred to as ancillary parameters. Estimation of ancillary 

parameters are described in Section 4. This includes a simple update for the correlation 

matrix that can be implemented using standard software and which can accommodate many 

covariance models. We also present a simple method for estimating the smoothing parameter 

for penalizing the semiparametric functions . This key feature allows flexible 

nonparametric modeling of the feature space while permitting smoothed, penalized spline-

based time-feature estimates. In addition, in order to determine an optimal boosting step, we 

introduce a novel “in sample” cross-validation method. In boosting, the optimized number of 

boosting iterations is traditionally determined using cross-validation, but this can be 

computationally intensive for longitudinal data. The new in sample method alleviates this 

problem and has the added benefit that it stabilizes the working correlation estimator which 

suffers from a type of rebound effect without this. The unintended consequence of 

introducing instability while estimating an ancillary parameter is a new finding we believe, 

and may be applicable in general to any boosting procedure where ancillary parameters are 

estimated outside of the main boosting procedure. The in sample method we propose may 

provide a general solution for addressing this subtle issue.

Computational tractability is another important feature of boostmtree. By using multivariate 

trees, the matching pursuit approximation is reduced to calculating a small collection of 

weighted generalized ridge regression estimators. The ridge component is induced by the 

penalization of the basis functions and thus penalization serves double duty here. It not only 

helps to avoid overfitting, but it also numerically stabilizes the boosted estimator. This 

makes boostmtree robust to design specifications. In Section 5, we investigate performance 

of boostmtree using simulations. Performance is assessed in terms of prediction and feature 
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selection accuracy. We compare boostmtree to several boosting procedures. Even when some 

of these models are specified to match the data generating mechanism, we find boostmtree 

does nearly as well, while in complex settings it generally outperforms other methods. We 

also find that boostmtree performs very well in terms of feature selection. Without explicitly 

specifying the relationship of response with features and time, we are able to select 

important features, but also separate features that affect the response directly from those that 

affect the response through time interactions. In Section 6, we use boostmtree to analyze 

longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant 

patients. We evaluate the temporal trend of FEV1 after transplant, and identify factors 

predictive of FEV1 and assess differences in time-profile trends for single versus double 

lung transplant patients. Section 7 discusses our overall findings.

2 Gradient multivariate tree boosting for longitudinal data

Friedman (2001) introduced gradient boosting, a general template for applying boosting. 

The method has primarily been applied to univariate settings, but can be extended to 

multivariate longitudinal settings as follows. We assume a generic loss function, denoted by 

L. Let (y, t, x) denote a generic data point. We assume

where F is a known function that can depend on t. A key assumption used later in our 

development is that F is assumed to be a linear operator. As described later, F will 

correspond to the linear operator obtained by expanding spline-basis functions over time in 

model (1).

In the framework described in Friedman (2001), the goal is to boost the predictor F(x), but 

because our model is parameterized in terms of β(x), we boost this function instead. Our 

goal is to estimate β(x) by minimizing E [L(Y, F(β(x)))] over some suitable space. Gradient 

boosting applies a stagewise fitting procedure to provide an approximate solution to the 

target optimization. Thus starting with an initial value β(0)(x), the value at iteration m = 1, 

…, M is updated from the previous value according to

Here 0 < ν ≤ 1 is a learning parameter while h(x; a) ∈ ℝd+1 denotes a base learner 

parameterized by the value a: the notation h(x; am) denotes the optimized base learner 

where optimization is over a ∈ , where  represents the set of parameters of the weak 

learner. Typically, a small value of ν is used, say ν = 0.05, which has the effect of slowing 

the learning of the boosting procedure and therefore acts a regularization mechanism.

One method for optimizing the base learner is by solving the matching pursuit problem 

(Mallat and Zhang, 1993):
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Because solving the above may not always be easy, gradient boosting instead approximates 

the matching pursuit problem with a two-stage procedure: (i) find the base learner closest to 

the gradient in an ℓ2-sense; (ii) solve a one-dimensional line-search problem.

The above extension which assumes a fixed loss function addresses simpler longitudinal 

settings, such as balanced designs. To accommodate more general settings we must allow the 

loss function to depend on i. This is in part due to the varying sample size ni, which alters 

the dimension of the response, and hence affects the loss function, but also because we must 

model the correlation, which may also depend on i. Therefore, we will denote the loss 

function by Li to indicate its dependence on i. This subscript i notation will be used 

throughout in general to identify any term which may depend on i. In particular, since the 

mean may also in general depend upon i, since it depends upon the observed time points, we 

will write

(3)

In this more general framework, the matching pursuit problem becomes

We use multivariate regression trees for the base learner and approximate the above 

matching pursuit problem using the following two-stage gradient boosting approach. Let the 

negative gradient for subject i with respect to β(xi) evaluated at β(m−1)(xi) be

To determine the ℓ2-closest base learner to the gradient, we fit a K-terminal node multivariate 

regression tree using  for the responses and  as the features, where K ≥ 1 is 

prespecified value. Denote the resulting tree by , where Rk,m represents the 

kth terminal node of the regression tree. Letting fk ∈ ℝd+1 denote the kth terminal node 

mean value, the ℓ2-optimized base learner is
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This completes the first step in the gradient boosting approximation. The second step 

typically involves a line search; however in univariate tree-based boosting (Friedman, 2001, 

2002), the line search is replaced with a more refined estimate which replaces the single line 

search parameter with a unique value for each terminal node. In the extension to multivariate 

trees, we replace  with (d+1)-vector valued estimates  determined by 

optimizing the loss function

The optimized base learner parameter is  and the optimized learner is 

. Because the terminal nodes  of the tree form a 

partition of the feature space, the optimization of the loss function can be implemented one 

parameter at a time, thereby greatly simplifying computations. It is easily shown that

(4)

This leads to the following generic algorithm for boosting multivariate trees for longitudinal 

data; see Algorithm 1.

Algorithm 1

Generic multivariate boosted trees for longitudinal data

1

Initialize β(0)(xi) = 0, , for i = 1, …, n.

2 for m = 1, …, M do

3

  , i = 1, …, n.

