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Sources to variability in circulating human miRNA signatures
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ABSTRACT
An increasing number of studies propose circulating microRNAs (miRNAs) as biomarkers for a large
number of human diseases including cancer, cardiovascular diseases, neurologic pathologies and others.
To further validate miRNA as biomarkers it is indispensable to understand the variability of circulating
miRNAs in healthy individuals. We determined the longitudinal miRNomes of 90 serum samples from the
Janus Serum Bank in Norway, which have been stored between 23 and 40 y at -25 �Celsius. We profiled 3
serum samples with microarrays for 30 individuals, each. For each individual the samples were collected
with a time interval of approximately 5 y. This design allowed insights into inter-individual variability, age
dependent miRNA variability and the impact of storage length and pre-processing. A significant
proportion of the miRNome was affected by the age of the blood donor and a not negligible, albeit small,
part of the miRNome by the storage time. A substantial part of miRNAs was differentially abundant
between individuals, independent of the time when samples were collected. Stepwise filtering of the 529
miRNAs that were detected in the serum samples showed 168 miRNAs with differential abundance
depending on the time point analyzed, 56 miRNAs differentially abundant between individuals, and 169
miRNAs with an abundance depending on the sampling procedure. While these groups of miRNAs
contain generally interesting and biologically important miRNAs, the remaining 135 miRNAs constitute
very promising biomarker candidates as they show an overall low variability between healthy individuals,
a likewise overall low variability across a longer life span, and a high independence of the sampling
process and the storage length.
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Introduction

Molecular markers are intensively studied as promising bio-
markers to advance human healthcare. In the past three decades,
mRNAs, coding for proteins have been considered as biomarkers
for many human diseases. Now attention has been shifted toward
the non-coding part of the genome. A substantial part of non-cod-
ing RNAs are small non-coding RNAs, sncRNAs. Among the best
studied sncRNAs are microRNAs (miRNAs), nucleic acid chains
of 17–23 nucleotides. The first miRNAs that were described as
early as 1993 in C. elegans were lin-4 and let-7.1 Later, in 2001, the
role of “tiny regulators with great potential” has been described by
Ambros.2 Applying different experimental techniques miRNA
expression profiles have been associated to literally all diseases.
Examples include Acute Myocardial Infarction (AMI),6 Alzheimer
Disease,3 Bladder cancer,7 lung cancer,4,5 endocrine cancers,8 gas-
tric cancer,6 pancreatic cancer,7 glioma,89 and many others.10 In
these studies, genome wide high-throughput profiles of miRNAs
are usually done using microarrays or next-generation sequencing.
For validation and lower-throughput analyses RT-qPCR is
applied. Advantages and disadvantages of the different platforms
have been investigated by Mestdagh et al.11 Notwithstanding the
great potential of miRNAs as biomarkers,12,13 the translation of
miRNAs from basic research to patient care is progressing slowly.

A recent review article by Witwer and Halushka summarizes
major challenges for the clinical translational of miRNA bio-
markers, including aspects such as relating miRNAs to cell types
within tissues, reliable assay techniques and others.14 The need for
more background knowledge is exemplarily demonstrated for
miR-144, which is considered as “general diseases marker”15 and
appears to be predominantly expressed in red blood cells.16 To
adequately judge its value as biomarker it is mandatory to have a
more complete picture on its tissue specific expression. Similar
challenges apply also for other miRNAs such as miR-143/145.17

Databases providing comprehensive information on miRNA
expression in different tissues18 or in different blood cell types19

are a first step toward a better biologic understanding of proposed
miRNA biomarkers. Other issues toward clinical translation of
miRNAs biomarkers are the methodological challenges associated
with the use of serum or plasma as source for circulating miRNA
markers.20

In addition to the afore mentioned challenges, there is an
urgent need for further evaluation of most of the proposed
miRNA biomarkers in terms of stability and variability in a
population of individuals without known diseases. If respective
markers show high variability between unaffected people, it is
difficult to define fixed thresholds that are necessary for most
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application in the clinical routine. Thus, variable markers
can only be used if there are substantial differences in the
signal between affected and unaffected individuals. For
those markers that are currently applied in clinical routine,
reference values remain largely unknown for the according
miRNAs. Especially the afore mentioned inter-individual
variations complicates the determination of reference values.
Since miRNA values are also influenced by the age of indi-
viduals21 – not only in body fluids but even in tissues such
as the heart22 – longitudinal monitoring of individuals over
time is required. Specifically, for the present study, we
included individuals without known malignant diseases at
the time of blood drawing. Since the respective individuals
may, however, suffer from a malignant disease that has not
been diagnosed at this time point, longitudinal data with
follow-up information are likewise important.

