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ABSTRACT

LncRNA-protein interactions play important roles in many important cellular 
processes including signaling, transcriptional regulation, and even the generation 
and progression of complex diseases. However, experimental methods for 
determining proteins bound by a specific lncRNA remain expensive, difficult and 
time-consuming, and only a few theoretical approaches are available for predicting 
potential lncRNA-protein associations. In this study, we developed a novel matrix 
factorization computational approach to uncover lncRNA-protein relationships, namely 
lncRNA-protein interactions prediction by neighborhood regularized logistic matrix 
factorization (LPI-NRLMF). Moreover, it is a semi-supervised and does not need 
negative samples. As a result, new model obtained reliable performance in the leave-
one-out cross validation (the AUC of 0.9025 and AUPR of 0.6924), which significantly 
improved the prediction performance of previous models. Furthermore, the case study 
demonstrated that many lncRNA-protein interactions predicted by our method can be 
successfully confirmed by experiments. It is anticipated that LPI-NRLMF could serve 
as a useful resource for potential lncRNA-protein association identification.

INTRODUCTION

Long non-coding RNA (lncRNA) is a class of 
endogenous single-stranded polynucleotides with a 
length of more than 200 nucleotides. And it is the largest 
proportion of all newly found non-coding RNAs. It is 
widely presented in the transcription of the eukaryotic 
genome and can regulate gene expression at various 
levels. Since the first lncRNA was found 20 years 
ago, an increasing amount of lncRNAs were found by 

analyzing the chromatin state map [1-3]. At present, the 
number of functional digging is rarely for lncRNA, but 
the number of newly discovered lncRNAs is growing 
rapidly. Furthermore, more and more studies have found 
that lncRNAs play important roles in complex cellular 
processes such as chromatin modification [1], cell 
differentiation and proliferation [4], RNA progressing 
[5], cellular apoptosis [6] and so on. Additionally, the key 
regulatory roles of lncRNAs have increasingly been paid 
attention to in the abnormal gene expression of biological 
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cells. For example, previously unrecognized lncRNA plays 
an important role in gene regulation in the MYC locus, 
which has been confirmed by Morlando [7]. In the recent 
years, more and more experiments have been implemented 
to show that lncRNAs have vast key associations with 
the various development processes of many human 
diseases [4, 8]. For example, Gupta et al. reported that the 
expression of lncRNA HOTAIR in primary breast tumors 
was increased [9]. With the development of biological 
technology, lots of experiments have been conducted to 
identify lncRNA binding proteins. The cost of research is 
high because the experiment requires a lot of manpower 
and material resources to identify lncRNA-protein 
interactions. So it is necessary for us to make further 
efforts to develop efficient computational models for 
potential lncRNA-protein interactions prediction.

In fact, there have been many computational 
methods for lncRNA-disease interactions in recent studies 
[10-15] and computational methods has been successfully 
assisted by biological experiments [16]. However, similar 
computational approaches are still rare in the field of 
lncRNA-protein associations prediction. Bellucci et al. 
[17] introduced a method named CatRAPID in 2011, in 
which physicochemical properties were used to assess the 
tendency of interaction between peptides and nucleotide 
chains. Then, Muppirala et al. [18] proposed a model 
called RPISeq, which used only sequence information 
of lncRNAs and proteins. Support vector machine 
(SVM) classifiers and random forests (RF) were used 
in this model to predict RNAs associated with proteins. 
Next, Wang et al. [19] presented a model, consisting of 
a naive-Bayes-classifier and an extended naive-Bayes-
classifier in predicting interactions between proteins and 
RNAs in 2013. The model made full use of protein and 
RNA sequence information as well as a set of known 
proteins-RNA interactions. In the same year, Lu et al. [20] 
developed a method called lncPro that encoded RNA and 
protein sequences as digital vectors to evaluate each RNA-
protein pair by matrix multiplication to predict lncRNA-
protein interactions. In 2015, Suresh et al. [21] introduced 
a sequence-based and structure-based RNA-protein 
interaction predictor (RPI-Pred), a new method based on 
support vector machine to predict protein-RNA interaction 
pairs. Later, Li et al. [22] proposed a computational 
method called LPIHN, using known lncRNA-protein 
interactions to predict unknown relationships. On this 
heterogeneous network, a random walk was repeated to 
infer new lncRNA-protein interactions. Last year, Ge et 
al. [23] developed a lncRNA-protein bipartite network 
inference (LPBNI) calculation method. LPBNI only used 
the known lncRNA-protein interactions to extrapolate the 
potential lncRNA-protein interactions. Recently, Hu et al. 
[24] showed a semi-supervised model named LPI-ETSLP 
to reveal the interactions between lncRNAs and proteins. 