4

 Fit a multivariate regression tree  using  for data.

5

  , k = 1, …, K.

6  Update:
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  , i = 1, …, n.

7 end for

8

Return .

3 The boostmtree algorithm

Algorithm 1 describes a general template for boosting longitudinal data. We now use this to 

describe the boostmtree algorithm for fitting (1).

3.1 Loss function and gradient

We begin by defining the loss function required to calculate the gradient function. Assuming 

μi as in (1), and denoting Vi for the working covariance matrix, where for the moment we 

assume Vi is known, the loss function is defined as follows

This can been seen to be an ℓ2-loss function and in fact is often called the squared 

Mahalanobis distance. It is helpful to rewrite the covariance matrix as Vi = φRi, where Ri 

represents the correlation matrix and φ a dispersion parameter. Because φ is a nuisance 

parameter unnecessary for calculating the gradient, we can remove it from our calculations. 

Therefore without loss of generality, we can work with the simpler loss function

We introduce the following notation. Let Di = [1i, b1(ti), …, bd(ti)]ni×(d+1) denote the ni×(d

+1) design matrix for subject i where  and bl(ti) is the expansion of 

over  evaluated at ti. Model (1) becomes

(5)

Comparing (5) with (3) identifies the Fi in Algorithm 1 as
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Hence, Fi is a linear operator on β obtained by expanding spline-basis functions over time. 

Working with a linear operator greatly simplifies calculating the gradient. The negative 

gradient for subject i with respect to β(xi) evaluated at the current estimator β(m−1)(xi) is

Upon fitting a multivariate regression tree to , we must solve for γk,m in (4) 

where Fi(γk) = Diγk. This yields the weighted least squares problem

(6)

3.2 Penalized basis functions

We utilize B-splines in (5). For flexible modeling a large number of knots are used which are 

subject to penalization to avoid overfitting. Penalization is implemented using the 

differencing penalty described in Eilers and Marx (1996). Penalized B-splines subject to this 

penalization are referred to as P-splines.

As the update to β(x) depends on , we impose P-spline regularization by penalizing 

γk,m. Write γk = (γk,1, …, γk,d+1)T for k = 1, …, K. We replace (4) with the penalized 

optimization problem

(7)

Here λ ≥ 0 is a smoothing parameter and Δs denotes the s ≥ 1 integer difference operator 

(Eilers and Marx, 1996); e.g., for s = 2 the difference operator is defined by Δ2γk,l = 

Δ(Δγk,l) = γk,l − 2γk,l−1 + γk,l−2, for l ≥ 4 = s + 2.

The optimization problem (7) can be solved by taking the derivative and solving for zero. 

Because the first coordinate of γk is unpenalized it will be convenient to decompose γk into 

the unpenalized first coordinate γk,1 and remaining penalized coordinates 

. The penalty term can be expressed as
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(8)

where Δs is the matrix representation of the difference operator Δs. Let , then the 

derivative of (8) is 2Bsγk, where

Closed form solutions for Bs are readily computed. Taking the derivative and setting to zero, 

the solution to γk,m in (7) is the following weighted generalized ridge regression estimator

(9)

This is the penalized analog of (6).

Remark 1: Observe that the ridge matrix Bs appearing in (9) is induced due to the 

penalization. Thus, the imposed penalization serves double duty: it penalizing splines, 

thereby mitigating overfitting, but it also ridge stabilizes the boosting estimator γk,m, thus 

providing stability. The latter property is important when the design matrix Di is singular, or 

near singular; for example due to replicated values of time, or due to a small number of time 

measurements.

Remark 2: We focus on penalized B-splines (P-splines) in this manuscript, but in principle 

our methodology can be applied to any other basis function as long as the penalization 

problem can be described in the form

(10)

where P is a positive definite symmetric penalty matrix. In (10), we have separated Di into 

two matrices: the first matrix  equals the columns for the unpenalized parameters , 

the second matrix  equals the remaining columns for the penalized parameters  used 

for modeling the feature time-interaction effect. For example, for the class of thin-plate 

splines (2) with m = 2, one could use
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As reference, for the P-splines used here, , and P = Ps.

3.3 Boostmtree algorithm: fixed ancillary parameters

Combining the previous two sections, we arrive at the boostmtree algorithm which we have 

stated formally in Algorithm 2. Note that Algorithm 2 should be viewed as a high-level 

version of boostmtree in that it assumes a fixed correlation matrix and smoothing parameter. 

In Section 4, we discuss how these and other ancillary parameters can be updated on the fly 

within the algorithm. This leads to a more flexible boostmtree algorithm described later.

Algorithm 2

Boostmtree (fixed ancillary parameters): A boosted semi-nonparametric marginal model 

using multivariate trees

1

Initialize β(0)(xi) = 0, , for i = 1, …, n.

2 for m = 1, …, M do

3

  .

4

 Fit a multivariate regression tree  using  for data.

5  Solve for γk,m in the weighted generalized ridge regression problem:

∑
xi ∈ Rk, m

Di
TRi

−1Di + λBs γk, m = ∑
xi ∈ Rk, m

gm, i, k = 1, …, K .

6  Update:

  

  , i = 1, …, n.

7 end for

8

Return .

4 Estimating boostmtree ancillary parameters

In this section, we show how to estimate the working correlation matrix and the smoothing 

parameter as additional updates to the boostmtree algorithm. We also introduce an in sample 

CV method for estimating the number of boosting iterations and discuss an improved 
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estimator for the correlation matrix based on the new in sample method. This will be shown 

to alleviate a “rebound” effect in which the boosted correlation rebounds back to zero due to 

overfitting.

