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Abstract

Chronic kidney disease (CKD) has become a significant public health concern as it is associated 

with substantial morbidity. Prior research has evaluated multiple novel CKD biomarkers to 

supplement serum creatinine and proteinuria. The ultimate goal of this research is to find 

biomarkers that can be used to accurately predict CKD progression and to better time outpatient 

follow-up, and referral for transplant. Also, an optimal panel of biomarkers can augment the 

predictive value of proteinuria and serum creatinine by enriching patient enrollment in clinical 

trials. In this review, we discuss salient findings on 12 candidate plasma and urine biomarkers and 

their reported association with CKD. We explore the common pathways of CKD progression and 

the pathophysiologic processes of tubulointerstitial injury, inflammation, repair, and fibrosis that 

are potentially classified by specific biomarkers. We describe both pediatric and adult findings and 

highlight the paucity of pediatric research in CKD progression. It will be important for future 

research in cohorts with longitudinal follow-up to evaluate these CKD biomarkers in children for 

use in pediatric clinical trials and routine CKD management.
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Introduction

Chronic Kidney Disease (CKD) in children is characterized by kidney damage or a decrease 

in glomerular filtration rate (GFR) lasting for at least 3 months [1]. CKD in children is 

associated with high morbidity and mortality [2]. Additionally, pediatric CKD strikes during 

a vulnerable time and negatively impacts a child’s growth and development. Despite poor 
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outcomes, there has only been one clinical trial demonstrating efficacy in limiting CKD 

progression in children [3]. New treatments to slow CKD progression in children are sorely 

needed.

A barrier to developing new CKD therapies is the limitations of our conventional 

biomarkers, proteinuria and serum creatinine. Although elevated serum creatinine and 

proteinuria are the most frequently utilized biomarkers of CKD, creatinine and proteinuria 

increase relatively late in the course of kidney damage and progression in CKD [4]. Children 

with underlying structural changes in the kidney may not have changes in serum creatinine 

due to the underlying ‘renal reserve’ – the capacity of nephrons to maintain GFR by 

hyperfiltration and compensatory hypertrophy until substantial injury has occurred. Serum 

creatinine levels may be affected by the race, sex, muscle mass, hydration status and 

medications; hence changes in creatinine may not represent true changes in kidney function 

[5]. Additionally, the kidney may undergo significant structural changes in the glomerulus 

and tubulointerstitial compartments before proteinuria is measureable. Proteinuria and serum 

creatinine only explain 32% of the variability of measured GFR decline among children in 

the Chronic Kidney Disease in Children (CKiD) study [6]. Additional biomarkers of CKD 

progression may capture the variability left unexplained by our traditional CKD biomarkers. 

An ideal biomarker should be non-invasive, easy to measure, plausible, sensitive, and serve 

to indicate targeted therapies likely to be effective [7].

A biomarker is any molecular, histologic, radiographic, and physiologic characteristic that 

can be measured as an indicator or predictor of a normal biologic process, pathologic 

process, or response to a therapeutic intervention [8]. The Food and Drug Administration-

National Institute of Health Biomarker Working Group has used the terms diagnostic, 

prognostic, predictive, monitoring, pharmacodynamics/response, safety, or susceptibility/risk 

to classify different types of biomarkers [9]. A prognostic biomarker is used to identify the 

likelihood of a clinical event, disease recurrence, or progression of a disease [9]. In children 

with CKD, a prognostic biomarker may allow us to identify patients at high risk of CKD 

progression. Prognostic biomarkers may be useful to enhance enrollment in pediatric CKD 

clinical trials and improve the efficiency of trial design.

Although there are several causes of CKD in children, there is one common pathway of 

CKD progression involving kidney injury, maladaptive repair, and progressive nephron loss 

[10]. This is supported by common histologic findings in advanced CKD regardless of 

primary disease [11]. Our overall conceptual model is presented in Figure 1, with the 

associated putative pathophysiologic process that may yield biomarkers [12]. CKD 

progression is strongly influenced by these multiple pathophysiologic processes including 

systemic and glomerular hypertension, proteinuria, tubulointerstitial injury and fibrosis, 

inflammation, and capacity for renal repair [13]. Novel biomarkers can be leveraged to 

characterize these various mechanisms involved in CKD progression. A better understanding 

of the diverse proteins and pathways that predict renal outcomes may augment clinical 

research efforts and lead to the development of therapies to limit CKD progression.

