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ABSTRACT: Using the HIV-1 protease binding mode of MK-8718
and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine
sulfonamide core was designed and synthesized. The resulting HIV-1
protease inhibitor containing this core showed an 60-fold increase in
enzyme binding affinity and a 10-fold increase in antiviral activity
relative to MK-8718.
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HIV-1 protease is a critical enzyme in the lifecycle of the virus,
serving to catalyze the proteolytic cleavage of polypeptide
precursors into mature enzymes and structural proteins that are
essential components of HIV-1.1 Inhibitors of this enzyme pre-
vent conversion of HIV-1 particles into their mature infectious
form, and so it follows that HIV-1 protease inhibitors represent
an important therapeutic approach for the treatment of HIV-1
infection.2−4 Recently, we reported the discovery of MK-8718,
an HIV-1 protease inhibitor containing a novel morpholine
aspartate binding group.5 A key feature of this inhibitor is
that the morpholine amine forms the key interaction with the
Asp-25A and Asp-25B acidic residues of the enzyme, in con-
trast to the majority of inhibitors where a hydroxyl group
plays this role.6 Herein we report further optimization of the
enzyme bound conformation of these amine based class of
inhibitors.
Inspiration for the design of our next generation inhibitors

came from examining the enzyme bound conformations of
MK-87185 and PL-1007 (Figure 1). It can be seen that the mor-
pholine oxygen of MK-8718 binds to the flap of the enzyme
(Ile50A and Ile50B) via a bridging water. In contrast, the sul-
fonamide moiety present in PL-100 binds directly to the Ile50A
and Ile50B residues. This observation led us to design the hybrid

core shown below in Figure 1. The so-designed piperazine
sulfonamide would retain the amine to form the key interaction
with the Asp-25A and Asp-25B acidic residues, while the sulfonyl
group would displace the bridging water and bind directly to the
flap Ile50A and Ile50B residues. In order to simplify the synthesis
of the initial proof of principal target, a simplified right-hand side
derived from 3,3-bis(4-fluorophenyl)propanoic acid was utilized.8

Synthesis of our initial design is outlined in Scheme 1. Com-
mercially available racemic 1 was sulfonylated to afford piperazine
sulfonamide 2. Dess−Martin oxidation9 gave aldehyde 3, which
underwent Wittig olefination using (2-nitrobenzyl)triphenylpho-
sphonium bromide10 to afford olefin 4. Concomitant reduc-
tion of the nitro and olefin functionalities under hydrogenation
conditions yielded aniline 5. Coupling of 3,3-bis(4-fluorophenyl)-
propanoic acid with aniline 5 afforded amide 6. Elaboration to the
desired target was achieved by Boc-deprotection and resolution
of the ensuing enantiomers to afford 7 and 8. Antiviral activity
of both enantiomers 7 and 8 was measured, and pleasingly,
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enantiomer 7 showed significant activity in a cell-based antiviral
assay (EC50 = 27 nM).11

With this active compound in hand, we decided to pursue an
X-ray crystal structure of 7 bound to HIV-1 protease to confirm
our hypothesis that the sulfonamide moiety had displaced
the water molecule present in the enzyme bound structure of

MK-8718. Gratifyingly, the crystal structure of 7 bound toHIV-1
protease, shown in Figure 2, indeed showed that no bridging
water was present, and the sulfone of 7 was directly hydrogen
bonded to the Ile50A and Ile50B residues of the enzyme. Also
evident from the crystal structure of 7 was that the preferred
stereochemistry at the 2-position of the piperazine moiety was

Figure 1. Hybrid design concept based on the binding modes of MK-8718 and PL-100 (PDB codes 5IVT and 2QMP).

Scheme 1a

aReagents and conditions: (a) PhSO2Cl, Hunig’s base, CH2Cl2, −78 °C to RT; (b) Dess−Martin periodinane, CH2Cl2, 0 °C; (c) K2CO3, 18-crown-6,
(2-nitrobenzyl)triphenylphosphonium bromide, DME, RT; (d) Pearlman’s catalyst, H2 balloon, CF3CH2OH, RT; (e) 3,3-Bis(4-fluorophenyl)propanoic
acid, T3P, Hunig’s base, EtOAc, RT; (f) TFA, CH2Cl2, RT, then Chiralpak AD.

