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Abstract

Genome sequencing and the application of omic techniques are driving many important advances 

in the field of microbial natural products research. Despite these gains, there remain aspects of the 

natural product discovery pipeline where our knowledge remains poor. These include the extent to 

which biosynthetic gene clusters are transcriptionally active in native microbes, the temporal 

dynamics of transcription, translation, and natural product assembly, as well as the relationships 

between small molecule production and detection. Here we touch on a number of these concepts 

in the context of continuing efforts to unlock the natural product potential revealed in genome 

sequence data and discuss nomenclatural issues that warrant consideration as the field moves 

forward.

Introduction

Natural products (NPs) and their derivatives comprise about half of the clinically approved 

medicines including many of our most important antibiotics[1–3]. Despite the considerable 

gains made from studying this resource, industry’s investment in NP research waned in 

recent decades. This paradigm shift can be attributed to a number of issues including the 

continued rediscovery of known compounds and the alternative use of combinatorial 

libraries as a platform for discovery[4]. Enthusiasm for NPs research was renewed however 

following the revelation that only a small fraction of the biosynthetic potential observed in 

microbial genome sequences could be linked to the small molecules whose biosynthesis they 

encode[5]. This observation, coupled with the development of new omic-based technologies, 

has re-invigorated the field and spawned the concept of genome mining as an alternative 

method for NP discovery[6].

Natural product genome mining takes a bioinformatics first approach to small molecule 

discovery. It provides opportunities to specifically target biosynthetic gene clusters (BGCs) 
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that can be predicted to encode interesting new compounds or new derivatives within 

structural classes of interest. Genome mining has benefited from a better understanding of 

the biosynthetic logic of natural products[7,8] and enhanced computational approaches that 

automate the process by which BGCs are detected and characterized[9,10]. These advances 

led to the development of the widely used web tool antiSMASH[5], while others such as 

PRISM (Prediction Informatics for Secondary Metabolome)[11] and IMG/ABC[12] 

represent more recent additions. Access to these tools has brought NP analyses into the 

mainstream, making it possible for anyone with a genome sequence to make an informed 

bioinformatic assessment of specialized metabolism in their organism of choice. Other 

recent tools such as plantiSMASH[13] and fungiSMASH[14] improve the analysis of BGCs 

in plants and fungi, respectively. The MIBiG repository of experimentally characterized 

BGCs (http://mibig.secondarymetabolites.org/index.html) represents another important 

milestone and provides a straightforward platform to perform comparative BGC analysis and 

metabolite prediction.

While there remains considerable excitement about the discovery opportunities afforded by 

genome mining, our ability to identify BGCs from sequence data continues to far exceed our 

ability to identify the NPs they encode. This bottleneck results from the fact that only certain 

types of BGCs, such as NRPSs and modular, type I PKSs[15], are generally amenable to 

bioinformatic linkage with their products. Many others require considerably more 

investment, usually in the form of a genetic knock-out or heterologous expression. Both of 

these experimental approaches have unique challenges that vary with the organism being 

studied. Nonetheless, progress has been made in the automation of heterologous expression 

systems[16] and in retro-biosynthetic approaches to link orphan BGCs to known 

compounds[17] thus suggesting that this bottleneck may ultimately be overcome through 

advances in synthetic and computational biology. Meanwhile, the relatively few BGCs that 

have been experimentally characterized (1,393 BGCs in MIBiG as of May 2017) relative to 

the considerably larger number of microbial NPs discovered over the last 50-plus years 

(52,395 microbial NPs[18]) raises the generally understated possibility that much of the 

apparent genetic potential observed in bacterial genome sequences has already been realized.

The many innovative approaches that have been applied to NP genome mining[9,19,20], 

including the activation of silent BGCs[21–24], have been extensively reviewed in recent 

years. Here we highlight a number of gaps that remain in our basic understanding of the 

relationships between BGCs and the NPs whose biosynthesis they encode. We also discuss a 

number of nomenclatural issues relevant to genome mining, which at present lacks a unified 

lexicon.