These requirements call for samples that have been collected
prospectively in population- based studies, with long follow-up
times. In most studies with sera from healthy individuals, the
focus has been on the comparison between miRNAs identified
in patients and in healthy controls without testing other factors
that impact the miRNA abundance. Having consecutive meas-
urements combined with follow-up data over many years
allows to estimate the variability of miRNA abundances during
lifetime of healthy individuals. In the present study, we
included individuals from the Janus Serum Bank in Norway.
Information on non-cancer diseases was not available for the
individuals included in this study. Notably, none of the
included controls from the Norwegian cancer research biobank
did develop cancer after the blood donation during the time
monitored. This allowed us to address the questions how vari-
able miRNAs are between different individuals that did not
developed cancer, how variable miRNAs are within individuals
over time, and how strong long-time storage of samples affects
miRNA profiles.

Results

Study set-up for whole-genome-wide miRNA profiling

To determine the variation of miRNA abundances in sera of
cancer free individuals we analyzed samples from the Janus
Serum Bank in Norway. We measured the genome-wide miR-
Nomes of 90 serum samples from 30 individuals. Each of the
individuals was analyzed at 3 time points, with an interval of
approximately 5 y between each drawing. All blood donors
were residents of Norway and had not been diagnosed with
cancer at the time of blood drawings. To acknowledge the influ-
ence of diseases with a delayed clinical manifestation we also
excluded donors that were diagnosed with cancer following the
last blood drawing. Upon blood drawing sera were isolated as
detailed in Material and Methods and stored at ¡25�C degree.
The storage times varied between 23.5 and 40.5 y and the age
of individuals at the times of blood drawing between 30.3 and
61.8 y. The overall distribution of age and storage length are
presented in Fig. 1A. The samples have been selected in a way
that the length of the storage times was largely comparable for
each of the 3 time points of blood drawing. As depicted
in Fig. 1B there are three almost identical age clusters each with

an approximate time span of 5 y. Since we performed a longitu-
dinal study on the same individuals over 10 years, the more
recently collected samples (having shorter storage times) corre-
spond to older individuals. Thus, age and time of sampling are
inversely correlated (correlation of ¡0.54, p-value 3 £ 10¡8).

Figure 1A. Box-plots showing the distribution of age of the blood donors (given in
years on the Y-axis) and the distribution of the duration of storage times (given in
days on the Y-axis).

Figure 1B. Scatter plot of the age of the blood donors and of the storage times.
For each donor, the samples were collected at three comparable time windows of
approximately 5 y as indicated by 3 clusters.
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Estimating the influence of age and storage length

One of the main objectives of this study was to determine the
effect of long-term storage of serum samples on the miRNome.
The answer to this question is complicated by the above-men-
tioned inverse correlation of the length of storage and the age of
the blood donor at the times of sampling. Changes in the abun-
dance of miRNAs over time may be due to the altered age of
the blood donors or to the duration of the sample storage. To
address this issue, we selected two subsets of samples. In the first
subset, we included 15 of the 90 samples with minimal differen-
ces in storage length and maximal variation in the age range.
These samples showed a variation in storage times of 0.9 y
i.e. the maximal difference in storage times between the earliest
and the latest time point was 0.9 y. In contrast, the age interval of
the same individuals was 27.3 y. In the second subset we likewise
included 15 samples but with minimal age difference and maxi-
mal variation in storage times. These samples showed a maximal
age difference of 2.9 y and a difference in storage times of 27 y.
Fig. 1C summarizes the distribution of age and storage times for
each of the two subsets. We determined the coefficient of varia-
tion (CV) for the miRNAs in both subsets of samples to obtain
an estimate on whether a miRNA is generally more affected by
storage times or by the age of the individuals. As depicted in
Fig. 2 the majority of the miRNAs present in the serum samples
showed a good correlation of CVs in both subsets. As for the
differences between both sets, the average CV with respect to the
age of the blood donors at the time of sampling across all miR-
NAs was 0.48 and the average CV for with respect to the storage
length was 0.38. A 2-tailed and paired t-test demonstrated a