Interestingly, negative samples were not needed in the 
LPI-ETSLP.

Previous studies were found to have the following 
limitations: (1) most of the machine learning models 
predicted ncRNA-protein interactions by using 
interaction data between RNAs and proteins instead 
of using ncRNA-protein interaction data, which would 
bias the predictions. (2) Most of the experimental data 
comes from the NPInter database, which is currently 
the best database for storing lncRNA and protein data, 
but the latest NPInter only provides gene-protein 
interactions corresponding to relevant lncRNAs rather 
than direct lncRNA-protein interactions. Gene-protein 
data was directly used in the above models to predict 
ncRNA-protein interactions and did not revealed true 
lncRNA-protein interactions. (3) Finally, lncRNA 
features and protein features are difficult to select in 
machine learning models. Moreover, negative sample 
is lacking for lncRNA-protein interactions prediction. 
To solve these problems, we introduced a novel matrix 
factorization computational approach in this study, 
namely lncRNA-protein interactions prediction by 
neighborhood regularized logistic matrix factorization 
(LPI-NRLMF) to predict the potential lncRNA-protein 
associations. Different from the traditional machine 
learning model, LPI-NRLMF adopts a semi-supervised 
learning strategy, which deduces unknown data 
mainly by known interactions and their similarities, 
so negative samples are not needed. Considering the 
validity of the classical method with comprehensive 
similarity, we combined the similarity of the Gaussian 
interaction profile with the modified matrix to obtain 
more accurate prediction results. The method involved 
lncRNA-protein pairs into feature vectors, then 
constructed matrices, and finally scored the matrix 
through a series of calculations. The proposed method 
focused on predicting the probability that a lncRNA 
would be associated with a protein by mapping a 
lncRNA and a protein to a shared low dimensional 
latent space as two latent vectors. Additionally, we also 
studied the local structure of the association data for 
higher prediction accuracy by exploiting the influences 
of the neighbors which were from the most similar 
lncRNAs and most similar proteins. Moreover, the 
proposed approach assigned higher importance level to 
the nearest neighbors for avoiding noisy information. 
Furthermore, leave-one-out cross validation (LOOCV) 
was introduced to evaluate the effectiveness of LPI-
NRLMF and the AUC of 0.9025 was achieved. We 
also predicted the lncRNA-protein interactions of 
“Mus musculus” based on predictive scores rank in 
comparation with other methods in the case study. The 
results showed that the method is effective in predicting 
lncRNA–protein interactions.
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RESULTS

Performance evaluation

We performed a cross validation of known 
experimental lncRNA-protein scores to assess the 
performance of LPI-NRLMF. The performance of 
LPI-NRLMF is evaluated by the following parameter 
indicators: ACC (overall accuracy), SEN (Sensitivity), 
PRE (Precision) and F1 (F1 score), which are widely used 
in computational biology and are expressed as [25, 26]:
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where TP stands for true positives, TN for 
true negatives, FP for false positives, and FN for 
false negatives. Accuracy (ACC) is an indicator of 
system error. The perfect forecast will make the ACC 
reach 100%, but ACC can only reach 50% in random 
predictions. Other indicators in the binary classification 
also reveal the performance of the model. The precision 
(PRE, also known as the positive predictive value) 
represents the number of true positive predictions in the 
positive predictions results, and the sensitivity (SEN, 
also known as the recall) indicates the number of true 
positive predictions in the positive sample is correctly 
predicted. In statistical analysis of binary classification, 
the F1 score (also F-score or F-measure) is an indicator 
designed for comprehensive consideration of precision 
and sensitivity. Both the precision and sensitivity of the 
test are taken into account to calculate the score, which 
reflects whether the classification model is robust. The 
perfect model will make the F1 reach 1, and the worst 
F1 is 0.

