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ABSTRACT

RNase P catalyzes 5′′′′′-maturation of tRNAs in all three domains of life. This primary function is accomplished by either a ribozyme-
centered ribonucleoprotein (RNP) or a protein-only variant (with one to three polypeptides). The large, multicomponent archaeal
and eukaryotic RNase P RNPs appear disproportionate to the simplicity of their role in tRNA 5′′′′′-maturation, prompting the
question of why the seemingly gratuitously complex RNP forms of RNase P were not replaced with simpler protein
counterparts. Here, motivated by growing evidence, we consider the hypothesis that the large RNase P RNP was retained as a
direct consequence of multiple roles played by its components in processes that are not related to the canonical RNase P function.
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RNase P is found in all domains of life, and its endoribonu-
cleolytic activity to cleave the 5′ leader of precursor tRNAs is
manifested in either a ribozyme-powered ribonucleoprotein
(RNP) or a protein form (Evans et al. 2006; Altman 2007;
Esakova and Krasilnikov 2010; Jarrous and Gopalan 2010;
Lai et al. 2010; Rossmanith 2012; Lechner et al. 2015). The
RNP form relies on a universally conserved catalytic RNA.
The structural and functional similarity of this RNA in all
three domains of life points to its ancient origins tracing
back to the putative last universal common ancestor (Li
and Altman 2004; Evans et al. 2006; Gopalan 2007).
In bacteria, the catalytic RNA (typically, ∼120 kDa) is aid-

ed by a small protein cofactor (∼14 kDa) (Altman 2007).
However, in striking contrast to the simplicity of its con-
served primary function, eukaryotic RNase P is a large RNP
complex containing at least nine protein components (Fig.
1; Esakova and Krasilnikov 2010; Jarrous and Gopalan
2010). The molecular masses of purified nuclear forms are
∼450 kDa. Intermediate in complexity is archaeal RNase P
(∼200 kDa) composed of one RNA and up to five different
protein subunits, whose presence in the genomes of at least
eight of 11 archaeal phyla (Samanta et al. 2016) reflects their
origins early in archaeal evolutionary history. All archaeal
RNase P proteins have homologs in eukaryotic RNase P
(Fig. 1). This level of subunit complexity of the archaeal
and eukaryotic RNase P RNP variants appears dispropor-
tionate for hydrolysis of a single phosphodiester bond in a
precursor tRNA, given that four of the five eukaryotic super-

groups also possess typical, moderately sized (∼60 kDa) pro-
tein-only RNase P (PRORP) having a similar enzymatic
activity (Gobert et al. 2010; Lechner et al. 2015). Moreover,
genetic complementation studies in Escherichia coli and
Saccharomyces cerevisiae indicate that some of the PRORPs
can substitute for the RNase P RNP activity without detri-
mental effects on growth under laboratory conditions
(Weber et al. 2014; Gößringer et al. 2017). In one genetic
background and under high-salt conditions, a strain of S. cer-
evisiae with a protein-only form (a single polypeptide from
Arabidopsis) as the functional RNase P was able to outcom-
pete in growth a wild-type counterpart that uses the 10-sub-
unit RNP (Weber et al. 2014).
The apparent functional equivalence of PRORPs and

RNase P RNPs raises the intriguing question of why evolution
has favored retention of complex catalytic RNPs that could
have been substituted with simpler protein enzymes. Here,
we consider how chance and necessity in evolution may
have led to the presence and concurrent use of both RNP-
and protein-based forms of RNase P.
Constructive neutral evolution (Gray et al. 2010; Stoltzfus

2012; Weber et al. 2014) merits consideration as a possible
driving force for the runaway complexity of the protein
makeup of archaeal and eukaryotic RNase P RNPs. In this
scenario, fortuitous binding of proteins unrelated to RNase
P may have provided additional means to stabilize the
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catalytic RNA’s tertiary structure and thus helped suppress
subsequent mutations that would have been otherwise dele-
terious. Such an interdependency would have lessened the
evolutionary pressure to maintain auxiliary, scaffolding
RNA elements, leading to the eventual loss of these parts of
the RNA, but at the cost of an absolute reliance on struc-
tural/functional roles of the newly acquired protein compo-
nent(s). A comparison of the RNase P RNP variant from
the three domains of life lends support to this notion. The
tertiary structure of the RNA component of bacterial
RNase P RNP is stabilized by an intricate network of tertiary
RNA–RNA interactions, and the structural role of the sole
protein component appears limited (Reiter et al. 2010).
The increase in the complexity of the protein complement
of the RNase P RNPs from bacteria to archaea to eukarya is
paralleled by a loss of the RNA elements that play scaffolding
roles in bacterial RNase P, presumably because such struc-
tural roles were delegated to proteins in archaeal/eukaryotic
RNase P (Pulukkunat and Gopalan 2008; Fagerlund et al.
2015).