We summarized the existing literature on candidate biomarkers of CKD and CKD 

progression with an emphasis on research in children. We categorized biomarkers by the 
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associated pathophysiologic pathways. We searched the PubMed database to identify a 

comprehensive list of research studies that evaluated biomarkers of CKD. Search terms 

included ‘biomarker’ or ‘biologic marker’ in conjunction with ‘CKD’, ‘CKD progression’, 

‘Chronic Renal Insufficiency’, or ‘Chronic Renal Failure’. Studies were eligible for 

inclusion if they were published in English language from January 1985 onward, produced 

quantitative statistics, and were retrospective or prospective cohort studies, case-control 

studies, or randomized controlled trials. Studies were excluded if they reported on fewer 

than 20 patients at the time of follow-up. We focused on novel biomarkers of CKD that had 

been evaluated in both pediatric and adult populations. We found 794 possible articles, 719 

in adult cohorts and 75 of which were focused on children. Full text review identified a total 

of 56 studies for inclusion, 39 in adults and 17 in children. Table 1 lists specific biomarkers 

in categories of putative pathways. The results of prior pediatric research on biomarkers of 

CKD are summarized in Table 2. Our search revealed that there is a relative dearth of 

information on biomarkers in pediatric CKD. Virtually all the studies published in children 

were cross-sectional, and only 1 had more than 100 pediatric patients studied. Much of the 

existing knowledge concerning biomarkers, therefore is derived from studies in adults, who 

have a very different set of pathologies leading to CKD.

Biomarkers of Tubulointerstitial injury and Fibrosis

Regardless of the primary cause of CKD, tubulointerstitial disease is an important step that 

leads to nephron loss and is an accurate predictor of progression to ESRD [14]. Damage in 

the tubulointerstitium develops as a consequence of a number of processes involving the 

tubular lumen, tubular epithelial cells, peritubular capillaries, interstitial cells, and 

extracellular matrix. In response to injury, tubular epithelial cells undergo a complex series 

of structural and functional changes and produce cytokines, which in turn lead to interstitial 

inflammation and fibrosis [15]. Knowledge of the mechanisms and interactions leading to 

these changes has increased exponentially over the past decade, and has defined a number of 

new inflammatory mediators and targets for treatment. Biomarkers of tubulointerstitial 

injury as well as the subsequent fibrosis may serve as appropriate markers of prior and 

ongoing CKD progression [16–18].

Biomarkers of tubular injury

Urinary Neutrophil Gelatinase-Associated Lipocalin (uNGAL)—Urinary 
Neutrophil Gelatinase-Associated Lipocalin (uNGAL) is a protein produced by 

neutrophils and kidney tubular cells with increased synthesis occurring in states of tubular 

injury. The production of uNGAL in the distal segments of the nephron is upregulated in 

patients with CKD. It has been established as a sensitive marker of early renal tubular injury 

in children [19]. uNGAL has also been shown to be a predictor of disease severity, as 

demonstrated in two pediatric studies of childhood lupus and hemolytic uremic syndrome 

[20, 21]. In a study by Smith et al. including 158 adults with stage 3 or 4 CKD, baseline 

uNGAL was associated with a rapid decline in renal function within 1 year and ESRD 

within 2 years [16]. Liu et al. assessed the performance of baseline uNGAL for predicting 

GFR decline in 3386 adults in the Chronic Renal Insufficiency Cohort Study [18]. At 3 years 

of follow-up, patients with the highest quintile of uNGAL were 70% more likely to 

experience a 50% reduction in estimated GFR (eGFR) or ESRD. However, when controlled 
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for known CKD progression risk factors, including eGFR and proteinuria, uNGAL did not 

significantly improve risk prediction of progression outcomes. Pre-clinical as well as human 

studies of kidney disease have shown that uNGAL decreases after effective therapeutic 

interventions [22, 23].

Urinary Interleukin-18 (IL-18)—Urinary Interleukin-18 (IL-18) is an inflammatory 

cytokine produced by macrophages and proximal tubular cells in response to injury. 

Zubowska et al. studied the role of IL-18 in identifying subclinical renal dysfunction in 85 

pediatric oncology patients [24]. At 4.6 years of follow-up, nephrectomy and previous 

exposure to chemotherapy were associated with significantly higher levels of urinary IL-18. 

In 153 transplant recipients, higher levels of urinary IL-18 measured on the first post-

transplant day predicted a faster decline in renal allograft function at 1 year post-transplant 

[25]. In a cohort of 908 HIV-infected patients, baseline IL-18 was associated with a decline 

in kidney function and higher mortality, even when controlled for eGFR and albuminuria 

[26, 27].

Urinary and Blood Kidney Injury Molecule-1 (KIM-1)—Urinary and Blood Kidney 
Injury Molecule-1 (KIM-1) is a tubular protein that is undetectable in a healthy kidney but 

is markedly elevated with renal injury [28]. Urinary KIM-1 has been shown to be a marker 

of disease severity in children with nephrotic syndrome as levels were higher in steroid 

resistant nephrotic syndrome as compared with steroid dependent nephrotic syndrome [29]. 