highly significant decreased CV depending on the storage length
as compared with the age (p < 2.2 £ 10¡16). The results indicate
that the miRNAs that show a variability are mostly affected by
the age of the blood donors and to a lower extent by the storage
time. A prominent example was miR-21–5p with a CV of 1.52
for the age of the donor and a CV of 0.33 for the storage length.
Few miRNAs show opposite patterns. For example, miR-4730
and miR-4306 both had high CV with respect to the storage time
(1.04 and 1.12 respectively) and a low CV with respect to the age
of the blood donor at sampling times (0.7 and 0.57). Interestingly,
the differences in CV between storage length and age were larger
for higher abundant miRNAs. Although the data rely on a subset
of all samples and may show a selection bias, the results show
that a significant portion of the miRNome is affected by the age
of the blood donor and a not negligible, albeit small, part of the
miRNome by the storage time.

Inter-individual and time-dependent variability

Besides the age of the blood donors and the duration of storage,
differences in miRNA expression between individuals may also
account for the variability of the miRNomes. To test this
hypothesis, we performed two analyses of variance (ANOVA)
for each miRNA. Using the time point (first, second and last
measurement) or the individual as response variables, we
clearly identified miRNAs that were largely dependent on the
time point and miRNAs that were largely dependent on the
individual (Fig. 3). Following adjustment for multiple testing
by applying the Benjamini-Hochberg approach, 73 miRNAs
were significantly different between individuals. Although only
three measurements were available for each individual, the low-
est significance value was 1.8 £ 10¡9. This value was calculated
for miR-328–5p, showing a 20-fold variation between the indi-
vidual with smallest and the individual with largest miRNA
abundance. The same miRNA showed a not significant p-value
of 0.66 for the storage time as response variable. Likewise, miR-
144–3p was highly significant (4.2 £ 10¡6) for the individuals
but not for the storage time (0.55). Box-plots for miR-328–5p
and miR-144–3p each for the 30 individuals and the 3 time
points are given in Fig. 4. By contrast, miR-6740–5p did not sig-
nificantly varied between individuals (p D 0.16) but was signifi-
cant with respect to the time points (p D 1.2 £ 10¡7). A similar
pattern was calculated for miR-7847–3p. Box-plots for miR-
6740–5p and miR-7847–3p are shown in Fig. 5. Tables with
detailed statistics for all miRNAs are provided as Supplemental
Material (Supplemental Table 1). While these miRNAs are bio-
logically very interesting the wide range of abundance already in
unaffected individuals may cause challenges for respective miR-
NAs to be used as diagnostic or prognostic biomarkers.

miRNAs with divergent abundance between different
sample groups

For studies that last for one or even more decades, it is no
uncommon that sample collection routines and serum/sample
pre-processing are modified over time. Respective alterations
potentially impact the patterns of molecular markers and it is
of importance to test for according dependencies. The sam-
pling of the Janus Serum Bank was divided in five different

Figure 1C. Distribution of age and storage times for two subsets of samples. The
first subset, which is framed by two orange dashed lines includes samples with
minimal differences in storage length and maximal variation in the age range (n D
15). The second subset, which is framed by two blue dashed lines, includes sam-
ples with minimal age difference and maximal variation in storage times (n D 15).
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categories based on sampling year and sample preprocessing
protocols. ANOVA of these highlighted significant results:
most significant was the previously mentioned miR-328–5p
(p-value of 3.7 £ 10¡18) followed by miR-150–3p (p-value of
1.4 £ 10¡12). Since the miRNAs are potentially affected by

inter-individual variations or in by the sampling procedures
we filtered all miRNAs that are (1) significantly affected by
inter-individual, (2) age related, (3) storage length related, or
(4) related to different sampling procedures. In addition to the
miRNAs mentioned in the previous section the latter step

Figure 2. Scatter plot of the coefficient variation of the storage length and the age of the blood donors. MiRNAs are generally more affected by the age of the blood
donors than by the storage time. Points are colored with respect to the expression intensity of the respective miRNAs.

