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Abstract

Myelin increases the speed and efficiency of action potential propagation. Yet, not all axons are 

myelinated and some axons are discontinuously myelinated, prompting the question of how 

myelinating glia select axons for myelination. Whereas myelination by Schwann cells depends on 

axonal induction, oligodendrocytes can form myelin membrane in the absence of axons. However, 

oligodendrocytes alone cannot architect the complex myelination patterns of the central nervous 

system and recent advances have implicated axonal signaling in this process. This review 

considers how oligodendrocytes and their precursors could be influenced by inductive, attractive, 

permissive, repulsive, and preventative cues, and discusses recent evidence identifying synaptic 

activity and membrane-bound adhesion molecules as such cues directing axon selection.

The myelin landscape

Myelin, the insulating membrane concentrically wrapped around axons, accelerates impulse 

propagation and offloads neuronal energy expenditure. Despite these advantages, not all 

axons are myelinated and some axons are only intermittently myelinated. In the peripheral 

nervous system (PNS), Schwann cells (SCs) myelinate solely large diameter axons [1], with 

individual SCs each myelinating only one axon segment. By contrast, central nervous 

system (CNS) myelination patterns are more complicated. During development, myelination 

proceeds in a stereotyped sequence with different regions being myelinated at different times 

as oligodendrocyte precursor cells (OPCs), which are distributed throughout the CNS, 

differentiate into myelinating oligodendrocytes (OLs) [2,3]. OPC differentiation and 

myelination continues into adulthood, albeit at a much slower rate [4–6]. Unlike SCs, each 

OL extends many processes to myelinate several different axon segments. The smallest 

caliber CNS axons are never myelinated but there is significant overlap in the diameters of 

myelinated and unmyelinated axons [7], whereas other CNS structures geometrically similar 
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to axons – dendrites, blood vessels, and glial processes – remain unmyelinated, with rare 

exceptions.

Recent volumetric reconstructions of cortical tissue have further refined our understanding 

of CNS myelination. Intriguingly, myelination may depend on neuron subtype: a recent 

study found that parvalbumin-positive basket cells are essentially the only type of 

GABAergic interneuron with myelinated axons in the adult mouse neocortex [8•]. Another 

study contested the prevailing dogma of myelination as an all-or-none phenomenon; rather, 

many pyramidal axons in the adult mouse neocortex are intermittently myelinated, with 

large unmyelinated gaps between myelinated sections [9], a configuration distinct from 

nodes of Ranvier that separate individual myelin sheaths (internodes) to permit saltatory 

conduction.

This partial myelin coverage likely reflects the need to balance the advantages of 

myelination with overall energy [10] and space constraints, and likely contributes to the 

precise control of circuit timing [11], underscoring the importance of appropriate myelin 

localization. In the case of intermittent myelination along a single axon, unmyelinated gaps 

could provide space for new myelin formation to fine-tune myelination patterns as circuit 

activity changes in the adult. This review will focus on our current understanding of how 

these intricate patterns of myelination are established.

The intrinsic nature of OL myelination

Given that sensory and motor axons that pass between the CNS and PNS are myelinated by 

both OLs and SCs, it seems intuitive that CNS and PNS axons would use similar 

mechanisms to control myelin formation. In the PNS, axons play a necessary and inductive 
role in their own myelination. Neuregulin-1 type III is required for SC maturation and 

myelination of PNS axons [12] and its expression level determines myelin sheath thickness 

[13]. Importantly, its ectopic suprathreshold expression induces the myelination of normally 

unmyelinated axons [12], demonstrating its importance in determining myelination fate.

However, neuregulin-1 type III is largely dispensable for CNS myelination [14,15]. In fact, 

several aspects of OL myelination proceed successfully without molecular axonal signaling 

altogether. Cultured OPCs intrinsically differentiate into OLs, which, remarkably, can form 

compact myelin around inert polystyrene fibers [16]. In fact, certain properties of in vivo 
myelination can be explained by how OL-lineage cells intrinsically interact with axonal 

geometries. Neither OPCs or OLs will ensheathe or wrap synthetic fibers with a diameter 

smaller than or equal to 0.3µm, a similar threshold to that observed in vivo [16], indicating 

that OL-lineage cells directly sense fiber geometries. Geometric sensing by OL-lineage cells 

may also explain the general correlation between internode length and axon diameter in vivo 
[17,18] as this correlation persists with synthetic fibers [19]. Exactly how OL-lineage cells 

detect radial axon size remains elusive, but they may utilize properties such as curvature or 

circumference to do so. Curvature-inducing components could impose a physical limit on 