In addition to the above indicators, we also used 
the receiver operating characteristic (ROC) curve and 
the area under the ROC curve (AUC) to evaluate the 
performance of the LPI-NRLMF. The AUC of the perfect 
classifier is 1 and the AUC of the random classifier is 
0.5. AUPR is the area under the accuracy-recall curve. 
Due to the large number of unknown label data in the 
data set, we used the AUPR to reduce the impact of 
false positive data on the model predictive performance. 
AUC and AUPR can better reflect the merits of model 
performance, the greater the two values, the better the 
performance of the model.

Comparison of LPI-NRLMF with other methods

We evaluated the performance of different models by 
conducting the LOOCV experiment (also called jackknife 
test), which has been increasingly adopted by researchers 
to examine the quality of various computational models 
[27, 28]. In the LOOCV experiment, suppose there are 
N samples, each sample is used as a test sample, and 
the other N-1 samples are used as training samples. This 
will get N classifiers, N test results, and finally we use 
the average of N results to measure the performance of 
the model. Here, LPI-NRLMF was compared with four 
other methods on NPInter v2.0: LPI-ETSLP [24], Random 
walk with restart (RWR) [22, 29, 30], LPBNI [23] and 
RPISeq [18]. Among these four methods, RPISeq is a 
classical machine learning method based on RF and SVM 
classifiers. RPISeq is similar to the ideas of many machine 
learning methods. Therefore, RPISeq was chose as an 
instance of the machine learning approach for comparison 
with LPI-NRLMF. LPI-ETSLP, RWR and LPBNI predict 
potential data associations using lncRNA and protein 
sequence information, which are of the same type as LPI-
NRLMF methods. The comparison results between LPI-
NRLMF and other four methods were shown in Figure 1 
and Table 1, which displayed the superiority performance 
of LPI-NRLMF to previous models.

Adjusting the threshold in the experiment can 
increase the predictive specificity at the expense of 
sensitivity. The corresponding trade-off between true 
positive and false positive rates can be seen from ROC 
curve. As shown in the Figure 1, under the NPInter v2.0 
dataset, the AUC of ROC is significantly greater than 0.50 
(random), indicating the feasibility to predict LPIs. The 
AUC of LPI-NRLMF was 0.9025, higher than 0.8876 
(LPI-ETSLP), 0.8332 (RWR), 0.8586 (LPBNI), 0.3949 
(RPISeq-RF) and 0.3987 (RPISeq-SVM), respectively. 
It is clear that RPISeq is much less effective than other 
models. This may be because RPISeq is a machine 
learning model that relies on training data, while RPISeq 
uses RNA-protein interactions rather than lncRNA-protein 
interactions. LncRNA is different from ordinary RNA in 
the biological function, so there are differences between 
their data features. In contrast, LPI-NRLMF is a matrix 
factorization method, which avoids the problem of feature 
selection. At the same time, the weight of the negative 
sample in the data set is taken into account. Therefore, 
from these ROC curves, LPI-NRLMF can achieve better 
effects than other models in predicting potential lncRNA-
protein interactions.

