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Abstract

Biological processes often manifest themselves as coordinated changes across modules, i.e., sets 

of interacting genes. Commonly, the high dimensionality of genome-scale data prevents the visual 

identification of such modules, and straightforward computational search through a set of known 

pathways is a limited approach. Therefore, tools for the data-driven, computational, identification 

of modules in gene interaction networks have become popular components of visualization and 

visual analytics workflows. However, many such tools are known to result in modules that are 

large, and therefore hard to interpret biologically.

Here, we show that the empirically known tendency towards large modules can be attributed to a 

statistical bias present in many module identification tools, and discuss possible remedies from a 

mathematical perspective. In the current absence of a straightforward practical solution, we outline 

our view of best practices for the use of the existing tools.
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1. Introduction

The organisation of cells is thought to be inherently modular [1, 2]. Modules can be 

identified from high-dimensional, genome-wide datasets. Typically, in a first step, gene-wise 

scores—often obtained from a statistical test— are calculated. These scores reflect the 

degree of involvement of each gene in a biological process. In a second step, one tries to 

identify gene modules from plausible sets of candidates, based on their scores.

Module candidates typically correspond to predefined gene sets, such as pathways [3], or 

connected subnetworks of a network of interacting genes [4]. Predefined gene sets are easier 

to analyse and interpret, but obviously limited by existing knowledge. Functional interaction 

networks represent information on pairs of genes known to interact—directly or indirectly—

in the same biological context. Edges in such networks can represent hypothetical or verified 
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physical associations between the corresponding molecules, such as protein-protein, protein-

DNA, metabolic pathways, DNA-DNA interactions, or functional associations, such as 

epistasis, synthetic lethality, correlated expression, or correlated biochemical activities [5, 6, 

7]. Given a network of interacting genes, modules are typically identified as ‘hot spots’, i.e., 

sub-networks with an aggregation of high gene-level scores.

Hot spots can be identified visually, using drawings of biological networks, in which high-

scoring genes are highlighted. However, drawings of genome-scale biological networks 

often resemble ‘hairballs’ that lack a clear correspondence between regions in the drawing 

and subnetworks, making the visual identification of hot spots difficult.

In practice, one commonly identifies modules computationally, substituting human visual 

perception of strongly highlighted regions by computational search for high aggregate scores 

in connected subnetworks. Scores are commonly aggregated using a normalised score 

function that ensures an identical score distribution among subnetworks of different sizes, 

given a null model for gene-level scores. The gene-level null model is often specified with 

the gene-level scores, or it is implicit, e.g., when the gene-level scores are derived from P-

values.

Many algorithms are based on the score defined by jActiveModules [8], including PANOGA 

[9], dmGWAS [10], EW-dmGWAS [11], PINBPA [12], GXNA [13], and PinnacleZ [14]. 

Others, such as BioNet [15, 16] and Sig-Mod [17] are based on a score adapted to integer 

linear programming. These methods are also widely applied in the current literature [18, 19, 

20, 21, 22, 14, 23, 24, 25, 26], even though the above approaches have been reported to 

consistently result in subnetworks that are large, and therefore difficult to interpret 

biologically [13, 27, 28]. Some versions of the approach have dealt with this issue by 

introducing heuristic corrections designed to remove the tendency towards large 

subnetworks [13, 27, 17]. A recent evaluation of several algorithms revealed that the efficacy 

of these corrections remains limited [28]. Other methods avoid dealing with the issue by 

allowing users to limit the size of the returned module [10, 11, 12, 13, 14, 29], which is 

problematic, as prior information about suitable settings of this parameter is typically not 

available.

Here, we uncover the statistical basis of the above-mentioned empirical tendency of module 

identification tools to return large networks. Clear examples allow us to illustrate the origins 

of this size bias in the construction of the score function, and to propose a mathematical 

construction of a new and unbiased score. Even though we are not able to give an efficient 

algorithm for the practical computation of the new score, we uncover a possible connection 

to extreme value theory that might serve as the basis of future algorithmic developments, 

and discuss our view of the currently best practical approaches to the unbiased identification 

of network modules.
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2. Materials and Methods

2.1. The subnetwork identification problem

Most of the above-mentioned module identification methods are motivated as the 

maximisation over a set of (connected) subnetworks of a graph. In its basic form, its three 

inputs can be described as follows.

