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ABSTRACT

Objectives: This study investigates the prediction of Non-small cell lung cancer 
(NSCLC) patient survival outcomes based on radiomic texture and shape features 
automatically extracted from tumor image data.

Materials and Methods: Retrospective analysis involves CT scans of 315 NSCLC 
patients from The Cancer Imaging Archive (TCIA). A total of 24 image features are 
computed from labeled tumor volumes of patients within groups defined using NSCLC 
subtype and TNM staging information. Spearman’s rank correlation, Kaplan-Meier 
estimation and log-rank tests were used to identify features related to long/short 
NSCLC patient survival groups. Automatic random forest classification was used to 
predict patient survival group from multivariate feature data. Significance is assessed 
at P < 0.05 following Holm-Bonferroni correction for multiple comparisons.

Results: Significant correlations between radiomic features and survival were 
observed for four clinical groups: (group, [absolute correlation range]): (large 
cell carcinoma (LCC) [0.35, 0.43]), (tumor size T2, [0.31, 0.39]), (non lymph 
node metastasis N0, [0.3, 0.33]), (TNM stage I, [0.39, 0.48]). Significant log-rank 
relationships between features and survival time were observed for three clinical 
groups: (group, hazard ratio): (LCC, 3.0), (LCC, 3.9), (T2, 2.5) and (stage I, 2.9). 
Automatic survival prediction performance (i.e. below/above median) is superior for 
combined radiomic features with age-TNM in comparison to standard TNM clinical 
staging information (clinical group, mean area-under-the-ROC-curve (AUC)): (LCC, 
75.73%), (N0, 70.33%), (T2, 70.28%) and (TNM-I, 76.17%).

Conclusion: Quantitative lung CT imaging features can be used as indicators of 
survival, in particular for patients with large-cell-carcinoma (LCC), primary-tumor-
sizes (T2) and no lymph-node-metastasis (N0).

INTRODUCTION

Lung cancer is the most frequently diagnosed type 
of cancer and the leading cause of cancer-related deaths 
worldwide [1]. It can be divided in two main categories: 
non-small cell lung cancer (NSCLC) and small cell lung 
cancer (SCLC). NSCLC is the most prevalent type of lung 
cancer, accounting for approximately 85% of cases [2], 
and can usually be labeled as squamous cell carcinoma, 

large cell carcinoma, adenocarcinoma or not otherwise 
specified (NOS). Squamous cell carcinoma, which 
accounts for 25% of all lung cancers, generally occurs in 
the center of the lung and is often associated with smokers. 
On the other hand, large cell carcinoma (LCC) is a rapid 
growing tumor that can occur anywhere in the lung and 
represents about 10% of NSCLC cases. Adenocarcinoma, 
which accounts for half of NSCLC cases, is a slower-
growing type of lung cancer often seen peripherally 
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in the lungs. Although more frequent in smokers, 
adenocarcinoma is also the most common form of lung 
cancer in non-smokers [3, 4]. Finally, NOS corresponds to 
less frequent NLCSC subtypes or cases for which a more 
specific diagnosis cannot be made.

The progression of lung cancer is typically described 
using five stages (0 to IV), ranging from a tumor limited 
to the lining layer of airways (Stage 0) to a cancer that 
has spread to lymph nodes and major organs in the body 
(Stage IV). The accurate staging of lung cancer is essential 
to establish prognosis and select an optimal treatment 
plan (e.g., surgery, chemotherapy and/or radiotherapy). 
However, staging information is not necessarily predictive 
of disease progression or response to treatment.

In recent years, image analysis techniques have 
been used successfully to provide personalized prognosis 
and treatment plans with a greater accuracy. In particular, 
radiomics analysis methods, which describe a segmented 
tumor region using various quantitative features derived 
from image data, have shown a great potential for 
predicting survival outcome of patients with lung cancer 
[5-10], colorectal cancer [11, 12], or brain tumors [13-15].

Several studies have investigated the relationship 
between image features and lung cancer. Ganeshan et al. 
showed that texture features extracted from CT images of 
lung tumors were correlated with glucose metabolism and 
lung cancer stages [16]. Various texture features, including 
those based on intensity histograms, absolute gradients, 
nearest grey tone difference matrices (NGTDM), grey-
level co-occurrence matrices (GLCM), Laplacian of 
Gaussian (LoG) filtration and wavelets, have also been 
proposed to predict the survival group (e.g., below or 
above median survival) of patients with NSCLC [17-20]. 
In Ganeshan et al [21], LoG features derived from CT 
scans were shown to predict the survival time of NSCLC 
patients more accurately than fluorodeoxyglucose (FDG) 
uptake in positron emission tomography (PET). Likewise, 
shape features have also been used to assess NSCLC 
prognosis. In Tixier et al [22], high tumor volume was 
found to be associated with short survival time in a 
population of NSCLC patients treated with surgery and 
chemotherapy. Tumor compactness, asymmetry and 
location have also been linked with the survival outcome 
of NSCLC patients [17]. In Aerts et al [7], a large 
number extracted features from CT data were shown to 
have prognostic power in independent data sets of lung 
and head-and-neck cancer. Shape and texture features 
extracted from CT images were also used for the detection 
of lung nodules and their characterization as benign or 
malignant [23-27].