OL-lineage cell membrane curvature that prevents wrapping of highly curved, subthreshold 

diameter axons. Alternatively, OL-lineage cells could sense their own membrane curvature 

as they wrap (for an example of curvature sensing at a similar scale, see [20]) and avoid 
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wrapping axons above a threshold curvature. Another approach could be for OL-lineage 

cells to infer axonal circumference by sensing the length of one wrap of their membrane 

around an axon (for a potential mechanism of length sensing, see [21]). Upon completing 

one wrap, an OL-lineage cell process would contact itself. If the process length is 

subthreshold, the process would retract upon self-contact, preventing wrapping. Retraction 

of an extending OPC process upon contact with another process of the same OPC has been 

observed in the adult mouse cortex [6]; the same mechanism could operate in this context as 

well. To avoid retraction upon self-contact, the OL-lineage process would have to exceed a 

threshold length. At this threshold, the length sensing machinery would initiate a rapid 

downregulation of the self-repulsion mechanism locally within the wrapping process (e.g. by 

internalizing cell adhesion molecules), enabling self-contact and myelination of 

suprathreshold circumference axons. Similar mechanisms could also be used to correlate 

internode length with radial axon size.

Regional differences in OL-lineage cells, which likely emerge after OPC specification [22], 

may explain some differences in myelination between CNS regions. OPCs isolated from 

developing spinal cord form longer internodes upon differentiation than do those isolated 

from neocortex in cultures with synthetic fibers or neurons [19], reproducing the differences 

in internode length observed between these regions in vivo [23]. Another study 

demonstrated that the higher levels of differentiation and myelination in white matter (WM) 

[24] might be partially explained by differences between WM and grey matter (GM) OPCs. 

Adult WM OPCs transplanted into either adult WM or GM differentiated more efficiently 

than adult GM OPCs transplanted into either region [25].

Extrinsic factors regulating OL axon selection

Whereas intrinsic properties of OL-lineage cells might be helpful for setting up some basic 

features of the myelin landscape, they cannot independently produce the complex and 

specific myelination patterns observed in the CNS. For example, the relationship between 

myelin sheath thickness and axonal diameter [26] is not reproduced with synthetic fibers 

[19], and the ratio of internode length to axon diameter is actually highly variable in vivo 
[17,18,27]. In particular, since OLs are not programmed to myelinate a specific type of axon 

[28–30] and many suprathreshold diameter axons are not myelinated in vivo [7], other 

factors must contribute to the regulation of axon selection. Indeed, extrinsic factors have an 

important role in this process. For myelination of the appropriate axons at the appropriate 

time, OLs must be present and they must know where to form myelin – two components that 

can be influenced by extrinsic factors. By influencing virtually every aspect of OL 

development, extrinsic signals can affect the distribution of OLs at any time. Furthermore, 

extrinsic signals can influence where individual OLs localize their myelin sheaths.

Axons, as the substrates for myelination, are logical candidates for being the source of these 

extrinsic cues. Axons might precisely regulate the timing of their myelination by expressing 

dynamic cues. An inductive cue could turn on, or a converse preventative cue could turn off, 

in an axon to initiate its myelination. OPCs, which actively survey their environment [6,31] 

and receive synaptic inputs from axons [32], are well-positioned to integrate such cues from 

multiple axons. A threshold level of change in these axons could cause OPCs to differentiate 

Osso and Chan Page 3

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and to myelinate these axons. By utilizing a combined differentiation/axon selection cue 

(Figure 1A), this system would be extremely efficient in matching the number of OLs and 

their internodes to the axons requiring myelination at any time.

Alternatively, differentiation and axon selection could be uncoupled (Figure 1B, C) [33•]. 

Differentiation could occur either through an actively regulated mechanism or through one 

that is indiscriminately applied wherein OLs that differentiated in excess of available axons 

would eventually die [34–36]. Axon selection could be performed by either OPCs (Figure 

1B) or OLs (Figure 1C). OPCs could identify axons to myelinate upon their eventual 

differentiation (Figure 1B), or, once differentiated, OLs could become receptive to axonal 

cues that regulate either sheath initiation or stability (Figure 1C). The axon selection cues 

described below could apply to either cell type. Inductive or preventative axon selection cues 

could operate in this context (although they are not illustrated in Figure 1B, C). In the case 

of unregulated OPC differentiation, both the patterns and timing of myelination would be 

controlled solely by the axons that become available for myelination based on their changing 

expressions of inductive or preventative cues. In the case of actively regulated OPC 

differentiation, the timing of inductive (or preventative) cue onset (or offset) would have to 

precisely coordinate with the timing of the regulated differentiation mechanism to be able to 

initiate myelination of an axon during the seemingly short period between OPC 

differentiation and the termination of new sheath formation [6,37,38] (although, see [5]). 

