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ABSTRACT: A series of novel selenides bearing benzene-
sulfonamide moieties was synthesized and investigated for the
inhibition of five human (h) isoforms of zinc enzyme carbonic
anhydrase (CA, EC 4.2.1.1), hCA I, II, IV, VII, and IX. These
enzymes are involved in a variety of diseases, including
glaucoma, retinitis pigmentosa, epilepsy, arthritis, and tumors.
The investigated compounds showed potent inhibitory action
against hCA II, VII, and IX, in the low nanomolar range, thus
making them of interest for the development of isoform-
selective inhibitors and as candidates for biomedical
applications.
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Selenium has a long history of association with human
health and disease.1,2 Interest in the potential biological,

pharmacological, and therapeutic exploitation of synthetic
organoselenium compounds started several decades ago.
Organochalcogen derivatives played a crucial role in identifying
free radical scavengers or antioxidants that can inhibit or retard
oxidative damage.3,4 Oxidative stress, induced by the generation
of reactive oxygen species (ROS), is considered a major
causative factor of many serious conditions, including diabetes,
cardiovascular diseases, cancer, and several neurodegenerative
diseases.5,6 Furthermore, organoselenium derivatives showed
inhibitory effects on a variety of enzymes such as nitric oxide
synthase (NOS),7−10 lipoxygenases (LOX),11 and carbonic
anhydrases12−14 (CAs, EC 4.2.1.1). CAs are metalloenzymes
that catalyze a very simple reaction: the hydration of carbon
dioxide to bicarbonate and protons.15 This reaction plays an
important role in many physiological and pathological
processes associated with pH control, ion transport, fluid
secretion, biosynthetic reactions, etc.16,17 For this reason, we
continued to investigate a new type of organoselenium
derivatives as human (h) CA inhibitors (CAIs). Our long-
standing interest in the reactivity of strained heterocycles with
chalcogen-containing nucleophiles led us to disclose novel
procedures for the synthesis of a wide variety of functionalized
selenium- and tellurium-containing organic small mole-
cules.18−21 Some of these structures exhibited interesting
catalytic antioxidant activity.22−24 With the aim of synthesizing
a new series of hydroxy- and amino-functionalized selenium
containing CAI, we sought to exploit the reactivity of the three-
membered ring, such as epoxides and aziridines, with a suitable

selenolate, bearing the benzenesulfonamide moiety (as CA
inhibiting chemotype),25 generated from the corresponding
diselenide 3. In the present study, we investigated different
selenides incorporating a benzenesulfonamide moiety as CAI.
We began our investigation with the synthesis of diselenide 3,
as shown in Scheme 1. The diazonium salt of sulfanilamide was

prepared by reaction of 1 with sodium nitrite in the presence of
acid (Sandmeyer reaction) and used as the key intermediate for
the synthesis of compound 2. Successively, the selenocyanate
derivative 2 was converted easily into the diselenide 3 by
reaction with NaBH4 in ethanol, as outlined in Scheme 1.
Having obtained diselenide 3, we evaluated the possibility to

access β-hydroxy selenides by using the ring opening reaction
of this compound with epoxides.26−28 Thus, 3 was reduced with
NaBH4 to the corresponding selenolate, which was treated in
situ with benzyl glycidyl ether 4a, affording the β-
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Scheme 1. Synthesis of Selenocyanate and Diselenide
Bearing Benzenesulfonamide Moiety
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hydroxyselenide 5a in good yield (Table 1, entry 1). The
process proved to be highly regioselective, as only the isomer

arising from the nucleophilic attack at the less hindered carbon
of the oxirane was observed. On the basis of these results, and
in order to study the generality of such a procedure, a series of
epoxides was reacted with 3 under the same conditions, as
reported in Table 1. Thus, differently substituted hydroxyl
selenides 5b−g were obtained from the corresponding epoxides
4b−g through a regioselective ring opening route (Table 1,
entries 2−4). Interestingly, epibromohydrin 4e was smoothly
converted into 5e in excellent yields, the nucleophilic attack
occurred exclusively on the epoxide, and the halide was
preserved on the side chain (Table 1, entry 5). Disubstituted
hydroxy selenides 5f,g were obtained by reacting 3 with
cyclohexene oxide 4f and limonene oxide 4g (Table 1, entries
6,7).
In order to access benzenesulfonamide-substituted selenides

bearing the amino group, the procedure was extended to
differently N-protected aziridines 6,29,30 synthesized from
natural amino acids. As reported in t he Scheme 2,
enantioenriched N-tosyl and N-Boc selenides 7a−c were
obtained in good yields from 6a−c through a regio- and
stereoselective reaction.
Finally, the free selenoamine 8 was obtained from the N-Boc

derivative 7c by the acetyl chloride promoted cleavage of the
protecting group (Scheme 3).31

As a further investigation, in order to propose an alternative
way to access the target compounds, we sought to achieve β-
hydroxy- and β-amino-selenides from the selenocyanate 2, thus
avoiding the synthesis of the diselenide 3. After having
optimized the reaction conditions, we were pleased to observe
that selenides 5a,b and 7a were obtained by ring opening of
epoxides 4a,b and aziridine 6a with the selenolate, in situ
generated by reducing 2, as reported in Scheme 4.