The lexicon of genome mining

The large number of BGCs observed in genome sequence data has generated considerable 

interest in developing new techniques to find their products. This has also led to the use of a 

variety of terms to describe those BGCs that cannot readily be linked to their products. Over 

the last decade, these unassigned BGCs have been called “silent”, “cryptic”, or “orphan”, all 

of which have been applied with the same intended meaning. While the term orphan was 

proposed 10 years ago by Harold Gross[25], the term cryptic has also come into common 
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usage[24]. An NCBI PubMed search of the terms orphan and cryptic biosynthetic gene 

clusters suggests that the former is only slightly favored. Given the appropriate context, (i.e., 

a BGC) the implications of orphan or cryptic seem readily apparent. While there is clear 

precedent for the use of both terms to describe BGCs that have yet to be linked to the small 

molecules they encode, we have followed the original suggestion by Gross for the use of 

orphan[25]. Complicating the matter is the alternative use of the term orphan to describe 

compounds whose cognate BGC has not been identified[26]. This later usage appears fitting 

given the more colloquial interpretation of orphan as a lack of parents or affiliation. Thus, an 

orphan compound can be considered one that lacks affiliation with its parent BGC (Figure 

1).

As mentioned, “silent” has also been commonly used to describe orphan BGCs. However, 

the term silent also carries the connotation of transcriptional inactivity. Surprisingly, there’s 

very little data to support the frequently cited suggestion that orphan BGCs are 

transcriptionally silent. Yet transcriptional silencing is only one of many possible reasons 

why so many BGC remain orphan. Alternative explanations can be found at the levels of 

translation, functional protein assembly, and small molecule extraction and detection (Figure 

1). Furthermore, the products of many orphan BGCs are readily detectable yet there is 

simply no practical method to link them to the appropriate gene cluster. This failure to 

connect the two data points leaves both compound and BGC orphaned. BGCs have also been 

termed silent when their encoded NPs are known but not detected in the native organism. In 

this case, the implied silence could be due to a failure at any step in the gene to small 

molecule pipeline. Thus, as with the term orphan, the use of silent is most meaningful when 

appropriately qualified. E.g., it is clear that a transcriptionally silent BGC is one that is 

expressed below the levels where the cognate small molecules can be detected. It is much 

less clear how to interpret a BGC labelled as silent in the absence of transcriptome, 

proteome, or metabolome data. Here we reserve the term silent to describe BGCs for which 

there is evidence of ineffectual transcriptional activity.

Transcriptomics

To what extent are orphan BGCs expressed? Surprisingly, this remains largely unknown 

despite extensive efforts being devoted to their activation[24,27]. Global expression analyses 

have rarely been applied to distinguish between silent and expressed BGCs in a given 

organism. In cases where this has been addressed, methods such as PCR probing of cDNA 

have been used[28]. Microarrays have also been used to assess BGC expression. In the case 

of S. coelicolor, this approach revealed that eight of 22 BGCs were expressed at higher 

levels following the transition from exponential to stationary phase[29,30]. Microarrays also 

revealed that 12 of 18 BGCs were expressed in wild-type Myxococcus xanthus, thus 

suggesting that many orphan BGCs may not be transcriptionally silent[31]. More recently, 

next-generation sequencing was employed in the global transcriptome analysis of S. 
coelicolor[32]. This study provided important new insight into the relationships between 

transcription and translation, something that remains poorly understood in the context of NP 

biosynthesis. Despite these advances, it can be argued that we still have a generally poor 

understanding of how many BGCs are transcriptionally silent under any given set of 

cultivation conditions.
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More commonly, expression analyses have been used in association with searching for the 

products of BGCs following either the genetic manipulation of the wild-type strain or the 

introduction of the BGC into a heterologous host. Recent efforts using the former technique 

include micro-array based comparative transcription profiling, which led to the discovery of 

a series of polyketides encoded by a BGC that was silent in the wild-type strain but 

expressed in a ΔbldM mutant[33]. Expression analyses have also been used to demonstrate 

that silent BGCs can be activated in a heterologous host following genetic 

reconstruction[34]. While synthetic biology holds great promise for NP discovery[35], it’s 

not always clear if an orphan BGC was transcriptionally silent in the native organism prior 

to genetic manipulation. This is unfortunate as evidence of compound production in the 

wild-type helps establish the relationships between orphan and transcriptionally silent BGCs 

and can be used to guide future BGC activation efforts.