4.1 Updating the working correlation matrix

As mentioned, Algorithm 2 assumed Ri was a fixed known quantity, however in practice Ri 

is generally unknown and must be estimated. Our strategy is to use the updated mean 

response to define a residual which is then fit using generalized least squares (GLS). We use 

GLS to estimate Ri from the fixed-effects intercept model

(11)

where Var(εi) = φRi. Estimating Ri under specified parametric models is straightforward 

using available software. We use the R-function gls from the nlme R-package (Pinheiro et 

al., 2014; Pinheiro and Bates, 2000) and make use of the option correlation to select a 

parametric model for the working correlation matrix. Available working matrices include 

autoregressive processes of order 1 ( corAR1), autoregressive moving average processes 

( corARMA), and exchangeable models ( corCompSymm). Each are parameterized using only 

a few parameters, including a single unknown correlation parameter −1 < ρ < 1. In analyses 

presented later, we apply boostmtree using an exchangeable correlation matrix using 

corCompSymm.

4.2 Estimating the smoothing parameter

Algorithm 2 assumed a fixed smoothing parameter λ, but for greater flexibility we describe 

a method for estimating this value, λm, that can be implemented on the fly within the 

boostmtree algorithm. The estimation method exploits a well known trick of expressing an 

ℓ2-optimization problem like (7) in terms of linear mixed models. First note that γk,m from 

(7) is equivalent to the best linear unbiased prediction estimator (BLUP estimator; Robinson 

(1991)) from the linear mixed model

where

and  denotes the current estimate for Ri. In the above, αk is the fixed effect 

corresponding to γk,1 with design matrix Xi = 1i, while uk ∈ ℝd is the random effect 

corresponding to  with ni×d design matrix Zi = [b1(ti), …, bd(ti)]. That is, each terminal 
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node Rk,m corresponds to a linear mixed model with a unique random effect uk and fixed 

effect αk. Using the parameterization

we obtain ỹi = X̃
iαk + Z̃

iũk + ε̃i, for i ∈ Rk,m, where

Perhaps the most natural way to estimate λ is to maximize the likelihood using restricted 

maximum likelihood estimation via mixed models. Combine the transformed data ỹi across 

terminal nodes and apply a linear mixed model to the combined data; for example, by using 

mixed model software such as the nlme R-package Pinheiro et al. (2014). As part of the 

model fitting this gives an estimate for λ.

While a mixed models approach may seem the most natural way to proceed, we have found 

in practice that the resulting computations are very slow, and only get worse with increasing 

sample sizes. Therefore we instead utilize an approximate, but computationally fast method 

of moments approach. Let X̃, Z̃ be the stacked matrices {Xĩ}i∈Rk,m, {Z̃
i}i∈Rk,m, k = 1, …, K. 

Similarly, let α, ũ, ỹ, and ε̃ be the stacked vectors for , {ỹi}i∈Rk,m, and 

{ε̃i}i∈Rk,m, k = 1, …, K. We have

This yields the following estimator:

(12)

To calculate (12) requires a value for α. This we estimate using BLUP as follows. Fix λ̂ at 

an initial value. The BLUP estimate (α̂
k; ûk) for (αk, ũk) given λ̂ are the solutions to the 

following set of equations (Robinson, 1991):
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(13)

Substituting the resulting BLUP estimate α = α̂ into (12) yields an updated λ̂. This process 

is repeated several times until convergence. Let λm be the final estimator. Now to obtain an 

estimate for γk,m, we solve the following:

Remark 3: A stabler estimator for λ can be obtained by approximating N in place of using 

N = E(ε̃Tε̃) = Σi ni; the latter being implied by the transformed model. Let α̂ and û be the 

current estimates for α and ũ. Approximate ε̃ using the residual ε̃* = ỹ – X̃ α̂ – Zû and 

replace N with N̂ = ε̃*Tε̃*. This is the method used in the manuscript.

4.3 In sample cross-validation

In boosting, along with the learning parameter ν, the number of boosting steps M is also 

used as a regularization parameter in order to avoid overfitting. Typically the optimized 

value of M, denoted as M opt, is estimated using either a hold-out test data or by using cross-

validation (CV). But CV is computationally intensive, especially for longitudinal data. 

Information theoretic criteria such as AIC have the potential to alleviate this computational 

load. Successful implementation within the boosting paradigm is however fraught with 

challenges. Implementing AIC requires knowing the degrees of freedom of the fitted model 

which is difficult to do under the boosting framework. The degrees of freedom are generally 

underestimated which adversely affects estimation of M opt. One solution is to correct the 

bias in the estimate of M opt by using subsampling after AIC (Mayr et al., 2012). Such 

solutions are however applicable only to univariate settings. Applications of AIC to 

longitudinal data remains heavily underdeveloped with work focusing exclusively on 

parametric models within non-boosting contexts. For example, Pan (2001) described an 

extension of AIC to parametric marginal models. This replaces the traditional AIC degrees 

of freedom with a penalization term involving the covariance of the estimated regression 

coefficient. As this is a parametric regression approach, it cannot be applied to 

nonparametric models such as multivariate regression trees.

We instead describe a novel method for estimating Mopt that can be implemented within the 

boostmtree algorithm using a relatively simple, yet effective approach, we refer to as in 

sample CV. As before, let Rk,m denote the kth terminal node of a boosted multivariate 

regression tree, where k = 1, …, K. Assume that the terminal node for the ith subject is 

Rk0,m for some 1 ≤ k0 ≤ K. Let Rk0,m,−i be the new terminal node formed by removing i. Let 

λm be the current estimator of λ. Analogous to (7), we solve the following loss function 

within this new terminal node
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(14)

For each i, we maintain a set of n values , where  is the (m − 1)th 

boosted in sample CV predictor for yj treating i as a held out observation. The solution to 

(14) is used to update  for those xj in Rk0,m. For those subjects that fall in a different 

terminal node Rk,m where k ≠ k0, we use

(15)

Once estimators (14) and (15) are obtained (a total of K optimization problems, each solved 

using weighted generalized ridge regression), we update  for j = 1, …, n as follows:

Notice that  represents the in sample CV predictor for yi treating i as held out. 

