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Abstract

Considering that growing population of very young children is exposed to general anesthesia every 

year, it is of utmost importance to understand how and whether such practice may affect the 

development and growth of their very immature and vulnerable brains. Compelling evidence from 

animal studies suggests that an early exposure to general anesthesia is detrimental to normal brain 

development leading to structural and functional impairments of neurons and glia, and long-lasting 

impairments in normal emotional and cognitive development. Although the evidence from animal 

studies is overwhelming and confirmed across species examined from rodents to non-human 

primates, the evidence from human studies is inconsistent and not conclusive at present. In this 

review we focus on new developments in animal studies of anesthesia-induced developmental 

neurotoxicity and summarize recent clinical studies while focusing on outcome measures and 

exposure variables in terms of their utility for assessing cognitive and behavioral development in 

children.

I. Introduction

Mounting preclinical findings published over the past decade confirm the compelling 

evidence presented in the initial animal studies where the exposure to commonly used 

gaseous and intravenous GAs induces developing neurons to undergo widespread 

neuroapoptosis ultimately resulting in their demise (Jevtovic-Todorovic et al., 2003; Yon et 
al., 2005; 2006; Head et al., 2009). Concerning was the demonstration of significant 

cognitive and behavioral impairments later in life not only in animals (Jevtovic-Todorovic et 
al., 2003; Fredriksson et al., 2004; 2007; Viberg et al., 2008; Shu et al., 2012; Boscolo et al., 
2012; 2013) but possibly in humans as well (Wilder et al., 2009; Sprung et al., 2012; Block 

et al., 2012; Ing et al., 2014). Although the causality between neuro-morphological damage 

and behavioral sequelae could not be established with certainty, concerns were raised 

regarding the safety of GAs, a class of agents that once were considered to be safe for the 

young brain.
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In view of the fact that there is a large body of information available in this area of research, 

our review will focus on two important and rapidly growing bodies of work: very recent 

studies of anesthesia-induced epigenetic modulations during critical stages of mammalian 

brain development and mounting evidence of anesthesia-induced developmental 

neurotoxicity in non-human primates. Since definitive proof of anesthesia-induced 

impairments of synaptogenesis and long-term behavioral sequelae may not be possible in 

humans considering the complexity of the phenomenon, non-human primate studies are 

quickly becoming invaluable in getting us a step closer to understanding potential relevance 

of currently availbale animal data to humans.

II. Neuromodulatory Changes from Anesthetic Exposure in the developing 

Brain

A. Neuronal Development and Activity

During early stages of brain development neurons undergo intense maturation and 

differentiation while actively migrating to their final destination in order to establish 

functional circuitries crucial for proper behavioral and cognitive development. Of particular 

interest for this review is the developmental period referred to as synaptogenesis which is 

marked by intense branching of dendritic processes and the formation of numerous synaptic 

contacts. Although the exact timing of developmental synaptogenesis in mammalian species 

is not easy to decipher and it varies from one species to another, it is believed that the critical 

stages in humans occur during the last trimester of in utero life and a first couple (perhaps a 

few) years of postnatal life. The evidence that neuronal firing and communication are 

essential for proper formation of neuronal circuitries, which form the foundation for 

cognitive and behavioral development (Hudetz et al., 2012), suggests that perhaps non-

physiological interference with neuronal interactions during the GA state could contribute to 

enhanced neuronal demise observed in GA-induced developmental neurotoxicity.

B. GA-induced structural modulations during brain development

Over the last decade the scientific community has spent a great deal of effort identifying the 

features of injury and investigating the cellular pathways that are triggered by anesthetics in 

the developing brain so that neuroprotective strategies could be devised. Many anesthetic 

agents have been studied in pre-clinical laboratory experiments, both in vivo and in vitro, 

and found to have significant neurotoxic potential.