Figure 3. Scatter plot of an analysis of variance (ANOVA) for each miRNA with either the storage time or the individual as response variable. The significance values for
each miRNA are given as negative decade logarithm.
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Figure 4. Box-plots for miR-328–5p and miR-144–3p showing the variance of both miRNAs between the 30 individuals and the 3 time points. The different individuals
(upper part of the figure) and the different time points (lower part of the figure) are referred to by numbers on the X axis. The variation of intensity values is given on the
y-axis. The variation of both miRNA was not significant for the storage time but highly significant between the individuals.

Figure 5. Box-plots for miR-6740–5p and miR-7847–3p showing the variance of both miRNAs between the 30 individuals and the 3 time points. The different individuals
(upper part of the figure) and the different time points (lower part of the figure) are referred to by numbers on the X axis. The variation of intensity values is given on the
y-axis. The variation of both miRNA was significant for the storage time but not significant between the individuals.
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removed further 169 miRNAs. In sum, starting from a set of
528 miRNAs that were detected in the serum samples we end
with a set of 135 miRNAs (25.6%). These are also included in
Supplemental Table 1.

Differences in miRNA features

Both, biologic- as well as technical variations potentially add to
the overall variability in miRNA measurements. Previously, we
observed that among other factors the base composition, i.e., the
content of A, C U and G substantially influences the signal
intensities.23 We thus investigated the sequence features of the
miRNAs that were variable between individuals and the miRNAs
that were variable due to time of storage. Specifically, we corre-
lated sequence features to each of both groups and observed a
surprisingly high and statistically significant difference in the
base composition of the two groups. By far the largest effects
were calculated for the guanine content of miRNAs. The group
of miRNAs with variations only between individuals but not
between time points contained 45% guanine bases while the
other group contained only 35% guanines (p D 7.6 £ 10¡6).
The miRNAs that differed between time points but not between
individuals were significantly enriched for cytosine and uracil
(Fig. 6). Astonishingly, this bias was observed across all miRNAs
independent of the their absolute expression intensity.

The differences in base composition between both groups
also lead to shifts in miRNA motifs. We determine the most
over- and under-represented 4-nucleotide miRNA motifs in
both groups. The three most over-represented motifs of miR-
NAs that were significant for the times of storage included
“CCCA” (27% versus 9%), “UCCC” (26% vs. 7%) and “CCCC”
(30% vs. 7%). Vice versa, the most over-represented motifs in
the group of miRNAs significant for the individuals were
“GGGG” (20% vs. 47%), “GGAG” (25% vs. 48%) and “GCGG”
(9% vs. 26%). By applying miEAA24 for identifying pathways
that are regulated differentially between both groups of miR-
NAs we did not obtain significant results.

Discussion

In the present study, we investigated the variation of miRNA
abundances over longer life spans between different healthy indi-
viduals. For all factors that we investigated, the storage time, the

life span, the different individuals and the different collection
techniques we observed significant variations. While a certain
variability in miRNA expression usually renders a miRNA inter-
esting (e.g., variability between healthy controls and diseased
patients), a “perfect” biomarker should be stable in an unaffected
population over a time span and be rather independent of differ-
ent collection techniques. Our results suggest the presence of 135
least affected miRNAs in serum samples of control individuals
collected in a population based study in Norway.

To facilitate the discovery of biomarkers, especially in the
light of long follow up times, serum collections that have been
carefully build up over years or even decades are required.
Respective sera collections that have been frequently main-
tained over years but were of limited use for molecules with a
short half life even when stored under low temperature condi-
tions. MiRNAs have, however, not only a relatively in vivo but
also a high ex vivo stability.25 Tapping into the resources of
sera collections for miRNAs biomarker analysis opens a great
option for extended retro perspective studies. To properly use
this resource, it is mandatory to have a clear idea to what extent
the miRNA in sera are effected by long-term storage.