Repeating the above for each i = 1, …, n, we obtain . We define our estimate of the 

root mean-squared error (RMSE) for the mth boosting iteration as

It is worth emphasizing that our approach has utilized all n subjects, rather than fitting a 

separate model using a subsample of the training data as done for CV. Therefore, the in 

sample CV can be directly incorporated into the boostmtree procedure to estimate Mopt. We 

also note that our method fits only one tree for each boosting iteration. For a true leave-one-

out calculation, we should remove each observation i prior to fitting a tree and then solve the 

loss function. However, this is computationally intensive as it requires fitting n trees per 

iteration and solving nK weighted generalized ridge regressions. We have instead removed 

observation i from its terminal node as a way to reduce computations. Later we provide 

evidence showing the efficacy of this approach.
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4.4 Rebound effect of the estimated correlation

Most of the applications of boosting are in the univariate setting where the parameter of 

interest is the conditional mean of the response. However in longitudinal studies, researchers 

are also interested in correctly estimating the correlation among responses for a given 

subject. We show that a boosting procedure whose primary focus is estimating the 

conditional mean of the response can be inefficient for estimating correlation without further 

modification. We show that by replacing  by  in (11), an efficient estimate of 

correlation can be obtained.

Typically, gradient boosting tries to drive training error to zero. In boostmtree, this means 

that as the number of boosting iterations increases, the residual  converges to 

zero in an ℓ2-sense. The principle underlying the estimator (11) is to remove the effect of the 

true mean, so that the resulting residual values have zero mean and thereby making it 

relatively easy to estimate the covariance. Unfortunately,  not only removes the mean 

structure, but also the variance structure. This results in the estimated correlation having a 

rebound effect where the estimated value after attaining a maximum, will rebound and start a 

descent towards zero as m increases.

To see why this is so, consider an equicorrelation setting in which the correlation between 

responses for i are all equal to the same value 0 < ρ < 1. By expressing εi from (11) as 

, we can rewrite (11) as the following random intercept model

(16)

The correlation between coordinates of  equals , where 

and . In boostmtree, as the algorithm iterates, the estimate of ρ quickly 

reaches its optimal value. However, as the algorithm continues further, the residual 

decreases to zero in an ℓ2-sense. This reduces the between subjects variation , which in 

turn reduces the estimate of ρ. As we show later, visually this represents a rebound effect of 

ρ.

On the other hand, notice that the in sample CV estimate  described in the previous 

section is updated using all the subjects, except for subject i which is treated as being held 

out. This suggests a simple solution to the rebound effect. In place of  for the 

residual in (11), we use instead . The latter residual seeks to remove the effect of 

the mean but should not alter the variance structure as it does not converge to zero as m 
increases. Therefore, using this new residual should allow the correlation estimator to 

achieve its optimal value but will prevent the estimator from rebounding. Evidence of the 

effectiveness of this new estimator will be demonstrated shortly.
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4.5 Boostmtree algorithm: estimated ancillary parameters

Combining the previous sections leads to Algorithm 3 given below which describes the 

boostmtree algorithm incorporating ancillary parameter updates for Ri and λ, and which 

includes the in sample CV estimator and corrected correlation matrix update.

5 Simulations and empirical results

We used three sets of simulations for assessing performance of boostmtree.

Algorithm 3

Boostmtree with estimated ancillary parameters

1:

Initialize β(0)(xi) = 0, , for i = 1, …, n.

2: for m = 1, …, M do

3:

  .

4:

 Fit a multivariate regression tree  using  for data.

5:  To estimate λ, cycle between (12) and (13) until convergence of λ̂. Let λm denote the final estimator.

6:  Solve for γk,m in

∑
xi ∈ Rk, m

Di
T Ri

(m − 1) −1 Di + λmBs γk, m = ∑
xi ∈ Rk, m

gm, i, k = 1, …, K .

7:  Update:

  

  , i = 1, …, n.

8:  if (in sample CV requested) then

9:

  Update  using (14) and (15). Calculate .

10:

  Estimate Ri from (11), replacing  by  and using gls under a parametric working correlation 

assumption. Update  where Rî is the resulting estimated value.

11:  else

12:
  Estimate Ri from (11) using gls under a parametric working correlation assumption. Update 

 where Rî is the resulting estimated value.

13:  end if

14: end for

15: if (in sample CV requested) then
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16:  Estimate Mopt

17:

 Return .

18: else

19:

 Return .

20: end if

Simulation I: The first simulation assumed the model:

(17)

The intercept was C0 = 1.5 and variables  for k = 1, …, 4 have main effects with 

coefficient parameters , and . Variable  whose 

coefficient parameter is  has a linear interaction with time with coefficient parameter 

CI = −0.65. Variables  for l = 1, …, q have coefficient parameters  and therefore 

are unrelated to μi,j. Variables  and  were simulated from a uniform distribution on 

[1, 2] and [2, 3], respectively. All other variables were drawn from a standard normal 

distribution; all variables were drawn independently of one another. For each subject i, time 

values ti,j for j = 1, …, ni were sampled with replacement from {1/N0, 2/N0, …, 3} where 

the number of time points ni was drawn randomly from {1, …, 3N0}. This creates an 

unbalanced time structure because ni is uniformly distributed over 1 to 3N0.

Simulation II: The second simulation assumed the model:

(18)

This is identical to (17) except the linear feature-time interaction is replaced with a quadratic 

time trend and a quadratic effect in .

Simulation III: The third simulation assumed the model:

(19)
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Model (19) is identical to (18) except variable  has a non-linear main effect and the 

feature-time interaction additionally includes .

5.1 Experimental settings

Four different experimental settings were considered, each with n = {100, 500}:

A. N0 = 5, and q = 0. For each i, Vi = φRi where φ = 1 and Ri was an exchangeable 

correlation matrix with correlation ρ = 0.8 (i.e., Cov(Yi,j, Yi,k) = ρ = 0.8).