Currently, the application of imaging features for 
the prediction of survival in NSCLC subtypes (i.e., large 
cell carcinoma, squamous cell carcinoma and adeno-
carcinoma) and in individual TNM stages is still relatively 
limited. Since the histological properties and proliferation 
mechanisms of these subtypes and stages are quite 

different, analyzing them individually could provide a 
more accurate and personalized prognosis, thereby leading 
to better therapeutic plans.

This study aims to investigate the usefulness of 
diverse texture and shape features for predicting the 
survival outcome of patients with specific NSCLC 
subtypes and TNM stages. To our knowledge, this work is 
the first radiomics-based study to analyze survival within 
these specific patient groups, showing that the relevance 
of these features varies significantly from a patient group 
to another.

RESULTS

We start by describing the demographics of patients 
used in our study. Afterwards, we summarize the results 
of the univariate and multivariate analyses proposed 
to evaluate the informativeness of radiomic features 
in predicting NSCLC survival outcome. A detailed 
description of the data and the proposed radiomic analyses 
can be found in the Materials and methods section.

Patient characteristics

All 315 NSCLC patients were grouped based on 
histology and TNM classification (Table 1). Among them, 
277 (n = 96 censored) patients were grouped in four 
histology classes with median (IQR) age of LCC = 65.20 
(59.26–74.06), SCC = 70.79 (64.01–78.71), ADC = 64.58 
(59.79–74.45) and NOS = 65.79 (56.88–74.86); 312 (n = 
107 censored) patients were grouped in four tumor size 
with median (IQR) age of T1 = 68.43 (61.44–75.01), T2 = 
69.78 (60.03–77.11), T3 = 63.88 (58.35–76.79) and T4 = 
64.61 (57.51–72.63); 315 (n = 108 censored) patients were 
grouped in five lymph nodes type with median (IQR) age 
of N0 = 70.47 (60.71–78.71), N1 = 71.78 (61.77–74.08), 
N2 = 65.02 (58.39–72.82), N3 = 62.86 (54.70–70.64) and 
N4 = 73.28 (66.21–74.92); 315 (108 censored) patients 
were grouped in four distant metastases, primarily M0 
with median (IQR) age of M0 = 67.27 (59.42–75.26); 314 
(n = 108) patients were grouped in four TNM group with 
median (IQR) age of I = 71.94 (64.56–79.27), II = 74.73 
(61.09–78.77), IIIa = 66.91 (59.38–73.07), IIIb = 64.18 
(56.59–71.05).

Correlation analysis

Figure 1 shows the Spearman rank correlation 
between radiomic features (plus age) and the survival time 
of patients, for groups defined using NSCLC subtype and 
TNM variables. With respect to patient groups defined 
based on NSCLC subtypes, we observe the highest absolute 
correlation values for patients with large cell carcinoma 
(LCC) and not other specified (NOS) subtypes. In 
particular, five features appear to be moderately correlated 
with the survival time of LCC patients (i.e., coarseness, 
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texture strength, grey-level non-uniformity, zone size non-
uniformity and surface area), with absolute correlation 
values between 0.35 and 0.43. These results are statistically 
significant with corrected P < 0.05. Correlation values for 
NOS patients are not statistically significant following 
Holm-Bonferroni correction, although this could be due 
to the smaller number of patients in that group. Note that 
the SCC group shows no significance, while having a size 
similar to LCC.

In the case of groups related to tumor size (T), we 
also find eight radiomic features moderately correlated 
with survival for patients with T2 tumors (i.e., correlation, 
coarseness, texture strength, large zone/high grey emphasis, 
grey-level non-uniformity, zone size non-uniformity, 
volume and surface area), with absolute correlation values 
between 0.31 and 0.37. Features derived from T1, T3 and 

T4 tumors exhibit lower correlation values that are not 
significant following Holm-Bonferroni correction.

For patient groups derived from lymph node (N) 
variables, six features (i.e., correlation, dissimilarity, texture 
strength, large zone/high grey emphasis, grey-level non-
uniformity and surface area) are moderately correlated to 
survival time for patients without lymph node involvement 
(N0), with absolute correlation values around 0.30. Features 
derived from N1 patients also show mild correlations. 
However, these are not significant following Holm-
Bonferroni correction, possibly due to the small size of this 
group. In contrast, N2 and N3 groups have comparably 
weaker correlation values than N0, none of these values being 
statistically significant. Unlike for N1, group size is not such 
an important factor in these results of non-significance (97 
and 68 patients with N2 and N3, respectively).