1. A graph G, corresponding to the functional interaction network, in which the 

nodes V = (v1,…, vN) correspond to molecules. By A(G) we denote the sets A ⊆ 
V that induce connected subnetworks in G. By Ak(G) we denote only those sets 

of size |A| = k, which we will also call k-subnetworks.

2. A set of P-values (p1, …, pN) that correspond to the statistical significance of 

observations associated with the N molecules. (Whenever P-values are not 

directly available, they can easily be obtained from scores, e.g., by a rank-based 

transformation.)

3. A score function s(A) : A(G) →ℝ that assigns a score to each connected 

subnetwork.

A solution to the subnetwork identification problem corresponds to a subnetwork A that 

maximises the score s(A) over A(G).

2.2. jActiveModules score function

The jActiveModules method [8] was one of the first published subnetwork identification 

methods. Given an input graph G and P-values (p1, …, pN), a first aggregate score z(A) for a 

k-subnetwork A ∊ Ak(G) is defined using Stoufer's Z-score method [30]:

where zi = ϕ−1 (1 – pi), and ϕ−1 is the inverse normal cumulative distribution function 

(CDF). The jActiveModules score s(A) is then obtained as

where μk and σk are sampling estimates of mean and standard deviation of scores z(A) over 

all k-node sets A ⊆ V. Ideker et al. [8] evaluated the resulting score against a distribution of 

empirically obtained scores under random permutations of (p1, …,pN), corresponding to a 

null hypothesis of a random assignment of input gene-level scores to the nodes of the 

network.
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3. Theory

3.1. Subnetwork scores Sk, 

By Sk we denote a random variable that describes the occurrence of k-subnetwork scores, 

with CDF F(x) = P(s(A) ≤ x | A ∊ Ak(G)). Similarly, we denote by  the maximal k-
subnetwork scores with CDF F(x) = P(maxA∊Ak(G) s(A) ≤ x). Below, we will discuss the 

distributions of Sk and  under the null hypothesis.

3.2. Score normalisation

Per construction of the jActiveModules score function, and under a sufficient amount of 

sampling to determine μk and σk, Sk follows a standard normal distribution: Sk ∼ ℕ(0,1)[8]. 

Whenever, as here, the distribution of Sk is independent of k, we will call the underlying 

score s normalised. As we will show below, the size bias of the jActiveModules score is 

rooted in the fact that jActiveModules searches for a highest-scoring subnetworks, but that 

maximisation is not taken into account by the normalised score it employs in its search.

4. A widespread theoretical bias in network module identification

In this section we show that, under a normalised score, small subnetworks can be 

significantly high-scoring in their size class, but still low-scoring when compared to scores 

that occur by chance in larger networks, thus explaining the above-mentioned size bias, i.e., 

the tendency of jActiveModules and related methods to return large subnetworks.

To empirically explore the properties of the jActiveModules score function, we generated a 

sample network with 50 nodes from STRING interaction network [5], which we denote by 

G50, by first initialising a graph Gcurrent with a randomly chosen node from the STRING 

network. Then we iteratively extended Gcurrent with a randomly chosen neighbour, until |

Gcurrent| = 50.

4.1. For small values of k, the number |Ak(G)| of k-subnetworks increases strongly with k

By definition, the null distribution of a normalised score over all k-subnetworks is identical 

for all values of k. What normalisation does not take into account is the fact that the number 

|Ak(G)| of k-subnetworks depends on k.

We now explore this effect for different graphs G. In a fully connected graph G, each k-

subset A ⊆ V forms a k-subnetwork. Here, , which strongly increases with 

increasing small k.

Figure 1 shows that, also for our sample network G = G50, |Ak(G)| strongly increases with k 
for small k.