While transcriptome analyses can provide important distinctions between silent and 

expressed BGCs, the levels of gene expression that correlate with NP detection also remain 

largely unknown. These levels will undoubtedly vary with each BGC depending upon 

numerous factors including the structure of the NP and the detection methods employed. 

Furthermore, translation efficiencies can vary and thus expression alone is unlikely to be an 

adequate predictor of protein or NP production. For example, a recent study in S. coelicolor 
revealed that the transcription of several BGCs increased throughout growth yet their 

translation efficiency decreased at certain times[32]. It is also interesting to consider how the 

abundance of various tRNAs can affect translation efficiencies[36] and how a mutation in 

bldA, which is predicted to encode a misfolded Leu-tRNA molecule, can have a profound 

effect on BGC expression[37].

Proteomics

As with transcription, we know little about genome level BGC translation. Early reports 

describe the detection of proteins associated with six orphan BGCs in M. xanthus[38]. More 

recently, the Kelleher group has pioneered the application of proteomics in NP discovery by 

capitalizing on the properties and size of non-ribosomal peptide synthetases and polyketide 

synthases (often >200 kDa) and their unique marker ions derived from phosphopantetheinyl 

cofactors[39,40]. The PrISM (Proteomic Investigation of Secondary Metabolism) platform 

(not to be confused with the more recent PRISM genome mining tool[11]) was developed to 

exploit this concept and represents a ‘protein-first’ strategy that is complementary to 

bioassay-guided and genomic approaches[41]. The more recent “Genome-Enabled” PrISM 

(GE-PrISM) incorporates draft genome sequences in the analysis and expands on the types 

of biosynthetic proteins that can be detected in a process termed “proteogenomics”[42]. 

Despite the successful applications of proteome-based genome mining, DNA-based 

approaches remain more widely accessible and employed.

Translation also requires another level of scrutiny as some key biosynthetic enzymes require 

post-translational modification for activity. PKSs and NRPSs are prime examples, in that 

they are modified by phosphopantetheinyl transferases (PPTases), which post-translationally 

install a 4′-phosphopantetheine arm on the respective acyl or peptidyl carrier proteins[43]. 

These prosthetic groups are derived from coenzyme A and are required to convert inactive 

Machado et al. Page 4

Curr Opin Microbiol. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



apo-synthases to active holo-synthases. This concept was recently exploited by 

overexpressing PPTases in actinomycetes, which led to an increased production of 

metabolites in 70% of the strains studied[44]. To the best of our knowledge, this is the first 

example in which the regulation of protein activity was used to elicit NP production.

Metabolomics

Improved analytical techniques have made it possible to more effectively assess the complex 

NP mixtures present in most crude extracts. While NMR has been used for metabolomic 

analyses, mass spectrometry remains the instrument of choice[45]. Driving these advances 

are approaches such as Global Natural Product Social Molecular Networking (GNPS), 

which allows for the visualization of complex metabolomic datasets based on MS/MS 

fragmentation patterns[46]. Other new tools such as DEREPLICATOR allow users to 

rapidly identify novel peptidic NPs in their datasets[47]. While metabolomic analyses have 

historically been performed independently of any knowledge of the associated BGCs, it has 

become increasingly possible to integrate these datasets to generate bioinformatic links 

between NPs and their associated BGCs. Comparing BGC distributions with metabolomic 

profiles has been termed “pattern-based genome mining” and used to compare large 

numbers of closely related bacteria[48,49]. Similar approaches were used to identify the 

rimosamide, detoxin, and tambromycin NPs and their associated BGCs[26,50], with the later 

approach termed metabologenomics. Genomics and metabolomics have also been coupled to 

discover new NPs from cyanobacteria[51]. Other metabolomic approaches include 

peptidogenomics[52] and glycogenomics[53], where MS/MS fragmentation patterns are 

used to establish bioinformatic links between NPs and their associated BGCs based on 

adenylation domain amino acid specificity or glycosyltransferase substrate specificity, 

respectively. These informal links can be valuable in terms of prioritizing NPs and BGCs for 

study, yet don’t eliminate the bottleneck that remains with experimental validation.

Considerable advances have been made in the activation of silent BGCs[22,24,54,55] using 

techniques such as co-cultivation[56] or the addition of small molecule inducers[57,58]. 