Table 1 summarized the prediction results obtained in 
the LOOCV experiments. Through these indicators we can 
clearly see the LPI-NRLMF performance is significantly 
better than the other four methods. The AUPR values of 
0.6438 (LPI-ETSLP), 0.2893 (RWR), 0.3306 (LPBNI), 
0.0631 (RPISeq-RF) and 0.0698 (RPISeq-SVM) were 
significantly lower than 0.6924 (LPI-NRLMF), indicating 
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that LPI-NRLMF had a more reliable prediction effect. 
In addition to the AUC and AUPR values, we also 
compared ACC, PRE, SEN and F1-score of these methods. 
It is worthy of note that the ACC of LPI-NRLMF is 
lower than the RWR and LPBNI. This is due to that the 
lncRNA-protein interaction information obtained from the 
experiment was too small, and LPI-NRLMF is based on 
the known lncRNA-protein pairs to divine the potential 
lncRNA-protein relationships. Our LPI-NRLMF results 

showed the predictive precision of 0.6129, which is about 
0.02 higher than the results of LPI-ETSLP, 0.24 higher 
than the results of RWR and LPBNI and about 0.5 higher 
than the results of RPISeq-RF and RPISeq-SVM. And the 
sensitivity of 0.6267, which is about 0.27, 0.21, 0.32 and 
0.33 higher than the results of RWR, LPBNI, RPISeq-RF 
and RPISeq-SVM, respectively. In addition, it is more 
reliable to evaluate unbalanced data set with F1 score than 
using the ACC value. The result showed that LPI-NRLMF’s 

Figure 1: The ROC curves of LPI-NRLMF, LPI-ETSLP, RWR, LPBNI, RPISeq-RF and RPISeq-SVM are expressed 
in red, brown, green, blue, purple and pink, respectively. The light gray line represents the ROC curve of the interaction between 
LPI-NRLMF and the randomized lncRNA-protein pairs.

Table 1: Comparison of LPI-NRLMF with LPI-ETSLP, RWR, LPBNI and RPISeq models

AUC AUPR ACC PRE SEN F1-score

LPI-NRLMF 0.9025 0.6924 0.8804 0.6129 0.6267 0.6197

LPI-ETSLP 0.8876 0.6438 0.8834 0.5932 0.9239 0.5978

RWR 0.8332 0.2893 0.9536 0.3680 0.3538 0.3603

LPBNI 0.8586 0.3306 0.9581 0.3713 0.4139 0.3868

RPISeq-RF 0. 3949 0. 0631 0. 4626 0. 0983 0. 3003 0.1481

RPISeq-SVM 0. 3987 0. 0698 0. 4823 0. 1003 0. 2922 0.1493
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F1 score was 0.6197, significantly higher the other four 
models, further demonstrating that LPI-NRLMF performed 
better in predicting lncRNA-protein interactions.

Case studies

Furthermore, we proposed the case study to 
assess the practical capabilities of our approach in 
predicting the interaction of unknown lncRNA-protein. 
We predicted the new lncRNA-protein interaction 
based on foregone interactions of “Mus musculus” in 
the NPInter v3.0 data set. The first 10 lncRNA-protein 
interaction pairs were listed in Table 2 by using our 
method (LPI-NRLMF), which are finally examined in 
“Mus musculus” data set and all verified. In addition, 
we also particularized the rankings of these lncRNA-
protein pairs in the other models. We can observe that 

some of these interactions are not highly ranked in the 
prediction of other methods, and these newly discovered 
interactions may be ignored by these methods. In 
contrast, our method can be found that these lncRNAs 
interact with the protein and the corresponding genes 
are listed in Table 2 by rank score. A great number of 
lncRNAs expressed in mouse embryonic cells were 
subjected to functional loss studies to characterize 
the effect on gene expression. It has been shown that 
lncRNAs promote the mechanism of tumor growth 
by regulating the effect of tumor cells on the vascular 
effect. In our prediction results, NONMMUG041226-
A2AC19, NONMMUG013483-A2AC19 and 
NONMMUG041226-Q13185 were predicted to have 
interactions in the top 10 ranked results of all models, 
which were confirmed by the study of Guttman [1]. 
From the results of other rankings, LPI-NRLMF was 