Finally, the STRING [5] network G with 250 000 highest-scoring edges has |A3(G)| = 20 

676 496 3-subnetworks, and |A4(G)| = 201 895 916 4-subnetworks. The number of 5-
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subnetworks was higher yet; we were not able to determine |A5(G)| in a reasonable amount 

of time by straightforward enumeration.

4.2. Maximum scores increase strongly with k under the null hypothesis

We now explore the behaviour of the maximum k-subnetwork score  under the null 

hypothesis, with increasing k, for small values of k. As |Ak(G)| tends to increase strongly 

with small k (Section 4.1), and the distribution of jActiveModules scores Sk is independent 

of k (cf. Section 3.2), one may expect  to strongly increase with k. Figure 2 illustrates this 

effect in the case of independent identically distributed (i.i.d.) samples.

Subnetwork scores Sk are not independent, as subnetworks in Ak(G) are overlapping. To 

explore whether the same effect as in the independent case can still be observed, we 

computed scores  in our sample network G = G50 for 100 000 random instantiations of 

(p1, …, p50). Figure 3 shows the resulting empirical distributions of , for some small 

values of k, with a clear increase of  with increasing k.

We note in passing that, for large values of k, the number |Ak(G)| of connected subnetworks 

must, at some point, decrease (note that |AN(G)| = 1 for any connected graph G). 

Accordingly, one may expect decreasing maximum scores  when k approaches N. Our 

empirical evaluation, shown in Figure A.1, is consistent with this idea: On our sample graph 

G50, jActive-Modules scores  decrease for k = 46, 47, 48.

4.3. Maximum scores may follow an extreme value distribution under the null hypothesis

Maxima of i.i.d. scores have been proven to follow an extreme value distribution [31] 

(Appendix B.1). However, due to the overlap between subnetworks, subnetwork scores Sk 

are not independent. Nevertheless, most pairs of small subnetworks of a larger network do 

not overlap, and their dependency structure is therefore local.

Extreme value distributions are used in other cases when dependency structure is local. They 

have been been proved to accurately approximate certain sequences of random variables 

whose high scores (block maxima) have a local dependency structure [31]. In sequence 

alignment, high-scoring alignments tend to overlap locally, and Karlin and Altschul [32] 

demonstrated that the null distribution of local similarity scores can be approximated by an 

extreme value distribution. Here, a weighting parameter K explicitly accounts for the non-

independence of the positions of high-scoring matches. K is specific to the search database, 

and its estimation is computationally intensive.

Figure 4.3 shows that generalised extreme value distributions also fit empirically observed 

distributions  quite well in the sample network G50 (fit parameters given in Table 1; 

probability plots in Appendix C). The fit can be observed to be good for smaller values of k, 

and to deteriorate with increasing k, concomitant with the loss of locality in the subnetwork 

dependency structure.
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4.4. The jActiveModules score and other normalised scores are biased towards larger 
subnetworks

Our empirical study of maximal subnetwork scores suggests that maximum scores 

strongly increase under the null hypothesis when k is small (cf. Figure 3). This implies that 

certain non-significant subnetworks of larger size are systematically scored higher than 

other, smaller, subnetworks that have a significantly high score relative to their size. Figure 5 

illustrates this effect: a score that is unlikely to be observed by chance in a 3-subnetwork is 

much more likely to be observed by chance in a 5-subnetwork. Even though we were not 

able to explicitly calculate  for k > 5, we deem it likely that, larger k-subnetworks (with, 

say, k > 7) with even better scores are almost certain to exist in random data. As many 

methods do not provide an assessment of the statistical significance of the reported 

subnetworks, these methods not only prefer spurious larger subnetworks over—potentially 

biologically relevant—smaller ones, but also fail to provide their users with an indication 

that the reported networks are indistinguishable from chance observations.