While these methods have proven useful, it’s also possible that many BGCs are active yet 

their small molecule products are simply missed due to the extraction methods or analytical 

techniques employed (Figure 1). For example, recent metabolomics analyses have shown 

that extraction solvents had a major impact on the metabolites detected[59,60]. As we learn 

more about the relationships between orphan BGCs and their products, it is likely that much 

of the apparent biosynthetic potential observed in microbial genomes will ultimately be 

linked to compounds that are in fact produced but simply missed or ignored because they do 

not possess the properties that allow them to be detected or make them attractive targets for 

discovery.

Conclusions and Future perspectives

The extant number of NPs that await discovery is unknown and will undoubtedly remain so. 

However, a large reservoir of unexplored chemical space can be predicted[18], thus 

supporting the concept that NP research will continue to yield important new discoveries. 

One clear concept to emerge from the post-genomic era is that a majority of BGCs detected 
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in genome sequences are orphan, i.e., they have yet to be linked to the NPs whose 

biosynthesis they encode. We also know that the number of microbial NPs discovered to 

date far exceeds the number of BGCs that have been experimentally characterized. Thus, the 

jury remains out on how many orphan BGCs will yield structurally unique NPs vs. known 

compounds or new derivatives thereof. This knowledge gap will be filled as the bottleneck in 

BGC characterization is resolved and remains fundamentally important for future NP drug 

discovery research. A seldom discussed unknown is the rate at which Nature creates new 

chemical diversity. While this rate may not meet our demanding pipelines for new drugs, a 

major goal of synthetic biology is to speed up these processes through genetic engineering. 

While there have been successes in this regard[61], we undoubtedly still have a great deal to 

learn from the microbes themselves, which are the true masters of NP biosynthesis.

A surprising unknown is the distinction between transcriptionally silent and expressed BGCs 

in wild-type strains. Without global transcriptome data, it is difficult to distinguish between 

silent BGCs and those that are expressed yet fail to be connected to their small molecule 

products. Thus, it’s possible that some discovery efforts may be better focused at the post-

transcriptional level. Additional unknowns relate to the temporal dynamics of NP 

biosynthesis. For example, it is unclear what level of gene expression correlates with protein 

or NP detection. Also the time frame between gene expression and NP assembly is poorly 

understood, as are the half-lives of active biosynthetic enzymes. Furthermore, expression 

levels may not mirror protein assembly due to differences in translational efficiencies or 

post-translational regulation.

Despite these significant unknowns, there are numerous examples where orphan BGCs have 

yielded new compounds[34,40,62–64], thus supporting the concept that genome mining and 

associated omic approaches hold considerable promise for NP discovery. The continued 

development and application of these technologies will help fill the knowledge gaps 

discussed above and allow for the better exploitation of NP resources. As this field moves 

forward, having a unified lexicon to describe BGCs and the NPs whose biosynthesis they 

encode provides the best mechanism to effectively communicate among those working in 

this field and with the scientific community at large.
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Highlights

• A lexicon for biosynthetic gene clusters and the small molecules they encode

• Omic approaches advance natural product discovery

• Knowledge gaps in the discovery process

• The temporal dynamics of natural product biosynthesis
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Figure 1. The lexicon of omics-based natural product discovery
Biosynthetic gene clusters (BGCs) can be orphan or cryptic, i.e., they have not been linked 

to the small molecules they encode. BGC characterization can be accomplished based on 

bioinformatic prediction or experimental validation of the cognate products. BGCs may be 

transcribed into mRNA (expressed) at levels sufficient to yield detectable compound. If 

transcription falls below these levels, the BGC is considered to be silent. Assuming the 

mRNA is translated into functional protein, NP assembly will depend on the availability of 

precursors and co-factors required for protein activity. Once they are produced, many NPs 

are likely missed because they are either not extracted or not detected with the methods 

employed. The vast majority of microbial NPs that have been discovered over the last 50-

plus years have yet to be linked to their respective BGC and thus the molecules remain 

orphan.

Machado et al. Page 12

Curr Opin Microbiol. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	The lexicon of genome mining
	Transcriptomics
	Proteomics
	Metabolomics
	Conclusions and Future perspectives
	References
	Figure 1