The majority of the miRNA studies that analyzed human
sera, did not specifically acknowledge the long-term storage
effects on miRNAs in human sera. Using samples from the
Janus Serum Bank, we provided first evidence that serum based
miRNA profiles were generally stable over several years and
that a developing cancer might be detectable years before diag-
nosis through a specific miRNA signature.26 A recent study by
Rounge et al. also based on serum from the Janus Serum Bank,
confirmed that miRNAs are present and stable in archived
samples frozen at ¡25�C for at least 40 y. While the long-time
storage did not reduce miRNA yields the preanalytical condi-
tions like different clotting times had a significant effect on
miRNA abundances.27 Further evidence for the stability of
miRNAs in stored samples came from a real-time PCR analysis
that was performed on a panel of 8 miRNAs from samples that
were stored for 12 months at ¡80 �C.28

Independent of the influence of the duration of the storage it
is important to address the difference between various collec-
tion protocols. Although the majority of the protocols is on col-
lections of sera, there is a multitude of variations including
scenarios that required the collection of plasma or of whole
blood, which is later used for serum or plasma isolation, scenar-
ios that largely vary in terms of storage duration and storage
temperature of either blood, serum or plasma, and protocols
that vary in terms of the methods used for RNA isolation.
Finally, the reports vary in terms of the time and temperature
at which the isolated RNA is stored. Overall, the variations
between the protocols complicates the comparison and the
evaluations of miRNAs as biomarkers.20

Beside the impact of storage duration, our study identified
miRNAs that have been affected by the age of the blood
donors. Previous reports also indicated the influence of age
on the miRNA abundance in human blood including our
own study that reported several miRNAs that were corre-
lated with age whereas sex was less of a confounding factor.21

We developed a web-based application to allow testing of
miRNAs for their likelihood of being influenced by con-
founding factors (http://www.ccb.uni-saarland.de/mirnacon).

Figure 6. Box-plots showing the percentage of bases for miRNAs that varied signif-
icantly between individuals indicated in blue and miRNAs that varied significantly
between storage times indicated in red. The nature of the nucleotides is indicated
on the X axis with reference to the basis adenine, cytosine, uracil, and guanine and
the percentage of the nucleotides on the Y-axis.
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Recently, a study by RT-qPCR on 155 plasma miRNAs indi-
cated that circulating miRNAs cannot only be affected by age,
but also by BMI and sex.29

The present study set-up allowed to analyze 3 consecutive
time points of each individual with the blood samples collected
over 10 y with narrow variations between the time intervals.
The study set-up also ensures that the individuals did not
develop cancer during this time. Nevertheless, the study design
has obvious disadvantages. The total cohort size with 30 indi-
viduals is comparably small, especially when sub-groups are
considered (e.g., males only, or “young” individuals only). Fur-
thermore, the very long collection time over many decades nec-
essarily entrails differences in the sample collection protocols.
Considering these influences we, however, think that the abun-
dance of miRNAs in the respective samples largely reflects the
original expression of miRNAs even after longer storage times.

Additionally, other factors that are unknown, e.g., diseases
that have gone undetected in the respective individuals, may
blur our results. Taking this into account, we assume that the
stable markers identified in this study carry information as bio-
marker if they are found to be altered in cancer patients. We
can, however, not rule out that the variable of dynamic miR-
NAs can also be due to undiscovered pathogenic processes.

In the light of the above-mentioned advantages and disadvan-
tages we conclude that the abundance of miRNAs in serum can
be influenced by the storage time, the sampling procedure and
the age of the blood donor. Respective miRNAs that are not
affected from one of the evaluated factors may represent promis-
ing candidates in biomarker development, especially in cancer
research, with a potential for translation into clinical care. To
properly judge the diagnostic value the substantial number of
miRNA candidates that have been implicated in various diseases,
it is of upmost importance to know the normal variation of miR-
NAs in healthy individuals at different time points.