5. Unbiased module detection—theory and practice

5.1. An unbiased score function s˜

It is straightforward to mathematically remove the size bias of any (normalised or 

unnormalised) score s(A) by calibrating it relative to its size-specific null distribution (which 

requires taking into account the maximisation over subnetworks). For a k-subnetwork A, we 

define the score

The negative sign of the P-value ensures the expected directionality of the score, i.e., that 

subnetworks with high aggregate gene-level scores receive a high score s˜. The resulting 

maximum scores  are approximately uniformly distributed on [0,1], i.e., . 

Note that this correspondence is only approximate, as  is a discrete distribution.

5.2. Computing the unbiased score s˜ by sampling is computationally hard, but it may be 
possible to approximate S˜ by an extreme value distribution

Even though the unbiased score s˜ can be easily defined, it is not straight-forward to 

compute it efficiently. In principle, s˜(A) could be approximated by sampling from , but 

each sample requires the computation of a maximum of s(A) over all subnetworks A in a 

network — a problem that has been shown to be NP-hard even in a simplified form [8]. 

Approaches to solve this problem nonetheless exist [15, 17], but under the reported running 

times in the range of minutes to hours for a single sample from , current approaches still 

remain impractical for any but the smallest networks.

The locality of the dependency structure among small subnetworks and our empirical results 

from Section 4.3 suggest that  can possibly be approximated by an extreme value 

distribution. However, it is not obvious how the parameters of this distribution can be 
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estimated practically without recourse to sampling, which, as discussed above, is 

impractical.

5.3. Current best practices for the unbiased identification of network modules

In the absence of practical solutions to compute the unbiased subnetwork score S˜, what are 

the current practical options for the unbiased scoring and detection of network modules?

One possibility is to use one of the approaches that find highest-scoring subnetworks of a 

fixed, or limited, subnetwork size k [16, 10, 11, 12, 13, 14, 29], and to evaluate these 

subnetworks on the basis of their biological interpretation. Since only small networks tend to 

be biologically interpretable, only small k would have to be tested. As the statistical 

significance of a subnetwork can be expected to be relatively stable upon removal or 

addition of a few neighbours, not all values of k would need to be tested. While this 

approach has obvious shortcomings (multiple statistical tests, often unclear biological 

interpretation), each computation by itself would only compare subnetworks of same size, 

and thus avoid size bias.

There are other, non-statistical (e.g., algorithmic/physical) principles for identifying 

aggregates of signals in networks [33, 34]. The lack of clear mathematical relationships 

between inputs and outputs, or lacking information about statistical significance may make it 

difficult to assess the properties of these approaches, and their applicability to any given 

biological scenario. The recently developed LEAN approach preserves mathematical clarity 

and statistical tools, and obtains computational tractability through a restriction to a 

simplified subnetwork model [35], whose significance for biological applications remains to 

be confirmed.

6. Conclusions

The identification of network modules of highest aggregate scores is an important approach 

to analyse biological datasets. In small and sparse networks, modules can be identified 

visually as regions of high gene-level scores, when visualised on top of network drawings, 

but this approach breaks down for large networks resulting from typical high-dimensional, 

genome-wide datasets. An array of methods and software addresses this problem 

computationally, but many of them are plagued by an empirically recognised strong 

tendency towards large subnetworks that ad hoc adjustments have not been able to remedy.

Here, we present a first direct analysis of the origins of this phenomenon, and uncover a 

strong statistical size bias in the underlying score function. By mathematical normalisation 

against size-specific null distributions, we derive a new, unbiased, score function. 

Straightforward computation of this score is computationally infeasible, and we outline our 

view of currently best other practical options on the basis of existing tools. Finally, we hope 

that our observation, demonstrating that the unbiased score function may be approximated 

using extreme value distributions, will motivate further practical developments towards the 

unbiased identification of modules in networks.
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Appendix A: For large values of k, maximal subnetwork scores decrease

Figure A.1. Distributions of maximum subnetwork scores  for large values of k under the null 
hypothesis
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Appendix B: Approximate normality of subnetworks scores Sk

Figure B.1. 
Quantile-quantile plot between standard normal distribution and jActiveModules scores S5 

for the sample graph G50 under the null hypothesis. Other scores Sk have similar quantile-

quantile plots (not shown).
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Appendix C: Quality of extreme value distribution fits for maximal 

subnetwork scores Sk∗

Figure C.1. Probability plot for the extreme value model fit to maximal scores of subnetworks of 
size 1, , in G50