With regulated OPC differentiation, it would instead be simpler for OL-lineage cells to 

respond to axon selection cues that are not dynamically regulated, perhaps having existed on 

axons long before differentiation occurs. Such cues would influence myelin localization but 

not its timing. These cues could be termed attractive or repulsive, positively or negatively 

biasing an axon’s selection for myelination by either altering the distribution or number of 

OL internodes (Figure 1B, C).

Finally, regardless of whether differentiation and axon selection are coupled or not, axons 

must be permissive for myelination – a feature that permits their myelination but does not 

guarantee it (e.g. suprathreshold axon diameters). Axon permissiveness may be static or 

dynamically regulated (e.g. as subthreshold axons grow). An outstanding question in the 

field is whether structures that are simply permissive – lacking any inductive or attractive 
cues – are myelinated in the CNS (as illustrated in Figure 1B, C). While the models of axon 

selection presented here are not mutually exclusive, their conceptual separation is useful for 

establishing a framework to evaluate research in this field.

A role for axons in OL myelination

Efforts to elucidate the role of CNS axons in their own myelination have greatly benefited 

from innovations in sparse (low-efficiency recombination), targeted genetic manipulations 

and live imaging with single-cell resolution. A creative genetic approach generating 

zebrafish with supernumerary large caliber spinal cord Mauthner axons provided compelling 

evidence for the influence of axons on an individual OL’s myelination patterns. These extra 

axons caused Mauthner axon-associated OLs to extend more internodes to myelinate more 

Mauthner axons than normal, and even prompted non-Mauthner axon-associated OLs to 
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myelinate Mauthner axons. Notably, OL numbers did not change [29], supporting a model 

wherein axonal cues alter axon selection independent of OPC differentiation (Figure 1B, C).

A recent study in mice demonstrated that axonal cues can have a considerably broader 

impact on OL development and myelination. Knocking-out Pten specifically from cerebellar 

granule cells, which increased axon caliber to suprathreshold diameters and altered gene 

expression, caused ectopic proliferation and differentiation of OPCs and myelination of 

granule cell axons in the normally unmyelinated cerebellar molecular layer [39••]. It is 

unclear whether all of these effects are mediated through the same or disparate mechanisms 

– or exactly what those mechanisms are. Could these effects be entirely attributable to 

increasing axon caliber to a permissive level, or are molecular changes also involved? 

Intriguingly, ectopic myelination was still observed when Pten was only sparsely knocked-

out [39••]. Identifying whether the axons lacking PTEN were the ones that were myelinated 

in this sparse manipulation will provide important information on the spatial nature of this 

change. Moving forward, this genetic model could be a tractable system to investigate the 

mechanisms by which axons regulate their own myelination.

Axonal cues for axon selection

An axon selection cue must be sufficiently localized to facilitate the distinction between 

axons as well as geometrically similar substrates in close proximity. Membrane-bound cues 

or those released at synapses both meet this requirement.

Axonal cues for axon selection: synaptic activity

OPCs receive glutamatergic and GABAergic synaptic inputs from axons and express a 

myriad of other neurotransmitter receptors [32,40], perhaps to inform OPCs of a myelination 

need. A model often termed “activity-dependent myelination” posits that changes in synaptic 

inputs to OPCs could serve as an inductive cue, causing OPC differentiation and myelination 

of the axons providing modified inputs, perhaps even converting axon-OPC synapses into a 

myelinating sheath (Figure 1A) [41]. This process could shape brain development based on 

experience or contribute to learning by modifying circuit timing.

Two landmark in vivo studies energized this hypothesis. Optogenetic stimulation of neurons 

in the mouse premotor cortex increased proliferation and differentiation of OPCs [42], 

which presumably generate new myelin. Similarly, training mice to run on a complex wheel 

increases OPC proliferation and differentiation in the corpus callosum. In fact, generating 

new OLs, and presumably new myelin, was required for mice to properly learn the task [43]. 