Figure 2. X-ray crystal structure of 7 bound to HIV-1 protease showing hydrogen bonding to Ile50A and Ile50B residues.
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the (S)-configuration, opposite to that which is preferred for
the morpholine core of MK-8718. This was in concurrence

with results from earlier modeling studies of the piperazine
sulfonamide core, which showed the HIV-1 protease binding

Scheme 2a

aReagents and conditions: (a) LiAlH4, 2-Me-THF, 0 °C; (b) K2CO3, 18-crown-6, (2-nitrobenzyl)triphenylphosphonium bromide, DME, RT;
(c) Pearlman’s catalyst, 50 psi H2, EtOAc/MeOH, RT; (d) 3,3-Bis(4-fluorophenyl)propanoic acid, T3P, Hunig’s base, EtOAc, RT; (e) TFA, H2O,
CH2Cl2; RT; (f) (i) PhSO2Cl, NEt3, DMF, 0 °C; (ii) diazene-1,2-diylbismorpholinomethanone, PBu3, THF, RT; (g) (R)-2-aminopropan-1-ol,
1,2-DCE, 40 °C; (h) (i) Boc2O, NEt3, CH2Cl2, RT; (ii) diazene-1,2-diylbismorpholinomethanone, PBu3, THF, RT; (i) TFA, CH2Cl2, RT.

Figure 3. Antiviral activity (EC50)
11 of analogues 18−21 formed via amino alcohol opening of aziridine 15.

Figure 4. X-ray crystal structure of 18 bound to HIV-1 protease, showing steric clash and leading to design of a bicyclic piperazine.
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conformation of the (S)-enantiomer to be lower in energy than
that of the corresponding (R)-enantiomer.
Although piperazine sulfonamide 7 displayed good antiviral

activity, in vitrometabolic studies revealed that the unsubstituted
left-hand side of the piperazine ring was susceptible to significant
metabolic oxidation. This prompted us to investigate whether
functionalization of the unsubstituted side of the piperazine ring
would be tolerated with respect to antiviral activity. In order to
introduce a methyl group on the left-hand side of the piperazine
in a regio- and stereocontrolled manner, the route shown in
Scheme 2 was utilized.12 The route starts with readily available
and configurationally stable Weinreb amide 9. Reduction of 9
afforded aldehyde 10,13 which underwent Wittig olefination to
give 11. Reduction of both the olefin and nitro groups afforded
aniline 12, which was coupled with 3,3-bis(4-fluorophenyl)-
propanoic acid to afford amide 13. Deprotection of 13 afforded
amino alcohol 14, which was converted to aziridine 15 via a
sulfonylation and subsequent intramolecular Mitsunobu14

reaction. Opening of aziridine 15 with (R)-2-aminopropan-1-
ol, followed by Boc-protection afforded 16, which was converted
to piperazine 17 via an intramolecular Mitsunobu reaction. Boc-
deprotection afforded the desired target 18. Aziridine 15 was
used to synthesize all four methyl-substituted isomers as shown
in Figure 3.
Although 20 and 21 with methyl substituents at the 6-position

of the piperazine showed similar potency to unsubstituted
piperazine 7, we were intrigued by the X-ray crystal structure
of the less potent analogue 18 bound to HIV-1 protease, as
shown in Figure 4. It can be seen that the phenyl group on the
sulfonamide moiety and the methyl group on the piperazine ring
lie in close proximity to each other, likely creating an unfavorable
steric interaction in the binding conformation of the molecule.