Figure 1: Heatmap of Spearman rank correlation between feature value and survival time, color-coded from -0.5 
(dark blue) to 0.5 (dark red). Censored patients were considered using an imputation strategy which computes their survival time as 
the mean survival of deceased patients with time-to-death greater or equal to censored patients’ time of last visit. Features with statistically 
significant correlation (i.e., corrected P < 0.05) are indicated with a black-green circle.
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Finally, our analysis within groups based on overall 
stage reveals 11 radiomic features moderately correlated 
with survival in Stage I patients (i.e., correlation, inverse 
different moment, dissimilarity, coarseness, texture strength, 
large zone/high grey emphasis, grey-level non-uniformity, 
zone size non-uniformity, zone size percentage, fractional 
diffraction and surface area) with absolute correlation 
values between 0.39 and 0.49. Lower correlation values 
were found in Stage II, IIIA and IIIB groups, which are not 
significant following Holm-Bonferroni correction.

Overall, our correlation analysis finds the strongest 
associations between radiomic features and patient 
survival for LCC (and potentially NOS), T2, N0 and 
Stage I groups. These groups correspond mainly to 
large cell carcinoma cancers with primary tumor size 
between 3 cm and 7 cm across [28, 29] and no evidence 
of regional lymph node involvement or distant metastasis. 
Our analysis also reveals a subset of radiomic features 
exhibiting significant correlation values across various 
groups. In particular, features corresponding to texture 

Table 1: Demographic information for NSCLC patients

Groups n (censored) Male Female Age

(avg ± stdev) Median (IQR)

NSCLC subtype

LCC 100 (40) 62 38 66.86 ± 15.14 65.20 (59.26–74.06)

SCC 90 (28) 74 16 70.98 ± 15.99 70.79 (64.01–78.71)

ADC 31 (9) 20 11 66.37 ± 15.09 64.58 (59.79–74.45)

NOS 56 (19) 42 14 65.83 ± 19.85 65.79 (56.88–74.86)

T stage

T1 73 (32) 46 27 61.02 ± 24.52 68.43 (61.44–75.01)

T2 120 (36) 91 29 65.92 ± 18.16 69.78 (60.03–77.11)

T3 38 (13) 29 9 64.78 ± 15.58 63.88 (58.35–76.79)

T4 81 (26) 58 23 62.67 ± 15.57 64.61 (57.51–72.63)
* 2 (1) – – – –

N stage

N0 133 (50) 101 32 65.78 ± 21.04 70.47 (60.71–78.71)

N1 14 (3) 11 3 61.57 ± 26.80 71.78 (61.77–74.08)

N2 97 (28) 64 33 62.61 ± 17.49 65.02 (58.39–72.82)

N3 68 (25) 46 22 60.55 ± 16.17 62.86 (54.70–70.64)

N4 3 (2) 3 0 71.47 ± 4.63 73.28 (66.21–74.92)

M stage

M0 311 (108) 221 90 63.72 ± 19.01 67.27 (59.42–75.26)

M1 1 (0) 1 0 – –

M2 0 0 0 – –

M3 3 (0) 3 0 65.87 ± 11.1 71.47 (53.08–73.05)

Grouping TNM

I 81 (30) 60 21 64.96 ± 24.64 71.94 (64.56–79.27)

II 26 (7) 21 5 68.05 ± 21.88 74.73 (61.09–78.77)

IIIa 73 (24) 48 25 64.57 ± 14.60 66.91 (59.38–73.07)

IIIb 134 (47) 95 39 61.27 ± 17.11 64.18 (56.59–71.05)
* 1 – – – –

*Unknown; n is the number of subjects; censored is the number of subjects that their survival from time of scans to last visit.
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strength, grey-level non-uniformity and surface area were 
found significant in all four of the LCC, T2, N0 and Stage 
I groups.

To rule out censorship as possible confound in 
our analysis, we also computed the Spearman rank 
correlation between radiomic features and survival time of 
uncensored patients. Results, which can be found in Figure 
2 of Supplementary Materials, are consistent with those 
obtained via our imputation strategy: moderate correlation 
is observed for almost the same radiomic features in LCC, 
T2, N0 and Stage I groups.

Kaplan-Meier survival analysis

The results of our survival analysis based on the 
Kaplan-Meier estimator and log-rank test are summarized 
in Figure 3, Figure 4 and Table 2.