Although the intial focus was on neurons where extensive apoptotic damage was reported, it 

appears that GA-induced neurotoxicity could be detected in glial cells as well (Brambrink et 
al., 2015; Lunardi et al., 2011; Culley et al., 2013). For example, oligodendrocytes, which 

are necessary for myelination in the central nervous system white matter, have been shown 

to undergo GA-induced apoptosis, both in fetal and neonatal non-human primates 

(Brambrink et al., 2012; 2015; Creeley et al., 2013; 2014). The observed neurotoxic effects 

occur at the point of maturation when the oligodendrocytes develop the ability to myelinate 

axons, suggesting that a deficit in myelination could partially explain GA-associated 

problems with neurobehavioral development.
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When one considers GA-induced developmental neurotoxicity of GABAergic anesthetics it 

is important to recognize that unlike in adults, GABAA receptor activation during early 

stages of brain development is an excitatory phenomenon (Rivera et al., 2005; Ben-Ari et al., 
2002). Thus, while GABAergic medications are commonly used to treat excitatory 

conditions such as status epilepticus in the mature brain, it is possible that sustained GABAA 

mediated excitation may contribute to GA-induced neurotoxicity in the developing brain. 

The switch from an excitatory to inhibitory GABAA effect is a gradual process that peaks at 

P7 in rodents and could contribute to the anesthetic toxicity seen experimentally in mouse 

and rat pup models. However, recent evidence suggests that this switch is likely to occur 

immediately before birth in humans, and even earlier in non-human primates (Brambrink et 
al., 2015). Therefore, this mechanism may contribute to neurotoxicity following in utero, 

rather than postnatal exposure to anesthesia in humans and non-human primates.

C. Modulation of neuronal plasticity

Since proper and timely formation of neuronal circuitries provides the fundamental neuronal 

network necessary for proper neurocognitive development, axonal and dendritic 

development are thus key features of early brain maturation. During axonal development, the 

establishment of axon-dendrite polarity, in which the axon becomes differentiated from the 

dendrites, is a crucial step in the development of a functional neuron (Kolodkin et al., 2011). 

Isoflurane, a volatile anesthetic and propofol, an intravenous anesthetic, both have been 

shown to delay this polarization process and to impair collapse of the axonal growth cone in 

response to a repulsive cue in an in vitro model of embryonic mouse neocortical neurons 

(Mintz et al., 2012; 2013). Exposure to isoflurane at higher concentrations or for longer 

durations was associated with a dose-dependent retardation of neuronal polarization (Mintz 

et al., 2013). Ketamine exposure has also been shown to impair normal formation of 

dendrites on GABAergic interneurons, which are crucial for the formation of neuronal 

networks (Vutskits et al. 2006).

Impaired neurogenesis following early exposure to volatile anesthetics has also been shown 

to lead to memory deficits. When infant rats and mice were exposed to daily isoflurane 

anesthesia on four days for 35 minutes each day, they showed progressively severe memory 

impairments on subsequent testing over the next four weeks. On histologic examination, no 

increased cell death was seen 24 hours after the last isoflurane exposure; however, the 

hippocampal stem cell pool was significantly smaller 4 weeks after exposure, and the overall 

number of hippocampal neurons was lower in the young rodents who were exposed to 

isoflurane (Zhu et al., 2010). The underlying mechanism and significance of these findings 

have yet to be determined.

III. Epigenetic Mechanisms of Anesthetic Neurotoxicity

As early as the 1980’s, there were reports of a variety of behavioral impairments was shown 

to be associated with GA exposure during fetal stages of brain development. Interestingly, in 
utero exposure of rodents to volatile anesthetics (e.g. halothane and enflurane) caused 

cognitive impairments not only in the first generation offspring, but also in the second 

generation offspring never exposed to GA but born to dams exposed to GA in utero (Chalon 
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et al., 1981). These findings suggest that a transient exposure to GA during a critical period 

of neuronal remodeling perhaps causes epigenetic changes that become embedded in the 

genetic information resulting in the impairment of proper and timely neuronal development. 

Could epigenetic modifications from exposure to general anesthetic agents be an explanation 

for long-lasting impairments in behavioral development observed in numerous animal and 

emerging human studies?