While the constructive neutral evolution-driven acquisi-
tion of additional protein components (“complexity by
chance”) is plausible, such changes may also be important
to ensure the proper localization of the RNP, to facilitate
crosstalk with other cellular machineries and/or to prevent
the activation of the innate immune response that is triggered
by long stretches of “naked” dsRNA (Hull and Bevilacqua
2016) (“complexity by necessity”). Several recent observa-

tions support the claim that the retention and persistence
of large eukaryotic RNase P RNPs is likely a direct conse-
quence of essential roles played by RNase P components in
processes unrelated directly to its primary task as an endori-
bonuclease responsible for cleavage of the 5′-leader of pre-
cursor tRNAs.
First, recent studies show that RNase P or its subassemblies

are connected to chromatin structure and function.
In human cells, variants of nuclear RNase P RNPs bind
to rRNA and small noncoding RNA genes transcribed by
RNA polymerase (Pol) I and Pol III, respectively (Reiner
et al. 2006, 2008; Serruya et al. 2015). This RNase P RNP is
incorporated into Pol III initiation complexes that transcribe
5S rRNA genes (Serruya et al. 2015). Three protein subunits
of human RNase P (Rpp21, Rpp29, and Pop1) repress his-
tone H3.3 nucleosome deposition andmediate transcription-
al silencing (Newhart et al. 2016). In Drosophila, nuclear
RNase P is implicated in expression of tRNA and piRNA
gene clusters (Molla-Herman et al. 2015), presumably
through indirect effects related to transcription-replication
conflicts, which arise when the crosstalk between RNase P
and Pol III is weakened by mutations. A variant of human
RNase P, containing the Rpp21, Rpp29, and RPPH1 RNA,
but not Rpp14, Rpp25, and Rpp38, promotes homology-di-
rected DNA repair of double-strand breaks induced by irra-
diation (Abu-Zhayia et al. 2017). Moreover, human RNase
P activity in tRNA processing increases in response to DNA
replication stress induced by depleting the WRN helicase

FIGURE 1. Diversity of the ribonucleoprotein variants of RNase P, and inventory of the multifunctional protein subunits of archaeal/eukaryal RNase
P. Overlaid on the secondary structure of the respective RNA subunit are the different RNase P protein subunits. The approximate placement of the
protein subunits is based on data reported elsewhere (Tsai et al. 2006; Pulukkunat and Gopalan 2008; Xu et al. 2009; Chen et al. 2010; Reiter et al. 2010;
Hipp et al. 2012; Khanova et al. 2012; Fagerlund et al. 2015; Lai et al. 2017). For subunits that have been demonstrated to have roles other than RNase P
catalysis, these are indicated using one- or two-letter codes (see key for explanation of the codes). Protein sizes are not exact, and the schematic is not
drawn to scale.
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(Orlovetskie et al. 2017), a RecQ DNA helicase with multiple
tasks in DNA fork progression during replication, proof-
reading, base excision repair, and transcription-bubble
progression (Croteau et al. 2014). The exact molecular mech-
anisms underlying these novel functions of human RNase P
(either in whole or as subassemblies) in replication stress and
DNA repair await further exploration.
Second, there is an increased appreciation of the sharing of

protein subunits of RNase P with other RNPs. Three protein
subunits of yeast nuclear RNase P, Pop1, Pop6, and Pop7
(homologs of human Pop1, Rpp25, and Rpp20, respectively),
were recently shown to be essential components of the telo-
merase RNP (Lemieux et al. 2016). This subunit overlap ap-
pears to be related to a common structural platform in these
three RNPs. In this regard, archaeal RNase P also presents
parallels: Ribosomal protein L7Ae, which helps remodel the
H/ACA and C/D box guide snoRNAs for better binding to ei-
ther target substrates or other protein subunits (Omer et al.
2002; Youssef et al. 2007), is a bona fide subunit of RNase
P (Cho et al. 2010).
Eukaryotic nuclear RNase P has long been recognized to

