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Abstract

Antibiotic lethality is a complex physiological process, sensitive to external cues. Recent advances 

using systems approaches have revealed how events downstream of primary target inhibition 

actively participate in antibiotic death processes. In particular, altered metabolism, translational 

stress and DNA damage each contribute to antibiotic-induced cell death. Moreover, environmental 

factors such as oxygen availability, extracellular metabolites, population heterogeneity and 

multidrug contexts alter antibiotic efficacy by impacting bacterial metabolism and stress 

responses. Here we review recent studies on antibiotic efficacy and highlight insights gained on 

the involvement of cellular respiration, redox stress and altered metabolism in antibiotic lethality. 

We discuss the complexity found in natural environments and highlight knowledge gaps in 

antibiotic lethality that may be addressed using systems approaches.

Introduction

The discovery of antibiotics early in the 20th century transformed medical practice and 

microbiological investigation, driving discovery in numerous aspects of microbial 

physiology including stress responses, mutagenesis and microbial ecology. The primary 

targets and mechanisms of action for most bactericidal antibiotics have been identified and 

well-studied [1]; however, there is a growing appreciation that antibiotic lethality is a 

complex systems-level process that is sensitive to environmental factors [2]. Environmental 

differences elicit diverse antibiotic treatment responses, from increased susceptibility to 

phenotypic tolerance. In light of the diminishing pipeline for antibiotic discovery [3], there 

is an urgent need to better understand mechanisms and factors that influence antibiotic 

efficacy.
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Here, we review recent studies of antibiotic lethality in diverse microbial species. We 

summarize intracellular mechanisms underlying lethality and describe environmental factors 

that tune efficacy. We discuss how antibiotics do more than inhibit their primary targets, 

describe how downstream processes critically participate in active death processes, and 

highlight insights gained from manipulating extracellular conditions. We also consider the 

complexity of natural environments and discuss how systems approaches and emerging 

technologies may provide novel insights into antibiotic lethality.

Bactericidal Processes

Bactericidal antibiotics primarily target processes essential to cellular replication, but studies 

from several laboratories implicate events downstream of target inhibition as critical 

components of lethality (Figure 1). This is supported by sequenced strains from 

experimental evolution studies [4-7] and clinical isolates [8-10] demonstrating that 

mutations unrelated to an antibiotic target or transport can significantly inhibit antibiotic 

lethality. In 2007, Kohanski, et al. introduced the hypothesis that bactericidal antibiotics of 

different classes commonly induce reactive oxygen species (ROS) as part of their lethality 

[11]. Informed by microarray experiments with E. coli cells treated with diverse bactericidal 

antibiotics, the authors genetically validated ROS-mediated contributions to lethality by 

tricarboxylic acid (TCA) cycle activity, Fe-S cluster biosynthesis, and SOS-mediated DNA 

repair. This stimulated further studies revealing the involvement of two-component signaling 

[12], iron homeostasis [13-15], and nucleotide oxidation [16,17] in ROS-mediated antibiotic 

lethality; enhanced lethality in cells deficient in oxidative defenses [18]; protection against 

lethality by mechanisms involving antioxidant defense [19-23]; as well as investigations 

challenging the general hypothesis [24-26]. These studies have been reviewed and addressed 

elsewhere [2,27,28].

These investigations and several others demonstrate that antibiotics perturb diverse aspects 

of bacterial physiology. Such perturbations actively contribute to cell death, in part, by 

directly inducing cellular damage while also driving the bacterial cell away from 

homeostasis and inhibiting its ability to cope with antibiotic challenge. Studies on these 

perturbations have revealed several additional important insights linking aspects of cellular 

physiology to antibiotic lethality.

Altered Metabolism and Reactive Oxygen Species

Several recent studies have further explored and confirmed the involvement of altered 

metabolism and ROS in antibiotic lethality using new technologies. Targeted metabolomic 

studies have revealed significant changes in intracellular energy metabolites following 

antibiotic treatment [29-31], corroborated by live-cell imaging experiments directly 

measuring transient changes in ATP [32]. Experiments using the Seahorse XF Analyzer have 

captured real-time increases to cellular respiration by bactericidal antibiotics [33-35], 

complementing real-time measurements of overflow ROS production using electrochemical 

[36] or genetically encoded biosensors [33]. Interestingly, integrated analyses of 

transcriptomic and metabolomic data have revealed TCA cycle activity to be critical for 

antibiotic lethality, independent from drug uptake [37]. Collectively, these studies, and 
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several others [8,38-45], demonstrate that changes to bacterial metabolism participate in 

lethality for many bactericidal antibiotics.