This observation led us to consider forming a bicyclic ring, with
a bond joining the sulfone to the piperazine ring. Molecular
modeling suggested a three carbon chain length would be
optimal for locking the molecule in the bioactive conformation.
Synthesis of this target is shown in Scheme 3 and began with
commercially available amino alcohol 22. Aziridine formation via
sulfonylation and Mitsunobu ring closure afforded intermediate
23. Aziridine 23 was opened with (R)-2-aminopent-4-en-1-ol,
and subsequent Boc-protection yielded 24. An intramolecu-
lar Mitsunobu reaction gave piperazine 25, and subsequent
magnesium/MeOH mediated deprotection15 cleanly removed
the phenylsulfonyl moiety in the presence of both theN-Boc and
O-Bn moieties to give 26. Sulfonylation of 26 gave metathesis
precursor 27, which underwent ring closure mediated by Zhan
Catalyst-1B16 to give bicyclic compound 28. Hydrogenation of
28 reduced the olefin and removed the benzyl group yielding 29.
Dess−Martin oxidation, followed by Corey Fuchs alkyne
formation17 via dibromide 31, afforded alkyne 32. Sonogashira
coupling,18 followed by reduction of so-formed 33 afforded
aniline 34. Coupling 3,3-bis(4-fluorophenyl)propanoic acid with
aniline 34 and subsequent Boc-deprotection gave the bicyclic
target 35. We were pleased to observe that bicyclic compound 35
retained good antiviral activity (EC50 = 21 nM).11 The X-ray
crystal structure of 35 bound to HIV-1 protease, as shown in
Figure 5, revealed the expected binding mode, whereby the
sulfonyl group forms hydrogen bonds directly to flap Ile50A and
Ile50B residues, taking the place of the bridging water present in
the crystal structure of MK-8718 bound to HIV-1 protease.
With this new core in hand, we decided to incorporate

the highly optimized pieces of MK-8718 into a molecule. The
synthesis was carried out starting with alkyne 32 as shown in
Scheme 4. Sonogashira coupling, followed by reduction, afforded

Scheme 3a

a(a) (i) PhSO2Cl, NEt3, DMF, 0 °C; (ii) DIAD, PBu3, THF, 0 °C; (b) (i) (R)-2-aminopent-4-en-1-ol, THF, 45 °C; (ii) Boc2O, NEt3, CH3CN,
45 °C; (c) DIAD, PBu3, THF, RT; (d) Mg, MeOH, sonication, RT; (e) 2-chloroethanesulfonyl chloride, NEt3, CH2Cl2, RT; (f) Zhan Catalyst-1B,
1,2-DCE, 50 °C; (g) Pearlman’s catalyst, H2 balloon, EtOAc, RT; (h) Dess−Martin periodinane, CH2Cl2, RT; (i) PPh3, CBr4, CH2Cl2, RT;
(j) EtMgBr, THF, 0 °C; (k) 3-fluoro-2-iodoaniline, (PPh3)2PdCl2, CuI, NEt3, CH3CN, 70 °C; (l) Pearlman’s catalyst, H2 balloon, EtOH, RT;
(m) (i) 3,3-Bis(4-fluorophenyl)propanoic acid, T3P, Hunig’s base, EtOAc, RT; (ii) HCl, dioxane, RT.
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amine 36. Coupling of amine 36 with (2S,3S)-2-azido-3-(4-chlo-
rophenyl)-3-(3,5-difluorophenyl)propanoic acid5 gave amide 37,
which, after azide reduction and Boc-deprotection produced the
final compound 38. This compound showed exquisite enzyme
binding affinity (IC50 = 12 pM) for HIV-1 protease, which
translated into potent antiviral activity (EC50 = 2.8 nM) in a cell-
based assay. As shown in Table 1, this represents a significant

potency improvement relative to MK-8718 (binding IC50 =
700 pM, antiviral EC50 = 27 nM). In addition, the potency of 38
compares favorably to market leading HIV-1 protease inhibitors
Atazanavir and Darunavir.
In summary, through a series of structure-based design itera-

tions, a novel bicyclic piperazine sulfonamide aspartyl protease
binding core was identified. This core produced a 60-fold
increase in HIV-1 protease binding affinity and a 10-fold increase
in antiviral activity relative to MK-8718.
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