B. Same as (A) except N0 = 15.

C. Same as (A) except q = 30.

D. Same as (A) except Cov(Yi,j, Yi,j+k) = ρk for k = 0, 1, … (i.e., AR(1) model).

5.2 Implementing boostmtree

All boostmtree calculations were implemented using the boostmtree R-package (Ishwaran 

et al., 2016), which implements the general boostmtree algorithm, Algorithm 3. The 

boostmtree package relies on the randomForestSRC R-package (Ishwaran and Kogalur, 

2016) for fitting multivariate regression trees. The latter is a generalization of univariate 

CART (Breiman et al., 1984) to the multivariate response setting and uses a normalized 

mean-squared error split-statistic, averaged over the responses, for tree splitting (see 

Ishwaran and Kogalur, 2016, for details). All calculations used adaptive penalization cycling 

between (12) and (13). An exchangeable working correlation matrix was used where ρ was 

estimated using the in sample CV values . All fits used cubic B-splines with 10 

equally spaced knots subject to an s = 3 penalized differencing operator. Multivariate trees 

were grown to K = 5terminal nodes. Boosting tuning parameters were set to ν = 0.05 and M 
= 500 with the optimal number of boosting steps Mopt estimated using the in sample CV 

procedure.

5.3 Comparison procedures

5.3.1 GLS procedure—As a benchmark, we fit the data using a linear model under GLS 

that included all main effects for parameters and all pairwise linear interactions between x-

variables and time. A correctly specified working correlation matrix was used. This method 

is called dgm-linear (dgm is short for data generating model).

5.3.2 Boosting comparison procedure—As a boosting comparison procedure we used 

the R-package mboost (Hothorn et al., 2010, 2016). We fit three different random intercept 

models. The first model was defined as
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The random intercept is denoted by αi. The notation btreeK denotes a K-terminal node tree 

base learner. The first tree base learner is constructed using only the x-features, while the 

remaining tree-based learners are constructed using both x-features and time. The variable 

bl(ti) is identical to the lth B-spline time-basis used in boostmtree. The second model was

This is identical to the first model except time is no longer broken into B-spline basis terms. 

Finally, the third model was

The term  denotes all pairwise interactions between the kth x-variable and B-

splines of order d. Thus, the third model incorporates all pairwise feature-time interactions. 

Notice that the first two terms in all three models are the same and therefore the difference in 

models depends on the base learner used for the third term. All three models were fit using 

mboost. The number of boosting iterations was set to M = 500, however in order to avoid 

overfitting we use 10-fold CV to estimate Mopt. All tree-based learners were grown to K = 5 

terminal nodes. For all other parameters, we use default settings.

5.3.3 Other procedures—Several other procedures were used for comparison. However, 

because none compared favorably to boostmtree, we do not report these values here. For 

convenience some of these results are reported in the Appendix.

5.4 RMSE performance

Performance was assessed using standardized root mean-squared error (sRMSE),

(20)

where σ̂
Y is the overall standard deviation of the response. Values for sRMSE were 

estimated using an independently drawn test set of size n′ = 500. Each simulation was 

repeated 100 times independently and the average sRMSE value recorded in Table 1. Note 

that Table 1 includes the additional entry boostmtree(.8), which is boostmtree fit with ρ set 

at the specified value ρ = 0.8 (this yields a correctly specified correlation matrix for (A), (B), 

and (C)). Table 2 provides the standard error of the sRMSE values. Our conclusions are 

summarized below.
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5.4.1 Experiment I—Performance of dgm-linear (the GLS model) is better than all other 

procedures in experiment I. This is not surprising given that dgm-linear is correctly specified 

in experiment I. Nevertheless, we feel performance of boostmtree is good given that it uses a 

large number of basis functions in this simple linear model with a single linear feature-time 

interaction.

5.4.2 Experiment II—In experiment II, mboostbs, which includes all pairwise feature-time 

interactions, is correctly specified. However, interestingly, this seems only to confer an 

advantage over boostmtree for the smaller sample size n = 100. With a larger sample size (n 
= 500), performance of boostmtree is generally much better than mboostbs.

5.4.3 Experiment III—Experiment III is significantly more difficult than experiments I 

and II since it includes a non-linear main effect as well as complex feature-time interaction. 

In this more complex experiment, boostmtree is significantly better than all mboost models, 

including mboostbs, which is now misspecified.

5.4.4 Effect of correlation—In terms of correlation, the boostmtree procedure with 

estimated ρ is generally as good and sometimes even better than boostmtree using the 

correctly specified ρ = 0.8. Furthermore, loss of efficiency does not appear to be a problem 

when the working correlation matrix is misspecified as in simulation (D). In that simulation, 

the true correlation follows an AR(1) model, yet performance of boostmtree under an 

exchangeable model is better for Experiment I and II, whereas results are comparable for 

Experiment III (compare columns (D) to columns (A)). We conclude that boostmtree using 

an estimated working correlation matrix exhibits good robustness to correlation.

5.5 In sample CV removes the rebound effect

In Section 4.4, we provided a theoretical explanation of the rebound effect for the 

correlation, and described how this could be corrected using the in sample CV predictor. In 

this Section, we provide empirical evidence demonstrating the effectiveness of this 

correction. For illustration, we used the 3 simulation experiments under experimental setting 

(A) with n = 100. The same boosting settings were used as before, except that we set M = 

2000 and estimated ρ from (11) with and without the in sample CV method. Simulations 

were repeated 100 times independently. The average estimate of ρ is plotted against the 

boosting iteration m in Figure 1.

As described earlier, among the 3 experiments, experiment I is the simplest, and experiment 

III is the most difficult. In all 3 experiments, the true value of ρ is 0.8. In experiment I, the 

estimate of ρ obtained using  quickly reaches the true value, and remains close to this 

value throughout the entire boosting procedure, whereas the estimate of ρ obtained using 

 reaches the true value, but then starts to decline. This shows that the in sample CV 

method is able to eliminate the rebound effect. The rebound effect is also eliminated in 

experiments II and III using in sample CV, although now the estimated ρ does not reach the 

true value. This is less a problem in experiment II than III. This shows that estimating ρ 
becomes more difficult when the underlying model becomes more complex.
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5.6 Accuracy of the in sample CV method

In this Section, we study the bias incurred in estimating Mopt and in estimating prediction 

error using the in sample CV method. Once again, we use the 3 simulation experiments 

under experimental setting (A). In order to study bias as a function of n, we use n = {100, 

300, 500}. The specifications for implementing boostmtree are the same as before, but with 

M = 2000. The results are repeated using 100 independent datasets and 100 independent test 

data sets of size n′ = 500. The results for Mopt are provided in Figure 2. What we find are 

that the in sample CV estimates of Mopt are biased towards larger values, however bias 

shrinks towards zero with increasing n. We also observe that the in sample CV estimate is 

doing particularly well in experiment III.