Since simply increasing OPC density can enhance differentiation [44], the direct effects of 

neuronal activity on OPC differentiation in these studies is unclear. A follow-up study using 

the same motor learning paradigm showed that differentiation occurs from the existing pool 

of OPCs [45•], suggesting that subsequent OPC proliferation may occur in response to local 

OPC differentiation, as was observed in live imaging of cortical OPC dynamics [6]. An 

important next step is to analyze where new myelin is localized in these paradigms; are 

axons with increased activity inducing their own myelination by expressing a combined 

differentiation/axon selection cue (Figure 1A) or might axonal activity simply act as a 

differentiation cue without affecting axon selection (Figure 1B)?
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A recent study supports the latter. Social isolation of adult mice reduced OPC 

differentiation, the number of myelinated axons, and myelin thickness in the prefrontal 

cortex (PFC) and caused social withdrawal, all of which were rescued by oral administration 

of the pro-differentiation compound clemastine [46]. If the presumably reduced activity of 

specific sociability-related axons during social isolation prevented these axons from 

expressing an inductive cue that would normally cause OPC differentiation and their 

selection for myelination (Figure 1A), it’s unlikely that the ostensibly indiscriminate 

upregulation of OPC differentiation by clemastine would rescue these deficits. More 

plausibly, PFC activity from social interaction upregulates overall OPC differentiation 

without affecting axon selection, and is important for providing sufficient numbers of OLs to 

myelinate the relevant axons, which utilize other cues to regulate their selection for 

myelination (Figure 1B, C).

Notably, other studies have found no [47] or opposite [48] effects of neuronal activity on 

OPC differentiation, while others have observed differences in properties such as OL 

internode number [47,49••], length [48,50••,51•], or thickness [42,46,47,52]. Of these, two 

pioneering studies found a direct role for the synaptic activity of individual axons in 

regulating their selection for myelination. Treatment of zebrafish with tetrodotoxin (TTX) to 

block action potentials reduced the myelination of phox2b+ axons in the spinal cord without 

affecting total internode or OL numbers, suggesting that these axons use neuronal activity to 

facilitate their myelination [50••]. Indeed, expressing tetanus toxin (TeNT), which prevents 

synaptobrevin/VAMP2-mediated synaptic exocytosis, in individual phox2b+ axons 

substantially reduced the myelination of these axons [50••]. The same was true for TeNT 

expression in single reticulospinal axons [49••]. TeNT expression globally or specifically in 

neurons caused individual OLs to form 30% fewer internodes [49••,50••].

The results with TTX versus TeNT suggest different mechanisms of activity-mediated axon 

selection, highlighting the importance of elucidating the specific mechanisms involved to 

resolve the sources of these discrepancies. The TTX data support a model of competition 

between axons for myelination. When neuronal activity was abolished, phox2b+ axons lost 

their competitive advantage, and so other axons were myelinated in their place. Conversely, 

the TeNT data suggests that the axon selection cue used by these axons promotes their 

myelination by increasing the number of internodes per OL, perhaps by affecting 

downstream OL Fyn kinase signaling [37]. Live imaging showed that very early retractions 

of presumably nascent sheaths [50••] caused a decrease in sheaths per OL 6h after the 

beginning of sheath formation in the TeNT condition [49••], and that increased sheath 

retractions continued for many hours [50••]. Despite the reduction in excitatory synaptic 

input as OPCs differentiate into early OLs, these cells continue to respond to glutamate 

[53,54] and maintain some glutamate receptor expression [55,56]. The increase in sheath 

retractions in response to blocking synaptic exocytosis along with the observation that 

synaptic vesicles preferentially stopped at nascent ensheathment sites [50••] imply that early 

myelinating OLs do respond to synaptic inputs and that these inputs are important for axon 

selection (Figure 1C).

Could synaptic activity-mediated axon selection account for CNS myelination patterns? 

Different neuronal subtypes utilize different neurotransmitters and have distinct firing rates, 
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features OL-lineage cells could use to identify specific axonal subtypes to myelinate [8•]. 

But since these features do not differ within a single neuron, how could synaptic activity 

produce intermittent myelination along a single axon [9]? Axons could synapse with OPCs 

unevenly along their lengths. Alternatively, cues from an individual axon could remain 

consistent but the surrounding environment could affect that axon’s competitiveness for 

myelination.

Axonal cues for axon selection: membrane-bound adhesion molecules

Not surprisingly, not all axons utilize synaptic activity to regulate their selection for 

myelination. While individual reticulospinal neurons expressing TeNT had reduced myelin 

coverage, TeNT expression in individual commissural primary ascending axons had no 

effect on their myelination [51•]. What other cues might axons use to regulate their selection 

for myelination?

Adhesion molecules, which mediate cell-cell interactions, are logical candidates. In fact, 

several axonal adhesion molecules negatively regulate OPC differentiation and/or 

myelination, and seem to downregulate their expression as myelination proceeds (e.g. 