Bacteria are naturally optimized for energy efficiency [46,47] and several recent studies 

suggest metabolic deregulation may also contribute to antibiotic death processes. For 

instance, penicillin-binding protein disruption by β-lactams stimulates a futile cycle of cell 

wall synthesis and degradation that depletes cellular resources as part of its toxicity [48,49]. 

In addition, ATP synthase inhibition by bedaquiline stimulates futile cycling of protons in 

the respiratory chain [50], which increases oxygen consumption [35] and is lethal to M. 
tuberculosis [51]. Moreover, genetically induced futile cycling in MazF-mediated RNA 

degradation has been shown to confer complete protection against β-lactam and quinolone 

lethality, but potentiate sensitivity to aminoglycosides [52]. It is likely that metabolic 

deregulation by futile cycling constitutes a common mechanism of antibiotic lethality. This 

is supported by recent evidence that genetically induced futile cycling shares many 

metabolic features with treatment by bactericidal antibiotics, including increased oxygen 

consumption, increased ROS production and net decreases in intracellular ATP [53]. 

Interestingly, cells subjected to genetically induced futile cycling also exhibit increased 

sensitivity to oxidative stress. Metabolic deregulation may therefore amplify antibiotic-

induced stress and enhance lethality.

Translational Stress

Antibiotic lethality is well recognized to decrease under conditions with reduced bacterial 

growth, and several recent proteomic studies have revealed ribosomal biosynthesis and 

activity to be key regulators of bacterial growth rate and metabolism [47,54,55]. 

Macromolecular processes such as protein translation are therefore also likely to be involved 

in antibiotic lethality. In support of this, bacteriostatic inhibitors of protein translation 

suppress the lethality of bactericidal antibiotics in wildtype E. coli [34], but induce lethality 

in mutant cells depleted for ribosomal assembly operons [56]. Additionally, bactericidal 

antibiotics induce several heat shock genes responsive to translational stress [11]. Because 

growing cells devote >50% of their energy to support the demands of protein translation 

[57], translational stress likely amplifies the lethal consequences of metabolic stresses 

induced by antibiotic treatment. Future studies are needed to clarify how antibiotic 

disruption of translation and other macromolecular processes contributes to lethality.

DNA Damage

Several DNA repair genes are enriched in chemogenomic screens [58,59] and promoter-

reporter experiments [60], suggesting DNA damage to also be critical for antibiotic lethality. 

These findings have been supported genetically, as deletion of SOS response genes enhances 

drug susceptibility [11,16], while over-expression of mismatch repair genes confers 

protection [16,33]. Moreover, biochemical inhibition of RecA with polysulfonated 

compounds potentiates the lethality of multiple antibiotics against both Gram-negative and 

Gram-positive bacteria [61,62]. Oxidative damage to the nucleotide pool may, in part, 

underlie this phenotype [29], as incorporation of 8-oxo-guanine induces mismatch repair 

defects that trigger the formation of double-stranded DNA breaks [16]. Additionally, 

holliday junction resolvase disruption was recently shown to enhance quinolone lethality in 
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mycobacteria [63]. This could be rescued by treatment with bipyridyl, an iron chelator, and 

thiourea, a hydroxyl radical chelator, supporting prior work implicating antibiotic-induced 

oxidative stress in damaging DNA [11,16]. Mechanistic studies are needed to further clarify 

the processes bridging antibiotic target inhibition and lethal DNA damage.

Primary and Secondary Death Processes

Collectively, these studies implicate events downstream of target inhibition as active 

participants in antibiotic lethality. It is our view that much of the misunderstanding over 

antibiotic lethality is derived from the difficulty in experimentally separating the lethal 

contributions of essential gene product inhibition from those of downstream mechanisms. It 

may be possible to distinguish between these biochemically, as the lethality driven by 

secondary processes can be interrupted by inhibiting protein translation and cell respiration 

[34] or by metabolic shunting [37]. Cell death emerging from stress-induced death processes 

was recently studied in an antibiotic-free system using a historically significant fusion 

protein [64]. The authors demonstrated that the primary consequence of jamming the SecY 

protein translocation machinery was cell stasis and that cell death instead emerged from 

downstream events shared with antibiotic lethality, including ROS accumulation and double-

stranded DNA damage. Importantly, nucleotide oxidation occurred hours before cell death in 

this system. Taken together, these studies support a model for antibiotic lethality where 

target inhibition drives active death processes by (1) damaging essential cellular processes 

and (2) inducing stress responses that increase metabolic activity, thereby generating toxic 

metabolic byproducts, that damage cellular components (Figure 1).