Results summarizing the accuracy in estimating prediction error are provided in Figure 3. 

The vertical axis displays the difference in standardized RMSE estimated using 

from the in sample CV method and using (20) by direct test set calculation. This shows an 

optimistic bias effect for the in sample CV method, which is to be expected, however bias is 

relatively small and diminishes rapidly as n increases. To better visualize the size of this 

bias, consider Figure 4 (n = 500 for all three experiments). This shows that in sample CV 

estimates are generally close to those obtained using a true test set.

5.7 Feature selection

We used permutation variable importance (VIMP) for feature selection. In this method, let X 
= [x(1), …, x(p)]n′ × p represent the test data where x(k) = (x1,k, …, xn′,k)T records all test set 

values for the kth feature, k = 1, 2,…, p. At each iteration m = 1, …, M, the test data X is run 

down the mth tree (grown previously using training data). The resulting node membership is 

used to determine the estimate of β for the mth iteration, denoted by β̂ (m). Let 

 represent the kth feature after being “noised-up” by randomly 

permuting the coordinates of the original x(k). Using , a new test data 

 is formed by replacing x(k) with the noised up 

. The new test data Xk is run down the mth tree and from the resulting node membership 

used to estimate β, which we call . The first coordinate of  reflects the contribution 

of noising up the main effect β0(x), while the remaining d coordinates reflect noising up the 

feature-time interactions . Comparing the performance of the predictor 

obtained using  to that obtained using the non-noised up β̂ (m) yields an estimate of the 

overall importance of the feature k.

However, in order to isolate whether feature k is influential for the main effect alone, 

removing any potential effect on time it might have, we define a modified noised up 

estimator  as follows. The first coordinate of  is set to the first coordinate of , 

while the remaining d coordinates are set to the corresponding coordinates of β̂ (m). By 

doing so, any effect that  may have is isolated to a main effect only. Denote the test set 
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predictor obtained from  and β̂ (m) by  and μ̂ (m). The difference between the test set 

RMSE for  and μ̂(m) is defined as the VIMP main effect for feature k.

In a likewise fashion, a noised up estimator  measuring noising up for feature-time 

interactions (but not main effects) is defined analogously. The first coordinate of  is set 

to the first coordinate of β(̂m) and the remaining d coordinates to the corresponding values of 

. The difference between test set RMSE for  and μ̂(m) equals VIMP for the feature-

time effect for feature k. Finally, to assess an overall effect of time, we randomly permute 

the rows of the matrix . The resulting predictor  is compared with μ̂ (m) to 

determine an overall VIMP time effect.

To assess boostmtree’s ability to select variables we re-ran our previous experiments under 

setting (C) with n = 100 and q = 10, 25, 100. Recall q denotes the number of non-outcome 

related variables (i.e. zero signal variables). Thus increasing q increases dimension but keeps 

signal strength fixed. We divided all VIMP values by the RMSE for μ̂ (m) and then 

multiplied by 100. We refer to this as standardized VIMP. This value estimates importance 

relative to the model: large positive values identify important effects. Standardized VIMP 

was recorded for each simulation. Simulations were repeated 100 times independently and 

VIMP values averaged.

Table 3 records standardized VIMP for main effects and feature-time effects for variables 

x*(1), …, x*(4). Standardized VIMP for non-outcome related variables  were 

averaged and appear under the column entry “noise”. Table 3 shows that VIMP for noise 

variables are near zero, even for q = 100. VIMP for signal variables in contrast are generally 

positive. Although VIMP for x*(4) is relatively small, especially in high-dimension q = 100, 

this is not unexpected as the variable contributes very little signal. Delineation of main effect 

and time-interactions is excellent. Main effects for x*(1) and x*(3) are generally well 

identified. The feature-time interaction of x*(2) is correctly identified in experiments II and 

III, which is impressive given that x*(2) has a time-interaction but no main effect. The 

interaction is not as well identified in experiment I. This is because in experiment I, the 

interaction is linear and less discernible than experiments II and III, where the effect is 

quadratic. Finally, the time-interaction of x*(3) in experiment III is readily identified even 

when q = 100.

6 Postoperative spirometry after lung transplantation

Forced 1-second expiratory volume (FEV1) is an important clinical outcome used to monitor 

health of patients after lung transplantation (LTX). FEV1 is known (and expected) to decline 

after transplantation, with rate depending strongly on patient characteristics; however, the 

relationship of FEV1 to patient variables is not fully understood. In particular, the benefit of 

double versus single lung transplant (DLTX versus SLTX) is debated, particularly because 

pulmonary function is only slightly better after DLTX.
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Using FEV1 longitudinal data collected at the Cleveland Clinic (Mason et al., 2012), we 

sought to determine clinical features predictive of FEV1 and to explore the effect of DLTX 

and SLTX on FEV1 allowing for potential time interactions with patient characteristics. In 

total, 9471 FEV1 evaluations were available from 509 patients who underwent lung 

transplantation from the period 1990 through 2008 (median follow up for all patients was 

2.30 years). On average, there were over 18 FEV1 measurements per patient; 46% of 

patients received two lungs, and for patients receiving single lungs, 49% (nearly half) 

received left lungs. In addition to LTX surgery status, 18 additional patient clinical variables 

were available. Table 4 provides definitions of the variables used in the analysis. Table 5 

describes summary statistics for patients, stratified by lung transplant status.

As before, calculations were implemented using the boostmtree R-package. An 

exchangeable working correlation matrix was used for the boostmtree analysis. Adaptive 

penalization was applied using cubic B-splines with 15 equally spaced knots under a dif-

ferencing penalization operator of order s = 3. Number of boosting iterations was set to M = 

1000 with in sample CV used to determine Mopt. Multivariate trees were grown to a depth of 

K = 5 terminal nodes and ν= .01. Other parameter settings were informally investigated but 

without noticeable difference in results. The data was randomly split into training and testing 

sets using an 80/20 split. The test data set was used to calculate VIMP.