Figure 3 gives the log-rank test significance (in –
log10 P, where P is the corrected p-value) obtained by 
splitting patients with the median value of each feature 
(i.e., the cut-off). Values higher than 1.30 correspond 
to features whose median separates patients in groups 
having significantly different survival profiles, with 

P < 0.05 following Holm-Bonferroni correction. As in 
the previous analysis, significance is measured within 
patient groups associated to NSCLC subtypes and TNM 
staging variables. For NSCLC subtypes, two features 
show significantly different survival distributions when 
dividing LCC patients based on their median value: 
grey-level non-uniformity and zone size non-uniformity. 
Likewise, the large zone/high grey emphasis feature 
derived from patients with tumor size T2 and the grey-
level non-uniformity feature in Stage I patients result 
in significantly different survival profiles. We note that 
these four features were also found to be statistically 
correlated with survival in the previous analysis.

Table 2 reports, for each feature derived from LCC, 
T2 and Stage I patient groups, the median feature value used 
as cut-off, the median survival time of patients with values 
below and greater to this cut-off, and the log-rank p-value 
following Holm-Bonferroni correction. The four features 
yielding significant differences in their respective patient 
group are highlighted using bold underlined font. Figure 4 
presents the Kaplan-Meier curves obtained using the cut-off 
value of these features. We observe that LCC patients with 
below-median values of grey-level non-uniformity have a 

Figure 2:Heatmap of Spearman rank correlation between feature value and survival time of uncensored (i.e., deceased) 
patients, color-coded from -0.5 (dark blue) to 0.5 (dark red). Features with statistically significant correlation (i.e., corrected P < 
0.05) are indicated with a black-green circle.
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higher survival rate, with a hazard ratio (HR) of 3.9 and a 
median survival of 705 days compared to 325 days for other 
LCC patients. Likewise, LCC patients with below-median 
values of zone-size non-uniformity have better survival 
odds, with a hazard ratio of 3.06 and median survival time 
of 705 days compared to 342 days for other patients in this 
group. Similarly, we see that patients in the T2 group with 
below-median values of large zone/high grey emphasis 
have a higher survival rate with a hazard ratio of 2.5 and a 
median survival of 627 days compared to 293 days for other 
patients in this group. Finally, we find that Stage I patients 
with below-median values of grey-level non-uniformity have 
higher survival time, with a hazard ratio of 2.99 and median 
survival time of 818 days compared to 426 days for other 
Stage I patients. In summary, this analysis confirms previous 
results that texture features derived from LCC, T2, and Stage 
I patient groups are associated with NSCLC survival.

Survival prediction

Figure 5A shows the mean ROC curves and AUC 
values obtained by the RF models for predicting the 

survival outcome (i.e., below or above the median survival 
time) of patients within the LCC, T2, N0, Stage I groups. 
Note that these groups were previously shown to exhibit 
moderate correlations with survival. To better assess the 
individual effect of these groups, Figure 5B gives the 
prediction AUC obtained for subjects not in these groups, 
i.e. non-LCC (SCC, ADC and NOS), non-T2 (T1, T3 
and T4), non-N0 (N1, N2, N3, and N4) and non-TNM-I 
(TNM groups: II, IIIa and IIIb) subjects. We compare 
predictive models based only on demographics and TNM 
staging information (5 features: age, T, N, M, and Stage) 
or combined with radiomic features (24 features: texture 
and shape), as indicated by the eight ROC curves.

We see that combining radiomic features with age-
TNM information generally leads to improved prediction, 
with an average AUC of 75.73%, 70.33%, 70.28%, 76.17% 
compared to 61.07%, 65.53%, 59.50%, 71.15% when 
using only age-TNM information, for LCC, N0, T2, and 
Stage I patient groups respectively (Figure 5A). Moreover, 
we find that combining radiomic features with age-TNM 
information generally leads to improved predictions, with 
an average AUC of 58.44%, 57.78%,63.99%, 58.62% 

Figure 3: Heatmap of log-rank test p-values (–log10 scale) using features to separate patients in two groups: those with 
feature values less than the median, and those with values above or equal to the median. Features leading to groups with 
significantly different survival profiles (i.e., corrected P < 0.05) are indicated with a black-green circle.
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compared to 48.90%, 54.05%, 61.36%, 51.16% when using 
only age-TNM information, for non-LCC, non-N0, non-T2, 
and non-TMI-I patient groups respectively (Figure 5B). 
Considering all groups (i.e., LCC, T2, N0, Stage I, non-
LCC, non-T2, non-N0 and non-TNM-I), radiomic features 
combined with age-TNM information lead to the highest 
AUC value of 76.17% for Stage I patients.

Results of our feature importance analysis are 
presented in Figure 6. Features identified as important are 
consistent with those identified using Spearman’s rank 
correlation and log-rank test. In particular, surface-area 
and grey-level non-uniformity were ranked as the most 
common discriminative features across LCC, T2, N0, and 
Stage I patient groups. In addition, we observe that both 
texture and shape features are informative to differentiate 
patients with short and long survival time.