We investigated the CA inhibitory proprieties of compounds
2, 3, 5a−g, 7a−c, and 8 against the physiologically relevant
hCA isoforms I, II, IV, VII, and IX by means of the stopped-
flow carbon dioxide hydration assay32 after a period of 15 min
of incubation of the enzyme and inhibitor solutions.33−38 Their
activities were compared to the standard CAI acetazolamide
(AAZ) (Table 2).
The following structure−activity relationships (SARs) may

be noted regarding the inhibition data of Table 2:

(i) The ubiquitous cytosolic hCA I was inhibited by all
compounds with Ki spanning between low nanomolar
(Ki 8.4 nM) to the high micromolar range (Ki 8084.3
nM). Selenocyanate derivative 2 inhibited hCA I in the
medium nanomolar range (Ki 95 nM), but the diselenide
3 showed a decreased potency of inhibition by almost 15-
fold. The β-hydroxy selenide 5g showed the best
inhibition potency, with a Ki of 8.4 nM. Moreover, a
less bulky tail moiety such as in the cyclohexane
derivative (5f) decreased the activity 16-fold. Compound
8 inhibited this isoform in medium nanomolar range with
a Ki of 93 nM. Compounds with different N-protecting
groups, such as 7a and 7c, led to a decrease of the
inhibitory activity of nearly nine times (with the tosyl
group in 7a) and 18 times (for the Boc derivative 7c)
compared to 8.

Table 1. Synthesis of β-Hydroxy Selenides Bearing
Benzenesulfonamide Moiety

aYields refer to isolated products.

Scheme 2. Synthesis of N-Protected β-Amino Selenides
Bearing Benzenesulfonamide Moiety

Scheme 3. Synthesis of β-Amino Selenide Bearing
Benzenesulfonamide Moiety

Scheme 4. Synthesis of Selenides Bearing
Benzenesulfonamide Moiety
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(ii) The dominant cytosolic human isoform hCA II was
inhibited in the low-medium nanomolar range by all
compounds investigated here, except for derivative 5c,
which acted in the high nanomolar range (Ki 920.8 nM).
Selenocyanate derivate 2 showed a six-fold loss of activity
compared to the diselenide 3. β-Hydroxy selenides 5a−g
proved to be potent inhibitors of this isoform, with Kis
ranging between 0.18 and 8.8 nM, except for 5c
mentioned earlier. In addition, the β-amino selenide 8
showed a very potent inhibition profile of hCA II (Ki of
0.51 nM). The introduction of N-protecting groups as in
7a and 7c led to a decrease of the inhibition potency of
nearly 29 times compared to 8.

(iii) The last cytosolic human isoform studied, hCA VII, was
inhibited by all compounds in the subnanomolar−
nanomolar range (Kis of 0.35−74.2 nM, Table 2).
Many of the new selenium-containing derivatives, such as
5b,d,f,g and 7a were subnanomolar hCA VII inhibitors,
making them of great interest for further studies,
considering that this isoform was shown to be involved
in oxidative stress.39,40 The presence of N-protecting
groups for compounds 7a and 7c increased the efficacy
10 times for the Boc moiety and 100 times for tosyl
moiety, with respect to the compound without such
moieties (8).

(iv) Almost all compounds investigated here possessed low
inhibitory activity for the membrane-bound hCA IV with
Kis spanning between the high nanomolar range to the
micromolar range. Compound 2 showed the best activity
against this isoform with a Ki of 30.6 nM, but the efficacy
decreased for the diselenide derivative 4 (Ki 298.4 nM).
Different substituents on the β-hydroxy selenides 5a−g
did not influence significantly the inhibition activity,
except for 5c, which had a decrease of efficacy (Ki 8133
nM). Compound 7a, with a tosyl moiety as a protecting
group, proved to have a better inhibition profile
compared to the other β-amino selenides investigated
here.

(v) The transmembrane, tumor-associated hCA IX was
effectively inhibited by all compounds investigated here,

in the low nanomolar range (Kis of 2.3−154.9 nM), all of
them being more effective inhibitors compared to the
clinically used standard acetazolamide (AAZ), Table 1.
As for the other membrane isoform, hCA IV, the
substituents on the β-hydroxy selenides 5a−g did not
influence significantly the inhibitory efficacy in this small
series of derivatives. N-Protection for compounds 7a and
7c did not change significantly the inhibition profile
compared to the β-amino selenide 8, a special mention
regarding the important difference of inhibitory activity
of 5b and 5c against all isoforms except CA IX. In fact,
the two compounds only differ by the presence of an allyl
instead of an iso-propyl moiety. Although these structural
differences are minor, in many similar cases when the X-
ray structures were reported in complex with various CA
isoforms,41,42 important differences in the orientation
within the active site were observed, which may explain
the difference of inhibitory power of these quite similar
derivatives.

In conclusion, we have developed methods for the synthesis
of a novel series of selenoethers as inhibitors on five α-carbonic
anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, i.e.,
hCA I, II, IV, VII, and IX. These isoforms are drug targets for
antiglaucoma (hCA I, II and IV), antiepileptic (hCA VII), or
antitumor (hCA IX) agents. β-Hydroxy 5a−g and N-protected
β-amino selenides prove to be potent inhibitors for hCA VII.
Indeed, β-amino selenide 8 showed a potent inhibition against
hCA II. In this contest, the investigated selenoether compounds
showed potent inhibitory action, thus making them interesting
leads for the development of more potent and more isoform-
selective inhibitors.
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