Environmental Factors

Bacterial stress responses evolved to help bacteria adapt to various environments [65] and 

may confer protection against antibiotic lethality. For instance, pre-treatment with hydrogen 

peroxide can protect against multiple bactericidal antibiotics by priming oxidative stress 

responses [33], and nutrient starvation can induce phenotypically tolerant ‘persister’ cells by 

activating ppGpp and the stringent response [66,67]. Several recent studies demonstrate how 

environmental factors may alter antibiotic efficacy, providing additional insight into 

antibiotic lethality (Figure 2).

Oxygen Availability

Antibiotic efficacy decreases in the absence of oxygen [24,25,33] and hyperbaric oxygen 

can potentiate antibiotic killing of bacterial biofilms [68]. Under normoxia, oxygen 

participates in aerobic respiration as the terminal electron acceptor for ATP synthesis and 

produces reactive species as metabolic byproducts [35]. In such conditions, antibiotic 

efficacy is linked to respiratory activity; for example, deletion of the cytochrome oxidases, 

which reduces respiration, inhibits drug lethality [34], while deletion of ATP synthase 

subunits, which increases respiration, enhances lethality [34,69]. Similarly, respiratory 

suppression by nitrite also inhibits antibiotic killing [70]. Under anoxia, nitrate frequently 

participates in anaerobic respiration as the terminal electron acceptor and can potentiate 

antibiotic killing [33]; it is not yet known if nitrate and other terminal electron acceptors also 

generate toxic metabolic byproducts that contribute to antibiotic death processes. Cellular 
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respiration likely affects antibiotic efficacy due to its roles in metabolism and energy 

production, but may also contribute to lethality by facilitating drug import [37,71] or 

stimulating intracellular alkalization [72]. Collectively, these studies implicate respiratory 

activity as an important mediator of the lethal processes induced by antibiotics.

Extracellular Metabolites

Environmental nutrients affect many aspects of bacterial physiology that alter antibiotic 

efficacy, including growth kinetics and stress response activation [73,74]. Recent studies 

using flow cytometry and high-throughput assays have revealed how specific carbon 

metabolites or amino acids may enhance antibiotic death processes by fueling TCA cycle 

activity, increasing cellular respiration and inducing a proton motive force, promoting both 

drug uptake and subsequent lethality [37,71,75,76]. Interestingly, flux through the 

glyoxylate shunt was shown to suppress aminoglycoside potentiation by metabolites such as 

fumarate despite measureable drug uptake, implicating an active metabolic component to 

antibiotic lethality [37]. This is supported by recent chemogenetic screens revealing 

collateral antibiotic sensitivity under nutrient limitation [77]. Additionally, cysteine 

supplementation was shown to increase cellular respiration, ROS, and antibiotic lethality, as 

well as inhibit persister formation in Mycobacterium [78] through thiol-mediated redox 

stress [79,80]. To date, input-output relationships between environmental metabolites and 

antibiotic death phenotypes have not been systematically mapped; such efforts will be 

important for identifying specific metabolic pathways participating in antibiotic lethality.

Population Heterogeneity

Antibiotic treatment and environmental stresses can give rise to population heterogeneity 

and confer phenotypic protection against lethality [81]; simple examples include variable 

expression of multi-drug efflux pumps [82] and stochastic formation of persister cells by 

toxin-antitoxin systems and the ppGpp-mediated stringent response [83,84]. Recent studies 

have revealed several additional persister mechanisms, including ATP depletion [85,86], 

morphological differentiation [87], inter-cell signaling [88,89], and toxin-antitoxin-mediated 

inhibition of proton-motive force [90,91] or protein translation [92]. Microbial ecologists 

have largely viewed population heterogeneity as a form of bet-hedging, conserved to 

facilitate the adaptation to new environments [93]. In support of this, several studies 

demonstrate how persister mechanisms can help pathogens survive inside host cells [94,95] 

and provide a reservoir for evolving antibiotic resistance [96-98]. Investigations have also 

shown how social behaviors such as quorum sensing [99], signaling [100] and cooperative 

mutualism [101] can confer protection against antibiotic lethality in mixed-species 

environments. Nascent studies on population-level responses to antibiotic treatment have 

revealed several intra- and inter-species mechanisms for collective protection [102,103], but 

such experiments are challenging due to scale. Advances in synthetic biology and 

microfluidic technologies are now poised to enable significant insight into ecological 

mechanisms participating in antibiotic efficacy.