Jagged1 [57], PSA-NCAM [58], or Lsamp [59]). It is tempting to regard these molecules as 

potential preventative cues for myelination, wherein their removal from an axon would 

initiate myelination of that axon, potentially in conjunction with causing OPC 

differentiation. Future studies genetically manipulating these molecules sparsely in axons 

will elucidate their potential roles in axon selection.

Recently, the adhesion molecule JAM2 was identified as a negative regulator of myelination 

with no effect on OPC differentiation. It is expressed by the somatodendritic compartment of 

cultured spinal cord neurons and prevents myelination of this cellular compartment. 

Oligodendrocytes ectopically myelinate the somata and dendrites of cultured Jam2 knock-

out spinal cord neurons, and increased ectopic myelination of PAX2+ neuronal somata was 

found in the dorsal spinal cord of Jam2 knock-out mice [60•]. This study confirms the 

presence of repulsive cues that shape where OLs form internodes. It also suggests either that 

neuronal somata express sufficiently attractive cues such that they become myelinated when 

inhibition is reduced, or that simply permissive structures can be myelinated in the CNS 

(Figure 1B, C). Intriguingly, JAM2-Fc coated micropillars are repulsive to both cultured 

OPCs and OPC-derived OLs [60•], indicating that OPCs respond to substrate selection cues 

that influence their eventual internode placement, independent of that cue’s ability to affect 

differentiation (Figure 1B). Likewise, contact-mediated self-repulsion by OPCs [6,31] 

supports the idea that these cells are well-equipped with adhesion molecules to regulate the 

placement of their processes.

Could similar repulsive cues exist that prevent the myelination of glia or blood vessels? 

Might there be adhesion molecules, attractive or repulsive, that distribute unevenly along 

axons or differentially between different neuronal subtypes, shaping CNS myelination 

patterns [8•,9]?
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Wrapping it up

The question of how axons are selected for myelination has been historically difficult to 

answer. However, new research efforts utilizing sparse genetic manipulations and high-

resolution live imaging have begun to shed light on this complex issue and will be essential 

moving forward. Despite in vitro work establishing the intrinsic nature of OL myelination, 

current research has clearly demonstrated that axons have a role in their selection for 

myelination. The extent of their contribution and the molecular players remain to be 

determined and will be fruitful grounds for future studies.

This review has focused primarily on the mechanisms through which axons might 

communicate with OL-lineage cells to regulate their initial myelin coverage. While myelin 

sheath retractions have been observed in early OLs, it is not yet clear how ongoing 

communication between axons and OLs might alter myelin coverage in the long term. In 

addition to affecting axon selection, evidence suggests that axons can regulate internode 

length and sheath thickness, properties that – like axon selection – affect conduction velocity 

and energy usage. It remains a beautiful mystery as to how these properties are regulated in 

concert with one another, and to what extent axons are active players in this coordination, 

functioning as grand architects of the ever-changing myelin landscape.
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Highlights

- Not all axons are myelinated and some axons are discontinuously myelinated.

- Oligodendrocytes do not require molecular axonal signals to form myelin 

membranes.

- Axon selection can occur at various stages of oligodendrocyte development.

- Axons can express various cues to regulate their selection for myelination.

- Synaptic activity and membrane-bound adhesion molecules influence axon 

selection.
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Figure 1. Different mechanisms of axon selection could produce the same CNS myelination 
patterns
These three models are non-exhaustive and not mutually-exclusive. Structures with 

suprathreshold diameters are shown in yellow as permissive. The first axon has a 

subthreshold diameter, rendering it non-permissive. (a) An inductive cue (blue) turns on in 

axons to initiate their myelination. Shown here, an OPC senses a threshold myelination need 

from the second and fourth axons that causes the OPC to differentiate and myelinate these 

axons. These axons are among the permissive structures. (b) OPCs respond to attractive 

(green), permissive (yellow), and repulsive (red) cues on axons and other cellular 

compartments that regulate the contacts that OPCs make and the eventual placement of 

myelin sheaths. The OPC processes retract from repulsive cues on the third axon and the 

somatodendritic compartment. Upon differentiation, this cell will myelinate the second and 

fourth axons. The differentiation cue (purple) is uncoupled from axon selection. (c) OLs 

respond to attractive (green), permissive (yellow), and repulsive (red) cues that affect sheath 

initiation or stability. Retraction of an early sheath in response to a repulsive cue on the third 

axon is shown. This OL myelinates the second and fourth axons.
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