Figure 5 displays predicted FEV1 values against time, stratified by LTX status (for 

comparison, see the Appendix for predicted values obtained using the mboost procedures 

considered in Section 5). Double lung recipients not only have higher FEV1 but values 

decline more slowly, thus demonstrating an advantage of the increased pulmonary reserve 

provided by double lung transplant. Figure 6 displays the standardized VIMP for main 

effects and feature-time interactions for all variables. The largest effect is seen for LTX 

surgery status, which accounts for nearly 10% of RMSE. Interestingly, this is predominately 

a time-interaction effect (that no main effect was found for LTX is corroborated by Figure 5 

which shows FEV1 to be similar at time zero between the two groups). In fact, many of the 

effects are time-interactions, including a medium sized effect for age. Only FEVPN_PR 

(pre-transplantation FEV1) appears to have a main effect, although the standardized VIMP is 

small.

The LTX and age time-interaction findings are interesting. In order to explore these 

relationships more closely we constructed partial plots of FEV1 versus age, stratified by 

LTX (Figure 7). The vertical axis displays the adjusted partial predicted value of FEV1, 

adjusted for all features (Friedman, 2001). The relationship between FEV1 and age is highly 

dependent on LTX status. DLTX patients have FEV1 responses which increase rapidly with 

age, until about age 50 where the curves flatten out. Another striking feature is the time 

dependency of curves. For DLTX, increase in FEV1 in age becomes sharper with increasing 

time, whereas for SLTX, although an increase is also seen, it is far more muted.

The general increase in FEV1 with age is interesting. FEV1 is a measure of a patient’s 

ability to forcefully breathe out and in healthy patients FEV1 is expected to decrease with 

age. The explanation for the reverse effect seen here is due to the state of health of lung 

transplant patients. In our cohort, older patients tend to be healthier than younger patients, 
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who largely suffer from incurable diseases such as cystic fibrosis, and who therefore produce 

smaller FEV1 values. This latter group is also more likely to receive double lungs. Indeed, 

they likely make up the bulk of the young population in DLTX. This is interesting because 

not only does it explain the reverse effect, but it also helps explain the rapid decrease in 

FEV1 observed over time for younger DLTX patients. It could be that over time the 

transplanted lung is reacquiring the problems of the diseases in this subgroup. This finding 

appears new and warrants further investigation in the literature.

7. Discussion

Trees are computationally efficient, robust, model free, highly adaptive procedures, and as 

such are ideal base learners for boosting. While boosted trees have been used in a variety of 

settings, a comprehensive framework for boosting multivariate trees in longitudinal data 

settings has not been attempted. In this manuscript we described a novel multivariate tree 

boosting method for fitting a semi-nonparametric marginal model. The boostmtree algorithm 

utilizes P -splines with estimated smoothing parameter and has the novel feature that it 

enables nonparametric modeling of features while simultaneously smoothing semi-

nonparametric feature-time interactions. Simulations demonstrated boostmtree’s ability to 

estimate complex feature-time effects; its robustness to misspecification of correlation; and 

its effectiveness in high dimensions. The applicability of the method to real world problems 

was demonstrated using a longitudinal study of lung transplant patients. Without imposing 

model assumptions we were able to identify an important clinical interaction between age, 

transplant status, and time. Complex two-way feature-time interactions such as this are 

rarely found in practice and yet we were able to discover ours with minimal effort through 

our procedure.

All boostmtree calculations in this paper were implemented using the boostmtree R-

package (Ishwaran et al., 2016) which is is freely available on the Comprehensive R Archive 

Network (https://cran.r-project.org). The boostmtree package relies on the 

randomForestSRC R-package (Ishwaran and Kogalur, 2016) for fitting multivariate 

regression trees. Various options are available within randomForestSRC for customizing 

the tree growing process. In the future, we plan to incorporate some of these into the 

boostmtree package. One example is non-deterministic splitting. It is well known that 

trees are biased towards favoring splits on continuous features and factors with a large 

numbers of categorical levels (Lo and Shih, 1997). To mitigate this bias, 

randomForestSRC provides an option to select a maximum number of split-points used for 

splitting a node. The splitting rule is applied to the random split points and the node is split 

on that feature and random split point yielding the best value (as opposed to deterministic 

splitting where all possible split points are considered). This mitigates tree splitting bias and 

reduces bias in downstream inference such as feature selection. Other tree building 

procedures, also designed to mitigate feature selection bias (Hothorn et al., 2006), may also 

be incorporated in future versions of the boostmtree software. Another important 

extension to the model (and software) worthy of future research will be the ability to handle 

time-dependent features. In this paper we focused exclusively on time-independent features. 

One reason for proposing model (1) is that it is difficult to deal with multiple time-
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dependent features using tree-based learners. The problem of handling time-dependent 

features is a known difficult issue with binary trees due to the non-uniqueness in assigning 

node membership—addressing this remains an open problem for multivariate trees. None of 

this mitigates the usefulness of model (1), but merely points to important and exciting areas 

for future research.
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Appendix

A: Other comparison procedures

Section 5 used mboost as a comparison procedure to boostmtree. However because mboost 

does not utilize a smoothing parameter over feature-time interactions, it is reasonable to 

wonder how other boosting procedures using penalization would have performed. To study 

this, we consider likelihood boosting for generalized additive models using P -splines (Groll 

and Tutz, 2012). For compuations we use the R-function bGAMM from the GMMBoost 

package. In order to evaluate performance of the bGAMM procedure, we consider the first 

experimental setting (A) for each of the three experiments in Section 5. For models, we used 

all features for main effects and P -splines for feature-time interactions. The bGAMM function 

requires specifying a smoothing parameter. This value is optimized by repeated fitting of the 

function over a grid of smoothing parameters and choosing that value minimizing AIC. We 

used a grid of smoothing parameters over [1, 1000] with increments of roughly 100 units. 