Figure C.2. Probability plot for the extreme value model fit to 
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Figure C.3. Probability plot for the extreme value model fit to 

Figure C.4. Probability plot for the extreme value model fit to 
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Figure C.5. Probability plot for the extreme value model fit to 

Appendix D: Implementation: Code used to generate data for Figures in the 

main text

All plots have been generated using Python. jActiveModules Java code that has been 

modified to run independently from Cytoscape environment, and augmented with options 

used to generate Figures in the article, can be found in the github repository:

https://github.com/schwikowskilab/jActiveModulesHeadless/tree/paper

To compile, go into the main folder and execute mvn clean package.

To run, execute java -jar -Xss4m -Xmx14848M target/jActiveModulesHeadless-1.0.jar -

help.

To generate the data used in the paper, use option -t with the available parameters.

Figure 1: Use −t 3. The option will calculate numbers of subnetworks starting from size 1 to 

number of nodes in the network. Here is an example:

java -jar -Xss4m -Xmx14848M target/jActiveModulesHeadless-1.0.jar -t 3 -nf 

testNetworkSmall 50nodes 136edges.sif -df testdata 50nodes.txt

Figure 2: Use −t 2. The number of samples from which you take the maximum is defined in 

the file src/main/resources/jActiveModules.props with the option AP.samplingIterationSize. 
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The size of subnetworks is defined in the same file by AP.subnetworkSize. If you change 

any values in this file, you need to recompile the code to take modifications into account. 

The output is written to the output directory (by default jActiveModulesResults folder in 

your home directory) into file scoreTestInd.txt.

Figure 3: Use −t 1. The size of subnetworks is defined in

src/main/resources/jActiveModules.props by AP.subnetworkSize.

The output is written to the output directory (by default jActiveModulesResults folder in 

your home directory) into file scoreTest.txt.

Figure 4: Extreme value distributions have been fitted using stats.genextreme.fit() function 

of the stats package from the Python scipy environment (http://www.scipy.org/).

Figure 5: Distributions are an extract of the ones represented on Figure 3 (distributions for 

k=3 and k=5). Darker zones have been computed from this same data.
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Highlights

• The identification of network modules in genome-scale datasets is a long-

standing problem.

• Current approaches tend to return large subnetworks that are hard to interpret.

• We identify a size bias in the score function underlying many of these 

approaches.

• We derive practical recommendations to minimize size bias using existing 

tools.

• Our new, unbiased, score function can be approximated using extreme value 

distributions.

Nikolayeva et al. Page 16

Methods. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Numbers |Ak(G)| of small subnetworks in G50 (a network of 50 nodes) as a function of 
their size k
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Figure 2. Sample maxima from independent identically distributed samples are likely to increase 
with sample size
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Figure 3. Empirical distributions of jActiveModules maximum subnetwork scores  for small 
values of k under the null hypothesis
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Figure 4. Fits of generalised extreme value distributions F(x; μk,σk,ξk) to empirical distributions 
of 
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Figure 5. 
Scenario illustrating the bias of normalised scores towards larger subnetworks. Distributions 

shown are jActiveModules null distributions  and  for the sample network G50. Under 

the null hypothesis, a normalised score of 3.538 is unlikely to occur by chance for a 3-

subnetwork A3 , but the same score is much more likely to occur by 

chance for a 5-subnetwork A5 . The unbiased score function s˜ takes 

this into account by scoring A3 much higher than A5: s˜(A3) ≈ 1 – 0.05 = 0.95, but s˜(A5) ≈ 
1 – 0.36 = 0.64.
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Table 1
Parameters for the fits F(x; μk,σk, ξk) in Figure 4.3

k μk σk ξk

1 2.1 0.33 0.08

2 2.3 0.36 0.12

3 2.6 0.40 0.16

4 2.9 0.41 0.18

5 3.2 0.42 0.20
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