Table 2: Top 10 novel interactions predicted by LPI-NRLMF and their ranks in the prediction of other methods

lncRNA Protein Confirmed? LPI-NRLMF LPI-ETSLP RWR LPBNI RPISeqRF RPISeqSVM

NONMMUG041226 A2AC19 confirmed 1 8 4 1 66 119

NONMMUG013483 A2AC19 confirmed 2 7 3 6 136 91

NONMMUG041226 O88974 confirmed 3 13 8 13 11 4

NONMMUG030867 Q9CQJ4 confirmed 4 20 19 17 78 71

NONMMUG037823 Q8CGG4 confirmed 5 17 20 12 51 144

NONMMUG041226 Q13185 confirmed 6 3 6 4 30 41

NONMMUG019605 O88974 confirmed 7 21 14 21 67 143

NONMMUG045923 P83916 confirmed 8 1 27 15 70 114

NONMMUG045923 Q13185 confirmed 9 6 28 10 26 127

NONMMUG009968 Q9CQJ4 confirmed 10 24 22 19 44 22

Figure 2: The work flow of the LPI-NRLMF model.
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significantly better than other methods in predicting 
new lncRNA-protein interactions.

DISCUSSION

The flexibility and complexity of gene expression 
regulation have been greatly enhanced by lncRNA-protein 
interactions. A great deal of experiments was used to 
explore the associations between lncRNA and protein. 
However, a lot of material and human resources were 
required in the experimental study of lncRNA-protein 
interaction. Therefore, computational methods to predict the 
potential interactions of lncRNA-protein were imperative 
for the study of lncRNA, which plays an increasingly 
important role in the regulation of epigenetics. Network 
analysis as a method of simulating biological systems is 
also simple and effective. In a network, a node or a vertex 
of a network represents a biomolecule (gene or protein), 
while an edge or link represents its physical or functional 
interaction. Recent studies have shown how PIK3CA 
mutations interact with other mutations in a breast cancer 
survival network [31]. In this study, we used the adjacency 
regularization strategy in our method called LPI-NRLMF 
to achieve better predictive results. The results showed the 
effectiveness of LPI-NRLMF in predicting the interactions 
of novel lncRNA-protein. Some of the top-ranked lncRNA-
protein interactions predicted by our approach are supported 
by existing literature or databases. Excellent performance 
and practical value suggest that our method is prospective 
in predicting the potential lncRNA-protein associations. 
While the results are outstanding, the LPI-NRLMF method 
still needs to be further improved. Primarily, our method is 
tested on only one database (ie, NPinter 2.0). In this data 
set, the average of each lncRNA interacts with 4.2 proteins, 
which makes our approach likely to produce biased 
predictions due to the relative sparsity of known lncRNA-
protein interactions. With increasing lncRNA-protein 
associations are sought out, the test data of LPI-NRLMF 
will increase and the deviation will be getting smaller. In 
addition, lncRNA-lncRNA similarity matrix and protein-
protein similarity matrix are obtained through the expression 
profiles. Each time you change the size of dataset, you 
must know the expression information of lncRNAs and 
recalculate the similarity of lncRNAs and proteins. In 
summary, LPI-NRLMF as an effective predictive tool can 
discover potential LncRNA-protein interactions. We expect 
that LPI-NRLMF can have a beneficial effect on lncRNA-
related target protein prediction and lncRNA-related disease 
research in the future.

MATERIALS AND METHODS

Data set

With the development of bioinformatics and 
experimental technology, the global lncRNA-protein 

interaction database was created. NPInter (http://www.
bioinfo.org/NPInter/) is a database that collects a great 
number of experimental interactions between noncoding 
RNAs (ncRNAs) and other biomolecules. In this work, 
we downloaded the known ncRNA-protein interaction 
dataset from the NPInter v2.0 [32]. Then we selected 
lncRNAs corresponding to the human lncRNA database 
in NONCODE 4.0 [33, 34]. We obtained 144,134 
lncRNA sequence information from NONCODE. Next, 
we removed the lncRNAs that could not be used for its 
sequence information, and the proteins that were not 
available for sequence information. In addition, we also 
removed only one protein-linked lncRNAs, and proteins 
that only bind a lncRNA. This is because for one lncRNA 
or protein, at least two proteins or lncRNAs are required 
to perform LOOCV, which can remove potential noise 
from the data. Finally, we compiled 4158 lncRNA-protein 
interaction data collection including 990 lncRNAs and 27 
proteins.