Behavioral development including cognitive development depends on gene expression 

which requires access to DNA. Since DNA is highly intertwined with chromatin (Alberini, 

2009; Barrett and Wood, 2008) access to DNA depends not only on the epigenetic 

modulation of DNA itself (e.g. methylation) but very much on chromatin remodeling and 

histone epigenetic modifications (e.g. acetylation, methylation, phosphorylation, 

ubiquitination, and sumoylation) that could be impacted by environmental influences. As 

such, epigenetic mechanisms translate environmental influences into changes in the 

expression of target genes having significant roles in brain development. The importance of 

epigenetic mechanisms is gaining significant attention especially in view of the recent 

findings that some forms of chromatin remodeling were found to be implicated in 

intellectual disability disorders (Santen et al., 2012; Tsurusaki et al., 2014; Van Houdt et al., 
2012) and autism (Neale et al., 2012; O’Roak et al., 2012). Furthermore, the human disease 

Rubinstein-Tayby syndrome, which is clinically manifested as significant mental retardation 

from an early age (Rubinstein and Tayby, 1963), was found to be caused by dysfunctional 

and down-regulated CREB-binding protein (CBP) (Petrij et al., 1995). CBP plays an 

important role in epigenetic modulation of histones as a histone acetyl transferase (HAT), 

which acetylates specific lysine residues in histones, thereby generating epigenetic changes 

that disrupt repressive chromatin structure and promotes DNA transcription. Interestingly, 

our recent findings suggest that an early exposure to GA causes significant downregulation 

of CBP leading to hypoacetylated state of histones (histone-3 in particular) which in turns 

results in downregulation of c-fos and brain-derived neurotrophic factor (BDNF), proteins 

considered to be responsible for memory storage and new memory formation (Pascual et al., 
2012; Murawski et al., 2012).

Along the same lines, the review of the literature reveals that administration of ethanol, the 

oldest anesthetic known to mankind, during critical stages of brain development causes 

significant chromatin remodeling (Guo et al., 2011; Pascual et al., 2012) in the promoters of 

BDNF and c-Fos. This in turn downregulates their transcription and consequently leads to 

the impairment of long-term memory (Lubin et al., 2008; Stafford and Lattal, 2011). 

Epigenetic changes are critical for long-term memory storage. For instance, the down-

regulation of CBP protein together with significant reduction in histone acetylation were 

accompanied by impaired late phase hippocampal long-term potentiation and learning 

deficits (Barrett and Wood, 2008; Korzus et al., 2004; Valor et al., 2009) similar to those 

described post-GA exposure (Jevtovic-Todorovic et al., 2003). Furthermore, CBP mutations 

have been shown to result in reduced CBP protein content and in histone acetylation 

accompanied by impaired late phase hippocampal long-term potentiation and learning 

deficits (Korzus et al, 2004; Barrett et al., 2011; Valor et al., 2009). Hence, it would appear 

that CBP modulation observed after an early exposure to GA or ethanol mimics the one 
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observed with genetic disease diagnosed during early stages of human development such as 

Rubinstein-Tayby syndrome (Rubinstein and Tayby, 1963).

As a critical contributor to long-term memory storage epigenetic modulations have been 

suggested for therapeutic purposes. For example, inhibition of histone deacetylase (HDAC), 

which removes acetyl groups from lysines on histone tails and increases histone acetylation 

has been employed in some therapeutic strategies. Through histone hyperacetylation, HDAC 

inhibitors increase the expression of many genes, thus enhancing new memory formation 

(Lubin et al., 2008; Stafford and Lattal, 2011) by increasing or ‘normalizing’ histone 

acetylation which in turn relaxes chromatin structure and improves access to transcription 

factors. Collectively, these findings suggest that drugs or diseases that promote epigenetic 

modulations could induce long-term molecular signals leading to the impairment of neuronal 

development. Furthermore, a strategic use of global HDAC inhibitors can minimize the 

genetic influences of GA and reverse some aspects of GA-induced developmental 

neurotoxicity (Dalla Massara et al., 2016). This notion is based on the fact that activity-

dependent transcription enables neurons to convert brief cellular changes into stable 

alterations in brain function that constitute a form of ‘molecular memory’ (Hardingham et 
al., 2001) hence suggesting that a short term exposure to GAs during critical stages of 

neuronal activity could be culpable for long-lasting alterations in synaptogenesis and 

behavioral impairments. Over the past decade HDAC inhibitors have been used in clinical 

practice in cases where HDAC levels were found to be elevated or there was a need to 

modify histone acetylation status. Hence, in certain types of cancer the HDAC inhibitors 

were reported to be an important epigenetic therapy of great benefit as adjuvants (Schobert 

and Biersack, 2017). Many of them have been approved by the FDA (Raynal et al., 2017) 

and have well-described pharmacological, pharmacokinetic and safety profiles with well-

defined therapeutic index, dosing and side-effect characteristics. Hence, the use of the 