DISCUSSION

Current tools for predicting survival of NSCLC 
patients are based primarily on clinical and staging 
information. Nomograms for predicting patient survival 
from gene expression signatures, clinical and pathological 
features are not yet ready to be used in daily practice. 
Radiomic features extracted from CT scans provide a 
non-invasive and powerful alternative for identifying 
prognostic or predictive biomarkers of survival in cancer 
patients. This study performed three different analyses to 
evaluate the usefulness of radiomic features for predicting 
the survival outcome of patients with specific NSCLC 
cancer subtypes and stages.

Our analysis based on Spearman’s rank correlation 
identified several radiomic features that were moderately 

Figure 4: Kaplan-Meier survival curves comparing the survival rate of patient groups obtained using median feature 
values as cut-off. Large cell carcinoma (LCC) patients split using the median value of the following texture features: grey-level non-
uniformity and zone size non-uniformity, respectively. Patients with tumor size of T2 and Stage I cancer, separated based on the median 
value of the following texture features: large zone/high grey emphasis and grey-level non-uniformity, respectively.
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correlated with the survival outcome of patients with LCC 
cancers, T2 tumor sizes, or classified as Stage I. These 
correlation results were statistically significant with P 
< 0.05 following Holm-Bonferroni (Figure 1/Figure 
2). Furthermore, log-rank testing revealed four texture 
features exhibiting significant associations with survival 
for the same patient groups (i.e., LCC, T2 and Stage I 
patients). Finally, our multivariate analysis using random 
forest models showed the potential of radiomic biomarkers 
for predicting the survival outcome of NSCLC patients 
(Figure 5), in particular, those in the LCC, T2, N0 and 
Stage I groups.

These findings are consistent with previous works 
in the literature, which have found various texture and 
shape features to be strong predictors of NSCLC survival 
outcome [17-19, 30-34]. In contrast to these works, this 
study analyzed the link between radiomic features and 
survival for specific NSCLC cancer subtypes and stages. 
Our results suggest that radiomic features might be more 
relevant from survival prediction in the case of large cell 
carcinoma cancers with a primary tumor between 3 cm 
and 7 cm across, no lymph node involvement, and without 
metastasis. Since features are extracted from the primary 
tumor only, this could potentially be explained by the 

Table 2: Kaplan-Meier survival analysis of the NSCLC clinical factors known to correlate with survival.

Median survival (Month)

Feature Cut-off (median) Above cut-off Below cut-off p-value*

LCC T2 Stage I LCC T2 Stage I LCC T2 Stage I LCC T2 Stage I

f1 ×10-3 310 332 222 18.87 17.50 15.90 18.77 15.47 25.30 1 1 1
f2 ×10-3 822 841 796 11.53 10.97 16.57 24.33 20.13 24.97 0.43 0.237 0.251
f3 ×10-3 732 722 608 16.93 17.73 14.60 19.40 15.47 30.10 1 1 0.144
f4 ×10-1 310 331 427 19.03 14.13 25.07 17.43 18.23 15.97 1 1 1
f5×100 1559 1642 1955 18.87 14.77 17.83 18.77 17.73 18.50 1 1 1
f6 ×10-3 290 308 398 18.40 15.07 31.60 19.03 18.23 14.43 1 1 0.078
f7×100 127 119 168 21.23 16.83 21.43 14.97 14.73 18.10 1 1 1
f8 ×10-3 -299 -317 -277 21.13 16.00 23.17 15.73 15.63 15.97 1 1 1
f9 ×10-3 785 797 818 18.77 15.37 22.37 18.90 18.20 17.63 1 1 1
f10 ×10-3 4565 4085 6871 21.23 16.00 25.23 14.97 15.57 17.17 1 1 1
f11×100 38774 43180 29783 18.40 16.00 17.57 19.17 16.43 21.30 1 1 1
f12 ×104 540 544 610 21.77 16.83 17.57 14.27 15.20 18.50 1 1 1
f13 ×10-5 250 200 000 21.63 17.37 28.50 11.10 11.77 15.23 1 1 0.282
f14×10-3 909 849 2543 21.63 18.53 26.73 12.93 10.03 15.23 0.93 0.432 0.203
f15×10-3 734 725 771 20.30 18.07 24.20 17.43 12.50 15.97 1 1 1
f16×104 600 111 116 11.53 9.77 15.00 21.77 20.90 25.30 1 0.007 0.131