Multidrug Contexts

Antibiotic treatment outcomes are diverse in multidrug environments, and previous exposure 

to an antibiotic can alter the efficacy of other antibiotics [104]. Studies on multidrug 
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contexts highlight the roles of cellular respiration [34], ATP synthesis and polysaccharide 

synthesis [69] in determining treatment efficacy. Pretreatment with sub-lethal doses of single 

antibiotics induces physiological stress responses that protect against antibiotic lethality [60] 

and other environmental stresses [105]. Extended antibiotic exposure leads to genetically 

encoded resistance with collateral sensitivity or resistance to antibiotics of different classes 

[106], which may be exploited to potentiate population-level lethality by antibiotic cycling 

[107,108]. Recent efforts integrating metabolomic profiling with experimental evolution 

have revealed how bacterial metabolism may constrain the acquisition of antibiotic 

resistance and differential cross-resistance [109]. Mechanistic details explaining antibiotic 

synergy and antagonism remain nascent; future studies on multidrug efficacy and resistance 

would benefit from integrated exploration of environmental and physiological factors.

Perspectives

Although antibiotics are routinely studied under well-controlled lab conditions, the natural 

environments in which antibiotics are typically found and used are complex in nutrient 

availability, microbial heterogeneity, and other external stressors. Because environmental 

factors can elicit diverse effects on antibiotic lethality, careful consideration must be paid to 

experimental conditions to minimize confounding effects by contextual elements. Several 

open questions remain with respect to antibiotic lethality in natural contexts, including 

antibiotic-induced changes to the extracellular environment and the dynamic interactions 

between different species sharing a common ecological niche. Moreover, understanding the 

differences in microbial physiology between host metabolic environments and the nutrient 

rich conditions commonly used to study bacterial pathogens will be important for translating 

in vitro discoveries into clinical care. Further understanding on how external effectors act on 

bactericidal processes will require systems approaches to meet the challenges posed by such 

complexity.

Antibiotic lethality is increasingly understood to be driven by active death processes 

resulting from both target inhibition and subsequent induction of stress responses. 

Compensatory changes to bacterial physiology likely participate bi-directionally, furthering 

downstream cellular damage and modulating the direct upstream consequences of target 

inhibition. For instance, alterations in cellular metabolism or protein translation may have 

far-reaching consequences on target availability and the biochemistry of drug-target 

interactions. Future studies are needed to clarify the relative contributions of primary and 

secondary death processes.

Recent advances in experimental technologies and quantitative modeling are now poised to 

enable additional systems-level insights into antibiotic lethality. Mass spectrometry allows 

interrogation into spatial determinants of antibiotic efficacy [110,111] and synthetic biology 

has contributed novel tools for perturbing essential genes [112]. Current quantitative models 

are providing mechanistic insights into several nonlinear components of antibiotic lethality 

[56,113] and are useful for predicting multidrug treatment outcomes [114,115] and antibiotic 

drug synergies [116,117]. Integration of these tools will enable identification of additional 

mechanistic details between primary target inhibition and subsequent lethality.
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Conclusion

Antibiotics naturally evolved as inhibitory agents for microbial warfare and have provided 

insights into mechanisms underlying bacterial cell death. Recent studies have revealed that 

several events downstream of primary target inhibition actively contribute to antibiotic 

lethality, including alterations to cellular metabolism, protein translation, and DNA damage. 

These processes are sensitive to environmental cues and future studies will be needed to 

better understand antibiotic efficacy in natural settings. Systems approaches have the 

potential to accelerate such efforts and provide additional mechanistic insight into antibiotic 

lethality.
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Highlights

• Antibiotic lethality involves processes downstream of primary target 

inhibition.

• Respiration and altered metabolism actively participate in antibiotic lethality.

• Environmental cues alter antibiotic efficacy via metabolism and stress 

responses.

• Systems approaches are important for studying antibiotics in complex 

environments.
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Figure 1. 
Antibiotics induce active death processes underlying lethality. Target inhibition directly 

triggers lethality by disrupting essential cellular processes (black). Stress responses induced 

by such disruptions indirectly trigger lethality by increasing metabolic demand and 

generating metabolic byproducts that damage cellular components (e.g., DNA, proteins, 

lipids) (blue). Environmental factors tune antibiotic lethality by acting on stress responses 

and/or altering bacterial metabolism.
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Figure 2. 
Environmental factors tune antibiotic lethality. Cues such as oxygen availability and 

extracellular metabolites impact cell death by acting on cell metabolism. Population 

heterogeneity and multidrug contexts protect against lethality by inducing stress responses 

and defense mechanisms.
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