LncRNA-protein interactions

To describe the lncRNA-protein associations 
better, we introduced the adjacency matrix Y. If it is 
confirmed that lncRNA li is related to protein pj, entity Yij 
is 1, otherwise it is 0. In addition, the variables m and n 
represent the number of lncRNAs and proteins involved in 
this study, respectively.

LncRNA sequence similarity matrix

The similarity matrix of the lncRNA sequence 
was calculated by the lncRNA sequence information. 
We screened 990 reliable lncRNAs and their sequence 
information from the above database. After that, 
the lncRNA sequence similarity matrix (LSM) was 
constructed, the normalization of LSM (li, lj) is defined by 
the following function:

	 ( )( ) ( )
( )( )

=LSM l l
sw l l

sw l l sw l l
,

,

max , , ,
i j

i j

i i j j �

(1)

Protein sequence similarity matrix

We derived PPI data from STRING 10.5 database 
and sequence information from the Uniprot database 
[35, 36], which is the most informative and resourceful 
database of proteins. By removing only one protein-
linked lncRNAs, proteins that only bind a lncRNA and 
proteins whose sequence informaton is unavailable, 27 
reliable protein sequences were screened according to 
the known lncRNA-protein interactions. Similarly, we 
used the regularized Smith-Waterman algorithm [37] to 
calculate the protein sequence similarity. The protein PSM 
(pi, pj) is expressed as the sequence similarity between the 

http://www.bioinfo.org/NPInter/
http://www.bioinfo.org/NPInter/
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proteins pi and pj. The proteins sequence similarity matrix 
is normalized as follows:

Work flow

The entire work flow for the LPI-NRLMF model is 
shown in Figure 2. There are three main steps: (1) firstly, 
we extracted the gene-protein pairs that have interactions 
with each other from NPInter v2.0, and found the lncRNA 
sequences and protein sequences from the NONCODE 
4.0 database and UniProt, based on the extracted gene and 
protein, respectively. (2) The lncRNA-protein interaction 
matrix was obtained after removing the useless information. 
Then, the similarities of the lncRNA sequences and the 
protein sequences were calculated by using the regularized 
Smith-Walman algorithm, so similarity matrices of 
lncRNAs and proteins were generated. (3) Finally, the 
above matrices were applied to the model LPI-NRLMF in 
predicting potential lncRNA-protein interactions.

Logical matrix factorization

Matrix factorization techniques have been 
successfully applied to previous studies of RNA and 
proteins. In this study, we created a LPI prediction model 
based on Logical Matrix factorization (LMF) [38] and 
proved that it was valid. First, we mapped lncRNAs and 
proteins to a latent space with a low dimensionality r, 
where r <min (m, n). Thus, the characteristics of lncRNA 
li and protein pj can be described by two potential vectors 
ui and vj, respectively. Then, we modeled the interaction 
probability pij of the lncRNA-protein pair (li, pj) by the 
following logic function:

=
+

p
u v
u v

exp( )
1 exp( )

                                               (3)ij
i j

T

i j
T

Next, we denoted the potential vectors of all 
lncRNAs and all proteins with U and V, respectively.

Here, we used the zero-mean spherical Gaussian 
priors to generate lncRNA and protein latent vectors:

Where σ l
2 and σ p

2 are the parameters that control the 
variance of the Gaussian distribution, and I represents the 
identity matrix. In the LPI prediction study, the known 
lncRNA-protein interactions are more reliable than the 
unknowns because they are experimentally validated. Thus 
we proposed to give a higher weight than the unknown for 
known and interactive pairs [38, 39]. In particular, we put 
each of the known pairs and c (c> 1) negative samples into 

a training set to calculate. Here, the constant c represents 
the observed level of importance of the interaction. The 
logarithmic results of the posterior distribution are as 
follows:

Where C is simply a constant term, independent of 
the other parameters of the formula. The model parameters 
can then be determined by the following functions:

Where λ
σ

=
1

l
l
2 , λ

σ
=

1
 p

p
2  and ⋅|| ||F  represent the 

Frobenius norm of the matrix. We can solve the problem 
in Eq (6) by alternating gradient descent method [38].