f17 ×100 97 117 41 10.83 10.97 14.20 23.50 18.53 27.27 < 
0.001 0.381 0.048

f18×100 1355 1743 697 11.40 10.97 15.00 23.50 20.13 27.27 0.007 0.432 0.363
f19×10-3 80 83 157 20.23 16.77 25.23 17.43 12.43 15.83 1 1 1
f20×10-2 5382 6161 3585 13.17 12.13 15.60 21.23 18.33 25.30 1 1 1
f21×10-3 997 997 996 17.27 18.33 18.33 19.40 14.07 17.63 1 1 1
f22×100 10617 14314 3837 12.13 10.97 15.60 23.23 19.17 25.30 0.6 0.364 1
f23×10-3 2629 2607 2766 21.23 18.63 28.50 12.13 10.97 15.23 1 1 0.419

f24×100 5949 6205 1984 12.50 10.97 15.00 22.50 19.17 28.13 0.64 0.264 0.131

Age 65.2 69.78 71.94 15.53 14.67 14.60 19.30 19.03 24.10 1 1 1
* Following Holm-Bonferroni correction.
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Figure 5: Mean ROC curves and AUC obtained by the random forest models for predicting the survival group (i.e., 
below or above median survival time) using only demographic and TNM staging information (TNM), or combined 
with radiomic features (Combined). (A) Patients group of large cell carcinoma (LCC, n=100), N0 (n=133), T2 (n=120) 
and TNM-I (Stage I, n=81). (B) Patients group of non-LCC (i.e., n=177: squamous cell carcinoma, adenocarcinoma and not 
otherwise), non-N0 (i.e., n= 182: N1, N2, N3 and N4), non-T2 (i.e., n=192: T1, T3 and T4) and non-TNM-I (i.e., n=233: 
Stage II, IIIa and IIIb).

Figure 6: Importance of individual features for predicting the survival group LCC, T2, N0 and TNM-I (stage I) 
patients. Reported values correspond to the mean increase in prediction error obtained by permuting the values of individual features 
across out-of-bag observations [49]. Blue and red bars represent texture and shape features, respectively.
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fact that small tumors (i.e., less than 3cm across) provide 
limited texture and shape information, compared to larger 
ones, and that the impact of this tumor on outcome is less 
important once lymph nodes are affected or the cancer has 
metastasized to other organs.

While previous studies have found tumor shape to 
be a good predictor of NSCLC patient survival [35, 36], 
our experiments indicate that texture features may be 
more effective at this task. In particular, NGTDM features 
corresponding to texture coarseness and strength, as well 
as GLZM features based on zone size non-uniformity and 
grey-level non-uniformity, appear to be suitable predictors 
of overall survival. Since these features are relatively easy 
to compute, they could be used in a clinical setting to 
establish prognosis. It is worth mentioning that texture 
features are usually more sensitive to image acquisition 
equipment and parameters than those based on shape. 
Because our study uses CT images, and the intensities in 
such images are determined by the radiodensity of scanned 
tissues (i.e., Hounsfield units), the influence of acquisition 
variables on radiomic features is limited. Nevertheless, 
normalizing image intensities or learning predictive 
models specific to a particular equipment could therefore 
help provide consistent results across patients.

As in previous work [7, 9], our analysis has shown 
radiomic features to improve the prediction of NSCLC 
survival compared to using only TNM staging information. 
It is hypothesized that texture features can capture tissue 
anomalies occurring at the cellular level that are directly 
related to cancer subtype and stage. Likewise, shape 
features could describe the irregularity of NSCLC tumors 
during their progression, which may vary for different 
cancer subtypes or stages. This motivates our approach 
of analyzing cancer subtypes and stages separately, unlike 
previous studies.

Our study has some limitations worthy of mention. 
In our correlation and log-rank survival analyses, 
differences in group sizes may affect significance values. 
It is thus possible that some results of non-significance are 
due, in part, to small group sizes. This could be addressed 

in a future work by using a larger patient cohort. Patients 
in different groups could also be matched, for instance, 
to remove age and gender bias. Although we used a 10-
fold cross validation strategy to obtain unbiased estimates 
of prediction accuracy, experiments using additional 
independent datasets would further validate our proposed 
method, in particular NSCLC data acquired from multiple 
sites and imaging modalities other than CT. In addition, 
patient survival is generally related to a variety of factors, 
including treatment, psychology, diet, etc. that were 
unavailable in the TCIA data set for analysis. These 
factors may potentially introduce bias into our results, 
however this bias is reduced by size of our patient cohort 
(315 patients). Using labels from multiple raters, instead 
of a single one (i.e., the radiation oncologist), could also 
reduce bias in the results.

In our survival analysis, the median survival time 
was used as cut-off to divide patients in two subgroups 
(i.e., classes) corresponding to short and long survival. 
This strategy has the important advantage of giving even-
sized subgroups, thereby eliminating the bias introduced 
by class-unbalanced samples. However, it is also limited in 
that biologically similar patients about the cutoff threshold 
(i.e. median age) are grouped into different categories, 
which may negatively impact analysis [37]. In the proposed 
analysis, this problem is mitigated in part via a 10-fold 
cross-validation methodology, where prediction accuracy 
is measured over ten independent data subsamples.