HDAC inhibitors as adjuvants to commonly-used GAs in cases where a child may need 

prolonged exposure to GA but has excessively elevated basal HDAC levels or perhaps low 

level of acetylated histones may not be an unreasonable option.

Interestingly newly available evidence suggests a link between epigenetic alteration and 

apoptotic cell dying process. Specifically, down-regulation of CBP protein expression we 

and others have reported could be due to CBP degradation to fragments known to have 

impaired HAT activity (Shen et al., 2001). Although the exact mechanism of CBP 

fragmentation remains to be determined, activation of apoptotic cascades, in particular, the 

activation of caspase-6, was shown to increase CBP cleavage, suggesting that CBP is very 

sensitive to apoptotic activation (Rouaux et al. 2011). Considering that GA exposure during 

critical stages of synaptogenesis results in substantial apoptotic activation as shown 

previously (Jevtovic-Todorovic et al., 2003) and increase in fragmentation of lamin (Dalla 

Massara et al., 2016), a substrate of activated caspase-6, we have proposed that GA-induced 

epigenetic changes manifested as CBP fragmentation during critical stages of 

synaptogenesis might be an apoptosis-induced phenomenon. Interestingly, excessive CBP 

fragmentation has been implicated in Alzheimer’s disease and was reported to promote 

amyloid accumulation (Rouaux et al., 2003). As stated earlier the issue of neuronal 

communication and activity during early stages of synaptogenesis is being recognized as an 

important element of timely and proper formation of neuronal circuitries. Along those lines, 
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it is of no surprise that kinase pathways that drive c-fos and CREB phosphorylation, two 

transcription factors that control the promoters of many genes important for acquisition and 

storage of new memories (Kida et al., 2002; Pittenger et al, 2002) could be exquisitely 

sensitive to GA-induced changes in neuronal activity and communication.

The unique property of many epigenetic changes is that they can be detected long after the 

initial environmental or pharmacological influences are removed. In many instances, rapid 

and often transient epigenetic modifications of the immediate early gene family like c-fos 

and BDNF (Kwon and Houpt, 2010; Hendrickx et al, 2014) have been shown to have long-

lasting influence via a variety of activator proteins that bind to the promoters of numerous 

later response genes, the gens that participate in processes crucial for neuronal development 

and survival (Sung et al, 2006). Along those lines, a recent work by Wu et al. (2016) has 

shown that an early exposure of young rats at the peak of their synaptogenesis to isoflurane, 

an inhaled anesthetic used in clinical practice, modulates histone acetylation and DNA 

methylation in the promoter region of BDNF (axon IV in particular) thus leading to 

downregulation of BDNF expression. Interestingly, the authors report that the epigenetic 

influences of enriched environment resulted in mitigation of the isoflurane-induced changes 

in BDNF expression. This in turn lead to improved synthesis of synaptic proteins which then 

resulted in the improvement of the hippocampal synaptic activity and cognitive abilities 

when compared to isoflurane-treated animals living in the standard cage environment.

In addition to epigenetic modulations that could be observed in the enriched environment 

there are some inclinations that GA-induced long-term memory impairment could be 

pharmacologically ameliorated when the histone acetylation status is modulated with the use 

of histone deacetylase (HDAC) inhibitors. For example, Zhong and coauthors (2015) have 

shown that HDAC inhibitor trichostatin A can reverse isoflurane-induced hypoacetylation of 

hippocampal histone 4 (H4K12) and increase c-fos expression in hippocampus while 

reversing isoflurane-induced memory impairments in mice exposed to isoflurane at the peak 

of their synaptogenesis.