Methods

Study Samples

Samples were selected from the Janus Serum Bank, which is a
population-based cancer research biobank containing prediag-
nostic biospecimens from 318,628 Norwegians.30 Samples were
collected from health examination surveys in Norway (HE) and
from Red Cross Blood donors (RCBD) in Oslo region during
1972–2004. The samples were stored in freezers at ¡25�C. The
samples were collected in gel vials, or in 10-mL tubes contain-
ing either 5 mg sodium iodoacetate or no additives. After coag-
ulation and centrifugation at room temperature, the samples
were shipped cold (C1�C; C10�C) to a central facility and fro-
zen within days. Few samples were lyophilized and have been
rehydrated before use. Clotting time was 1 hour for the HE
samples and varied between 14 hours and 28 hours for the
RCBD samples. Based on the above-mentioned protocol varia-
tions, the samples were assigned to five sampling categories; 1)
HE samples with iodoactetate added collected in 1972–1978, 2)
HE samples with no additives collected 1979–1986, 3) HE sam-
ples in separating gel tubes collected 1987–2004, 4) RCBD sam-
ples with no additives collected 1973–1979, 5) RCBD samples
with no additives collected in 1980–1991.

RNA extraction, quality control and miRNA profiling

Total RNA including miRNAs was isolated using the miR-
Neasy Serum/Plasma Kit (Qiagen, Hilden, Germany). In
detail, 100 ml serum was mixed with 100 ml RNase-free
water and 1ml Qiazol lysis solution and incubated for 5 min
at room temperature. After addition of 200 ml chloroform,
the samples were vigorously shaken for 15s and centrifuged
at 12,000 rpm and 4�C for 15 min. The aqueous phase was
transferred into an empty tube and mixed with 3 ml glycogen
solution (20 mg/ml) to facilitate RNA precipitation. Subse-
quently, the samples were transferred into the QIAcube
instrument and RNA was isolated automatically according
to the manufacturers protocol. RNA concentration was
measured using NanoDrop2000 (Thermo Fisher Scientific,
Waltham, MA, USA) and RNA quality was measured in a bioa-
nalyzer run using the SmallRNA Chip (Agilent Technologies,
Santa Clara, CA, USA). The miRNA expression profiles were
measured using the SurePrint G3 8 £ 60k miRNA microarray
(miRBase version 21, Cat. no. G4872A) containing probes for
detection of 2,549 mature human miRNAs and the miRNA
Complete Labeling and Hyb Kit (Cat. No. 5190–0456) according
to the manufacturers recommendations. Briefly, 100 ng total
RNA including miRNA for each sample was dephosphorylated
for 30 min at 37 �C using calf intestinal phosphatase, denatured
for 10 min at 100 �C using 100% dimethyl sulfoxide (DMSO)
and subsequently labeled with Cy3-pCp for 2 h at 16 �C using
T4 ligase. The labeled RNA for each sample was hybridized to
the microarray for 20 h at 55 �C with 20 rpm rotation in the
SureHyb chambers (Agilent). After two washing steps, the arrays
were dried and scanned using the Agilent Microarray Scanner
G2565BA (Agilent Technologies, Santa Clara, CA, USA) with
3 mm resolution in double-pass mode. Resulting TIF-files were
analyzed with the Agilent AGW Feature Extraction software
(version 10.10.11, Agilent Technologies). All raw data and nor-
malized microarray data are available in the gene expression
omnibus31,32 (GEO) under reference GSE100768.

Computational analysis

Profiles were investigated using the freely available pro-
gramming environment R. miRNAs in serum samples were
considered to be detected according to the "gIsGeneDe-
tected” flag provided by the manufacturers software. To
include a miRNA in the study we required positive signals
in at least 10 different samples. Following exclusion of the
low abundant miRNAs, microarray measurements were nor-
malized using quantile normalization (preprocess Core pack-
age). Clustering has been performed using the Heatplus
package. As distance measure the Euclidian distance was
used. Analysis of variance (ANOVA) was performed using
the aov function. To consider variability in the context of
the mean expression we calculated the coefficient of varia-
tion, the quotient of standard deviation and average value
for each mina on a non-logarithmic scale.
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