All experiments were repeated over 20 independent datasets (due to the length of time taken 

to apply bGAMM we used a smaller number of replicates then in Section 5). The results are 

recorded in Figure 8. We find bGAMM does well in Experiment I as it is correctly specified 

here by involving only linear main effects and a linear feature-time interaction. But in 

Experiments II and III, which involve non-linear terms and more complex interactions, 

performance of bGAMM is substantially worse than boostmtree (this is especially true for 

Experiment III which is the most complex model).
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Figure 8. 
Test set performance of bGAMM versus boostmtree using 20 independent datasets.

Next we consider RE-EM trees (Sela and Simonoff, 2012), which apply to longitudinal and 

cluster unbalanced data and time varying features. Let  denote repeated 

measurements for subject i. RE-EM trees fit a normal random effects model, 

, for j = 1, 2,…, ni, where zi,j are features corresponding to the 

random effect βi. RE-EM uses a two-step fitting procedure. At each iteration, the method 

alternates between: (a) fitting a tree using the residual  as the response and xi,j as 

features; and (b) fitting a mixed effect model upon substituting the tree estimated value for 

f(xi,j). We compare test set performance of RE-EM trees to boostmtree using experimental 

setting (A) of Section 5. RE-EM trees was implemented using the R-package REEMtree. 

Figure 9 displays the results and shows clear superiority of boostmtree.

Figure 9. 
Test set performance of RE-EM trees versus boostmtree using 100 independent datasets.
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B: Comparing predicted FEV1 using boostmtree and mboost

Section 6 presented an analysis of the spirometry data using boostmtree. Figure 5 plotted the 

predicted FEV1 against time (stratified by single/double lung transplant status), where the 

predicted value for FEV1 was obtained using boostmtree. In Figure 10 below, we compare 

the boostmtree predicted FEV1 to the three mboost models considered earlier in Section 5. 

Settings for mboost were the same as considered in Section 5, with the exception that the 

total number of boosting iterations was set to M = 1000. Figure 10 shows that the overall 

trajectory of predicted FEV1 is similar among all procedures. However compared to 

boostmtree, mboost models underestimate predicted FEV1 for single lung transplant 

patients, and overestimate FEV1 for double lung transplant patients. It is also interesting that 

mboosttr+bs and mboosttr are substantially less smooth than mboostbs.

Figure 10. 
Predicted FEV1 versus time stratified by single lung SLTX (solid line) and double lung 

DLTX (dashed line) status. Thin lines displayed in each of three plots are boostmtree 

predicted values. Thick lines are: mboosttr+bs (left), mboosttr (middle), and mboostbs (right).
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Figure 1. 
Estimated correlation obtained using in sample CV (solid line) and without in sample CV 

(dashed line) for simulation experiment I (left), II (middle), and III (right).
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Figure 2. 
Difference in the estimate of Mopt obtained using in sample CV to that obtained using test 

set data as a function of n. The left, middle and right plots are experiments I, II and III, 

respectively. In each case, we use 100 independent replicates.
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Figure 3. 
Difference in the estimate of sRMSE obtained using in sample CV to that obtained using test 

set data. The solid line corresponds to n = 100, the dashed line corresponds to n = 300, and 

the dotted line corresponds to n = 500. The left, middle and right plots are experiments I, II 

and III, respectively. Values are averaged over 100 independent replicates.
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Figure 4. 
Estimated sRMSE obtained using in sample CV (solid line) and obtained using test set data 

(dotted line) for n = 500. The left, middle and right plots are experiments I, II and III, 

respectively. Values are averaged over 100 independent replicates.
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Figure 5. 
Predicted FEV1 versus time stratified by single lung SLTX (solid line) and double lung 

DLTX (dashed line) status.
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Figure 6. 
Standardized variable importance (VIMP) for each feature from boostmtree analysis of 

spirometry longitudinal data. Top values are main effects only; bottom values are time-

feature interaction effects.
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Figure 7. 
Partial plot of FEV1 versus age stratified by single lung SLTX (solid lines) and double lung 

DLTX (dashed lines) treatment status evaluated at years 1,…,5.
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Table 4

Variable names from spirometry analysis.

height Height of patient

weight Weight of patient

FEVPN_PR Forced expiratory volume in 1 second, normalized, pre-transplantation

age Age at transplant

female Female patient

BSA Body Surface Area

BMI Body Mass Index

raceW White race

raceB Black race

ABO variables Blood types A, B, AB, and O

TRACH PR Pre-transplant tracheostomy

EISE Eisenmenger disease

PPH Primary pulmonary hypertension

IPF Idiopathic pulmonary fibrosis

SARC Sarcoidosis

ALPH Alpha-antitrypsin disease

COPD Chronic obstructive pulmonary disease

DLTX Double lung transplantation

left Left lung transplant

right Right lung transplant
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Table 5

Summary statistics of patient variables for spirometry data.

All patients (n = 509) Single transplant (n = 245) Double transplant (n = 264)

age 49.34 ± 12.90 57.22 ± 7.05 42.03 ± 12.80

sex(F) 242 (48) 110 (45) 132 (50)

height 167.78 ± 10.13 168.10 ± 9.75 167.47 ± 10.49

weight 68.86 ± 17.23 70.77 ± 15.25 67.10 ± 18.73

BMI 24.33 ± 5.23 24.97 ± 4.63 23.75 ± 5.68

BSA 1.80 ± 0.27 1.83 ± 0.24 1.77 ± 0.29

FEVPN_PR 28.54 ± 15.38 27.21 ± 14.18 29.78 ± 16.34

raceW 472 (93) 236 (96) 236 (89)

Blood Gr(A) 210 (41) 103 (42) 107 (41)

Blood Gr(AB) 18 (4) 9 (4) 9 (3)

Blood Gr(B) 61 (12) 22 (9) 39 (15)

TRACH_PR 1 (0) 0 (0) 1(0)

EISE 7 (1) 0 (0) 7 (3)

PPH 18 (4) 2 (1) 16 (6)

IPF 96 (9) 50 (20) 46 (17)

SARC 19 (4) 6 (2) 13 (5)

ALPH 34 (7) 23 (9) 11 (4)

COPD 202 (40) 148 (60) 54 (20)

Values in the table are mean ± standard deviation or n(%), where n denotes the sample size.
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