share most of its protein components with another essential
RNP enzyme, nucleolar RNase MRP, which is widespread in
eukaryotes (Chang and Clayton 1987; Chamberlain et al.
1998; Salinas et al. 2005; Esakova and Krasilnikov 2010).
RNase MRP has distinct RNA processing tasks in the cell, in-
cluding rRNA maturation (Esakova and Krasilnikov 2010),
and its substrate specificity does not overlap with that of
RNase P (Esakova et al. 2011). Sharing of components be-
tween RNase P RNP and RNase MRP does not appear to ex-
tend to the RNPs found in organelles, perhaps accounting at
least partly for differences in evolution of organellar RNase
P. This scenario holds at least in yeast where the protein in-
ventories of mitochondrial and nucleolar RNase P as well
as RNase MRP RNPs are distinct (Martin and Lang 1997;
Lu et al. 2010). Such divergence would disincentivize evolu-
tionary retention of the exceedingly complex RNase P/MRP
RNPs in organelles due to various reasons including im-
port-related complications (Howard et al. 2013). In cases
when an organelle did retain a large RNP with a unique pro-
tein makeup, one might expect that the recruited protein(s)
have some additional role(s) unrelated to the canonical
RNP activity. While further studies are required to test this
conjecture, especially in organisms other than yeast, this
claim is supported by dual-targeted Rpm2p, a subunit of
yeast mitochondrial RNase P RNP that doubles up as a tran-
scriptional activator in the nucleus (Stribinskis et al. 2005).
By having and sharing critical protein–protein and RNA–

protein interactions, the RNase P RNP is linked to other
RNPs, such as the evolutionarily related RNase MRP and tel-
omerase as well as other molecular machineries implicated in
RNA metabolism like the exosome (Koonin et al. 2001; Jiang
and Altman 2002) and snoRNPs (Salgado-Garrido et al. 1999;
Fernandez et al. 2004). Whether the linkages between these
divergent RNPs relate to shared intracellular regulatory cir-

cuits or even physical networks remain to be tested. If indeed
a similar organizing center is used to build a common archi-
tecture in functionally divergent archaeal/eukaryal RNPs,
such intricate interdependencies would not only have fixed
seemingly fortuitous RNA–protein interactions but also ren-
dered difficult (if not impossible) wholesale and exclusive re-
modeling of any one of these interconnected RNPs (including
RNase P). Consistent with an earlier suggestion (Weber et al.
2014), it is clear that an evolutionary substitution of nuclear
RNase P RNA with a PRORP in yeast will not offset the re-
quirement of multiple RNase P protein components for
non-RNase P functions, thus nullifying the potential benefits
of a PRORP substitution.
The above observations that emphasize the basis for reten-

tion of the larger RNP isoforms of RNase P need to be
squared with the successful genetic replacement of the RNP
with a protein-only form in E. coli and yeast (Weber et al.
2014; Gößringer et al. 2017). This neutral swap indicates
the elasticity to rewire a central housekeeping enzyme, but
its biological impact remains to be determined since genetic
or environmental factors could engender different organis-
mal robustness outcomes within the framework of this “neu-
tral” mutation. This neutral swap also motivates questions
related to biogenesis cost and functional repertoires. For in-
stance, the bacterial RNase P RNP is no more difficult for the
cell to produce than a typical protein enzyme. Indeed, aside
from the small (only ∼14 kDa) protein component, bacterial
RNase P is just a ∼400-nt long noncoding RNA, which is
similar in size to an mRNA encoding a ∼14 kDa protein
but does not require translation. Thus, from the perspective
of biogenesis cost, the RNP form of bacterial RNase P may
have a modest advantage over a PRORP. In archaea and
eukarya, chance could have favored either form, but it is like-
ly that (at least in specific subcellular locales) functional/reg-
ulatory necessities tilted the balance toward the larger RNP
form that is ensconced within a larger framework of macro-
molecular interactomes.
The genetic complementation experiments that estab-

lished functional equivalence of the two forms of RNase P
suggest that the ability to catalyze a reaction alone or the
size/complexity of one variant is insufficient cause for its re-
tention in an organelle/organism. These outcomes were likely
not swayed solely by chance, but driven by the necessity of
each cellular piece finding its place in a more intricate net-
work entailing fundamental cellular processes; in the case
of RNase P, for example, the linkage is between processing
and transcription, replication, and DNA repair. It is instruc-
tive to consider nuclear and mitochondrial RNase P in S. cer-
evisiae and humans, two species that have evolved along
separate paths for nearly a billion years. While both utilize
a shared RNP variant in the nucleus, S. cerevisiae appears to
use a distinct mitochondrial RNase P RNP (with protein
components not related to those of the nuclear counterpart)
and humans have a protein-only organellar variant. Albeit
challenging, untangling the complex evolution of RNase P
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and its components and related RNPs, as well as elucidat-
ing their multifaceted roles, will continue to offer exciting
prospects.
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