Table 1.
Model Comparison | Model parameters | |||||
---|---|---|---|---|---|---|
Log-likelihood | AIC | BIC | # of param | α | β | |
Learned val ini | −121.35 ± 32.05 | 246.70 ± 64.10 | 253.79 ± 64.10 | 2 | 0.25 ± 0.25 | 4.47 ± 5.19 |
Zero ini | −125.38 ± 32.79 | 254.77 ± 65.58 | 261.86 ± 65.58 | 2 | 0.22 ± 0.25 | 4.30 ± 2.83 |
Naïve + Softmax | −119.42 ± 30.30 | 266.85 ± 60.59 | 316.43 ± 60.59 | 14 | 0.22 ± 0.28 | 10.26 ± 19.25 |
Naïve + HMM | −123.30 ± 31.38 | 274.59 ± 62.77 | 324.17 ± 62.77 | 14 | 0.21 ± 0.26 | 14.69 ± 38.55 |
Table of overall models, model comparison and fitted parametric values. Learned val ini: Value transfer learning model initialised with learned value. Zero ini: Value transfer learning model initialised with zero. Naïve + Softmax: Probabilistic policy exploration model with softmax function-based policy search. Naïve + HMM: Probabilistic policy exploration model with HMM based policy search. Log-likelihood value: Larger values indicate a better fit. AIC and BIC: Smaller values indicate a better fit. All values are represented as mean ± SD, except number of parameters. HMM: hidden Markov model; AIC: Akaike information criterion; BIC: Bayesian information criterion.