Regularized by neighborhood

The LMF model can effectively estimate the global 
structure of LPI data by mapping lncRNAs and proteins 
to latent vectors. However, the strong association between 
a handful of closely related lncRNAs or proteins was 
ignored. Therefore, we proposed to use the nearest area 
of the lncRNA and the protein for further improvement 
of the prediction accuracy in predicting lncRNA-protein 
interactions. For protein pi, we denoted the nearest 
neighbor set with N (li) ∈ L\li, where N (li) contains K1 
proteins that are most similar to li. Then we constructed 
a set N (pj) ∈ P\ pj consisting of pj and K1 most similar 
objects. To make the model more efficient, K1 was set to 
5 in experiment.

In this work, the adjacency matrix A is used to 
represent the lncRNA neighborhood information, where 
the (i, μ) elements aiμ are defined as follows:

	 =
∈


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Similarly, the adjacency matrix B represent the 
protein neighborhood information, where the (j, v) 
elements bjν are defined as follows:

	 =
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The main idea of using LPI to predict lncRNA 
neighborhood information is to minimize the distance 
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between li and its nearest neighbor N (li). It can be 
obtained by the following functions:
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Where tr (·) is the trace of a matrix, 
= + − +L D D A A D( ) ( ).l l l T l

 and Dl  are two diagonal 

matrices, where diagonal elements are ∑= µµ=
D al

ii i

m

1  
and  ∑=µµ µ=

D al
ii

m

1
 respectively.

In addition, we also used LPI to predict 
neighborhood information for the protein by minimizing 
the following objective functions:

∑∑β β ( )− =
==
b v v tr V L V

2
|| ||

2
,jv j v F

T p
v

n

j

n 2
11 	

(10)

Where in, ( )= + − +L D D B B( )p p p T , D  p  and 
Dp  are two diagonal matrices, where diagonal elements 

are ∑= =
D bp

jj jvv

n

1  and 
 ∑= =
D bp
vv jvj

n

1 , respectively.

NRLMF

The final LPI prediction model was constructed by 
using lncRNA-protein interactions and the neighborhood 
of lncRNAs and proteins. By inserting Eqs (9) and (10) 
into Eq (6), the NRLMF algorithm proposed for LPI 
prediction is as follows:
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We use the alternating gradient rise to optimize the 
equation (11), which is expressed as L, and the partial 
gradients of U and V are as follows:

where P ∈ ×Rm n , in which the element pij, as shown 
by Eq (3), represents an interaction probability of Li and 
Pj. U and V are randomly initialized using a Gaussian 
distribution of standard deviation 

r
1  with a mean of 0.

We can predict the unknown LncRNA-protein pair 
by Eq (3), when the latent vectors U and V are obtained. 
We identified the negative data set L− of lncRNAs and 
the negative data set P− of proteins, which may have 
a potentially positive effect on LPI in these negative 
observations. For the lncRNA li ∈ L−, we denoted the 
K2 nearest neighbors in L+ as N+ (li). Similarly, for the 
protein pj ∈ p−, we noted the K2 nearest neighbors in 

+P  as +N (pi). It should be noted that +N (li) and +N (pj) 
are constructed using the same standard as used to 
construct neighborhoods during the training process. 
Then, the prediction of the probability of interaction of 
the lncRNA-protein pair (ui, vj) is modified to:

	  

 

=
+

P
u v
u v

ˆ exp( )
1 exp( )ij

i j
T

i j
T

� (14)

Where

Here, Eq (15) and Eq (16) represents the general 
situation of smooth learning of lncRNA specificity and 
protein specific latent vectors. Finally, the value of K2 in 
our model is empirically set to 5 in the repeated experiment.
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