There is also evidence that a relatively recently described class of molecules may play a 

significant role in anesthesia-induced epigenetic modulations and apoptotic damage to 

neuronal cells. These small ribonucleic acid (RNA) molecules, known as micro-RNA (mi-

RNA), are non-coding RNA molecules that bind in complexes to messenger RNA (mRNA), 

downregulating translation or increasing degradation of mRNA strands. When a group of 84 

miRNAs were assayed in human embryonic stem cell-derived neurons after exposure to 

propofol, 20 of them were found to be down-regulated (Twaroski et al., 2014). Of these, 

several had already been established to have important roles in neuronal differentiation and 

the regulation of apoptosis (Roush and Slack, 2008; Roese-Koerner et al., 2013); however, 

one of them -miR-21 was of particular interest due to its well-established anti-apoptotic 

activity. In order to further investigate the role of miR-21 in GA-induced apoptosis, stem 

cell-derived neurons were altered to either up-regulate or knockdown the levels of miR-21. 

When these neurons were exposed to propofol, more apoptosis was seen in the knock-down 

neurons, whereas the neurons with up-regulated miR-21 were protected from the apoptotic 

effect of propofol (Twaroski et al., 2014). mi-RNAs may also play a role ketamine-induced 
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neurotoxicity (Twaroski et al., 2015). The effects of GA exposure on miRNA activity is 

being actively investigated.

All these finding collectively suggest that an early exposure to general anesthesia could be 

very powerful epigenetic modulator with far reaching consequences on neuronal maturation, 

proper circuitries formation and behavioral development. If indeed we could gain full 

understanding as to how an early exposure to general anesthesia becomes embedded in 

genetic information and how this could be prevented/modified, we could perhaps provide 

early interventions that would allow safe use on general anesthetics while preventing 

devastating long term sequelae we and others have been reporting for over a decade.

IV. GA-induced behavioral modulations during brain development

Although numerous rodent studies have reported the association between an early exposure 

to GA and long-lasting behavioral and cognitive impiarments, more recent evidence with 

non-human primates suggests that GA-induced neuropathological changes appear to be 

associated with persistent cognitive deficits and behavioral impairments later in life. For 

example, prolonged single exposure to ketamine in the first week of rhesus monkeys’ life 

resulted in significant learning deficits as well as a deficit in accuracy, task performance and 

response speed notable even at 3 years of age (Paule et al., 2011). More recent evidence 

from Dr. Baxter’s laboratory have demonstrated that repeated exposure of infant rhesus 

monkeys to sevoflurane anesthesia (total of three exposures, four hours each) resulted in 

significant increase in anxiety-related behaviors when examined at 6 months of age 

suggesting adverse long-term anesthesia effects (Raper et al., 2015). Along the same lines, a 

very recent evidence where a single 5-hour exposure to isoflurane was compared to multiple 

exposures (total of three times) confirms that when compared to controls, multiple- but not 

single-exposed monkeys exhibited motor reflex deficits at 1 month of age and responded to 

their new social environment with increased anxiety and affiliative/appeasement behavior at 

12 months of age. The authors concluded that an early exposure to isoflurane results in long-

lasting and detrimental effects on socioemotional development (Coleman et al, 2017). 

Although in odds with rapidly accumulating evidence regarding the detrimental effects of 

sevoflurane in non-human primates, one of the studies with Cynomolgus monkeys suggests 

that perhaps there is no correlation between an early exposure to sevoflurane and long-term 

learning deficits although the authors report a decresed envinromental behavior when 

compared to controls (Zhou et al., 2015). While these data cannot be directly extrapolated to 

human children, they provide important information about the pathophysiology and potential 

functional consequences of anesthetic neurotoxicity.

V. Conclusions

In this review we have summarized some recently available advances in the field of 

anesthesia-induced disturbances in the development of the immature brain. As the body of 

evidence continues to mount, it is becoming increasing clear that the animal data, non-

human primates ones in particular, are very suggestive of detrimental effects of general 

anesthetics on the very young brain undergoing substantial growth and maturation. It is 

noteworthy though that existing human studies at present cannot completely address the 
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potentially detrimental effects of general anesthesia due to the complexity of the 

experimental design and the complexity of human cognitive and behavioral development.
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