Since our results indicate that radiomic features 
from the primary tumor have lower predictive power 
when lymph nodes are affected, a logical extension of this 
work would be to add features extracted from metastatic 
lymph nodes in lung CT scans. Finally, machine learning 
techniques such as convolutional neural networks [38] 
could be employed to learn discriminative features in a 
more data-driven manner.

In conclusion, this study demonstrated the potential 
of radiomic features capturing textural and morphological 
properties of NSCLC tumors as non-invasive biomarkers 
to predict the survival outcome of NSCLC patients. In 

Figure 7: Workflow of the proposed radiomics method (i.e., our pipeline, similar to [6, 7]). (1) Acquisition of pre-treatment 
lung CT images; (2) Gross tumor volume segmentation and NSCLC subtype labelling; (3) Extraction of 24 texture and shape features from 
gross tumor volumes; (4) Feature significance analysis based on Spearman rank correlation, Kaplan-Meier estimator and log-rank test, and 
multivariate prediction of survival using random forests.



Oncotarget104403www.impactjournals.com/oncotarget

contrast to previous works, we analyzed the association 
between radiomic features and survival for patients within 
specific groups defined by cancer subtype and stage. 
Results suggest that these features are mainly relevant 
in the case of large cell carcinoma cancers (LCC) with 
primary tumor size between 3 cm and 7 cm across (T2) 
and no lymph node metastasis (N0). Results also highlight 
the need for future studies including radiomic features 
extracted from lymph nodes metastasis.

MATERIALS AND METHODS

Figure 7 shows the processing pipeline of the 
proposed method. Raw imaging data from patients with 
NSCLC cancer are first acquired by CT scan, prior to 
treatment. For each scan, the gross tumor volume (GTV) 
is then computed from manual delineations provided by a 
radiation oncologist, and assigned to one of four the NSCLC 
subtypes (i.e. large cell carcinoma (LCC), squamous cell 
carcinoma (SCC), adeno-carcinoma (ADC) or not otherwise 
specified (NOS)). The oncologist also classifies tumor 
progression based on the tumor-node-metastasis (TNM) 
staging system [39], describing the size and invasion level 
of the tumor, the presence of affected lymph nodes, and 
whether the cancer has metastasized to distant organs.

A total of 24 features (i.e. 19 texture features and 
5 shape features) are then automatically computed from 
extracted GTVs, and used in combination with patient 
age to analyze the survival outcome of patients. Three 
separate analyses were conducted toward this goal. In 
the first analysis, Spearman rank correlation was used to 
measure the relationship between each feature and survival 
time. Similarly, the second analysis uses the Kaplan-
Meier estimator and log-rank test to find features leading 
to significantly different survival curves when dividing 
subjects based on the features’ median value. For these 
two analyses, feature significance is reported in terms of 
p-values, corrected for multiple-comparisons using the 
Holm-Bonferroni procedure [40]. Finally, a multivariate 
analysis based on the random forest model is employed 
to classify NSCLC patients into groups corresponding to 
short survival (i.e. below the median survival time) and 
long survival (i.e., above or equal to the median survival 
time). For all analyses, we used various toolboxes from the 
MATLAB 2016 computing environment (MathWorks Inc., 
Natick, MA, USA).

Patients and data acquisition

Analysis involves the subset of 315 patients with 
complete NSCLC labels, from the set of 422 patients 
in the The Cancer Imaging Archive (TCIA, http://
cancerimagingarchive.net/) [41]. This dataset, called 
Lung1, contains data of patients treated at the MAASTRO 
Clinic, Netherlands, previously de-identified by the 
Cancer Genome Atlas (TCGA, http://cancergenome.nih.

gov/) and made publicly available for download. Thus, no 
institutional review board approval specific to this study 
was required. All images were acquired using CT scan at a 
resolution of 512×512×slices, where the number of slices 
varied across subjects, and a voxel size of 1×1×1 mm3. For 
each scan, the gross tumor volume (GTV) was manually 
delineated by a radiation oncologist and provided as 
segmentation mask. A subset of 277 cases were also 
classified by the oncologist based on the standard TNM 
staging system, measuring the tumor size (T), the extent of 
regional lymph node involvement (N) and the presence or 
absence of intrathoracic or distant metastases (M). Finally, 
the survival time in days, from time of scan to death (i.e., 
uncensored) or last visit (i.e., censored), was also provided 
for all 315 patients. Patient demographic information 
(i.e., gender and age) for each NSCLC subtype and TNM 
parameter is reported in Table 1.

Feature extraction

A wide variety of radiomic features may be 
computed from the region of interest (i.e., the GTV in our 
case). In this study, we focused on a subset of 24 commonly 
used texture and shape features, which are presented in 
Supplementary Table 1 of the Supplementary Materials. 
Three different types of texture features were considered: 
grey level co-occurrence matrix (GLCM), neighborhood 
grey-tone difference matrix (NGTDM), and grey-level 
zone matrix (GLZM). These features measure various 
textural properties of the GTV, such as region uniformity/
heterogeneity and texture coarseness, which were shown 
to be related to histological properties of tumors [42, 43]. 
To capture more meaningful patterns of texture, image 
intensities of GTVs were uniformly resampled to 32 grey-
levels prior to computing the features. On the other hand, 
shape features encode morphological characteristics of the 
tumor, such as volume and surface area, that capture the 
tumor growth status within surrounding tissues [44].

Statistical analysis

In the first analysis, we computed the Spearman’s rank 
correlation [45] between the features extracted from each 
GTV and the survival time of the corresponding patient. 
For censored patients, the time of last visit only offers 
a lower bound on the true survival rank. To account for 
these patients in our correlation analysis, we used a simple 
imputation strategy in which censored patients are assigned 
the mean survival time of uncensored subjects with a time-
to-death greater or equal to their own time of last visit. 
Using this strategy, rank correlation was obtained between 
the survival time of patients and each radiomic feature (plus 
patient age), absolute values between 0.3 and 0.5 indicating 
moderate correlation. Additionally, the significance of these 
correlation values was measured as p-values, based on the 
null hypothesis that there is no correlation.

http://cancerimagingarchive.net/
http://cancerimagingarchive.net/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/


Oncotarget104404www.impactjournals.com/oncotarget

The relation between radiomic features derived from 
the GTV and patient survival possibly depends on the 
NSCLC subtype or the cancer’s stage. For instance, such 
features may be less informative in patients with affected 
lymph nodes or metastasis, these factors becoming more 
important than the primary tumor for overall prognosis. 
To validate this hypothesis, we repeated our analysis on 
various patient groups, corresponding to different NSCLC 
subtypes and TNM variable classes. To account for these 
multiple comparisons (e.g., 4 NSCLC subtypes and 24 
features + age, for a total of 100 tests), we corrected 
the p-values of our analysis using the Holm-Bonferroni 
procedure [40], and considered as significant results with 
corrected P < 0.05.

In the second analysis, we considered each feature 
in turn and used the median value of this feature to 
separate patients in two groups: those with feature value 
less than the median, and those with feature value above 
or equal to the median. As in [46], we then computed the 
time-to-event (i.e., number of days from scan until death 
or last visit) distributions of the two groups using the 
Kaplan-Meier estimator, and compared them using the 
log-rank significance test. The same patient groups as in 
the previous analysis were considered, and p-values were 
corrected based on the same procedure.

Furthermore, we performed a multivariate analysis 
using all 24 radiomic features and 5 demographic/staging 
variables (i.e., age, T, N, M and overall stage) as input to 
a Random Forest (RF) model [47] for the classification 
of patients in two groups representing short survival 
(i.e., below the median survival time) and long survival 
time (i.e., above or equal to the median survival time). 
RF is one of the most effective and general-purpose 
classification algorithms, running efficiently on large 
databases with thousands of input variable/features. This 
model operates by averaging the output of a battery of 
randomly generated decision tree classifiers, a general 
technique known as bootstrap aggregation which leads 
to a low bias/variance classification result. Additionally, 
the RF training algorithm involves a feature selection 
process that provides a mechanism for assessing feature 
importance.

The hypothesis for this analysis is that radiomic 
features can improve survival prediction, compared to 
demographics and TNM staging information. As in the 
correlation analysis, censored patients were considered 
via an imputation strategy, where the mean survival of 
uncensored subjects with time-to-death greater or equal 
to the time of last visit was used. Likewise, we predicted 
survival considering the same patient groups as in the 
correlation analysis to determine the impact of these 
grouping parameters on performance. A 10-fold cross-
validation strategy was employed to obtain unbiased 
performance measures. In this strategy, data samples of 
every patient group were randomly divided into 10 even-
sized sets (i.e., folds). Each of these sets was then used, 

in turn, to compute the area under the ROC curve (AUC) 
[48] of a RF model trained with the remaining samples, 
using 500 decision trees. The overall performance of the 
model was then measured as the average AUC obtained 
over all 10 folds.

Finally, the importance of each feature in predicting 
the survival group of patients was assessed based on the 
out-of-bag error of the multivariate RF models generated 
at each fold. Specifically, for each RF model and feature, 
we measured the increase in prediction error resulting 
from the permutation of feature values across out-of-
bag observations [49]. These importance measures were 
computed for every RF tree and averaged over the entire 
ensemble. Values were then normalized by dividing 
them by the ensemble’s standard deviation. Lastly, the 
importance of features was obtained by averaging these 
normalized values across all 10 folds.
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