Children with type 1 diabetes and without albuminuria had higher levels of urinary KIM-1 

when compared to non-diabetic controls [30]. Urinary KIM-1 expression was significantly 

increased on kidney biopsies within areas of fibrosis or inflammation [31]. Urine KIM-1 was 

also found to be elevated in all patients with kidney disease except those with minimal 

change disease [31]. In a study of 145 renal transplant patients, compared to the first tertile, 

the highest tertile of urine KIM-1 predicted future GFR decline and graft loss at 5 years of 

follow-up with an adjusted hazard ratio of 5.1 (95% CI: 1.5–17.8) [32]. In a study by Szeto 

et al. on 63 kidney transplant recipients, each log-unit increase in urinary KIM-1 conferred a 

2.9-fold higher risk (95% CI: 1.3–6.2) of developing graft failure at 48 months [33]. 

Sabbisetti et al. studied 107 adults with CKD stages 1–3, type 1 diabetes, and proteinuria 

and displayed how baseline blood KIM-1 predicted GFR decline and incident ESRD [34].

Urinary Epidermal Growth Factor (EGF)—Urinary Epidermal Growth Factor 
(EGF) is implicated in tubular cell repair and renal recovery after tubulointerstitial injury. 

EGF is implicated in key pathways of CKD progression across several etiologies. EGF has a 

high degree of tissue specificity as it is derived from the ascending loop of Henle and distal 

convoluted tubule. uEGF has been measured in a cohort of children with CKD and found to 

have a strong correlation with GFR [35]. In three independent cohorts of glomerular disease, 

addition of uEGF to a conventional model including eGFR and albuminuria, prediction of 

CKD progression was improved [36].

Biomarkers of Interstitial Fibrosis

Blood Matrix Metalloproteinase-9 (MMP-9)—Blood Matrix Metalloproteinase-9 
(MMP-9) is a protease responsible for degrading extracellular matrix and is a candidate 
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biomarker of renal fibrosis, cardiovascular outcomes, and progressive renal injury [37]. In 

children with FSGS, urinary MMP-9 was found to be substantially higher than children with 

MCNS and children without kidney disease [38]. In a cohort of pediatric patients with CKD, 

plasma MMP-9 was significantly higher in children with CKD compared to children without 

CKD [39]. In a cohort of 251 adults, elevated plasma MMP-9 predicted CKD progression 

after 8.5 years of follow-up with a hazard ratio of 4.7 (95% CI: 2.1–10.4) [40].

Blood Transforming Growth Factor Beta 1 (TGF-β1)—Blood Transforming 
Growth Factor Beta 1 (TGF-β1) promotes cell migration, inflammation, extracellular 

matrix formation, and irreversible tissue damage. TGF-β1 is released from tubular epithelial 

cells, fibroblasts, and infiltrating inflammatory cells. In children with idiopathic nephrotic 

syndrome, urinary TGF-β1 was higher in patients with FSGS as compared to minimal 

change disease [41]. Children with obstructive uropathy had higher urinary TGF-β1 than 

children with non-obstructive uropathy [42]. In a study of 281 patients with type 2 diabetes, 

high TGF-β1 was a strong predictor of doubling of serum creatinine and ESRD. The 

cumulative risk of doubling of serum creatinine and ESRD in the fourth quartile of TGF-β1 

was 8.4 times that of the lowest quartile [43].

Blood Bone Morphogenetic Protein-7 (BMP-7)—Blood Bone Morphogenetic 
Protein-7 (BMP-7) is a TGF-β1 antagonist, with anti-fibrotic and anti-inflammatory 

properties. Blood BMP-7 was higher in pediatric CKD patients as compared with controls 

[44]. Recombinant human BMP-7 infusion decreases fibrosis and inflammation in models of 

obstructive uropathy and slows GFR decline in mouse models of lupus nephritis and 

Goodpasture’s disease [45, 46]. In a study of 281 patients with type 2 diabetes, low levels of 

BMP-7 was a strong predictor of doubling of serum creatinine and ESRD. The cumulative 

risk of renal endpoints in the lowest quartile of BMP-7 was 24 times that of the highest 

quartile [43].

Urinary Procollagen III N-Terminal Propeptide (PIIINP)—Urinary Procollagen III 
N-Terminal Propeptide (PIIINP) is a propeptide byproduct of collagen 3 deposition and is 

used as a marker of renal fibrosis [47]. In a study on 29 children with UPJ obstruction and 

30 healthy controls urine PIIINP levels were found to be associated with worsening 

obstruction [48]. Urine PIIINP has been found to correlate with interstitial fibrosis on the 

renal biopsy of CKD patients [49]. Additionally, in a study on renal transplant recipients, 

urine PIIINP was found to be a marker of CKD progression [50]. In a study evaluating 958 

adults in the Cardiovascular Health Study, each doubling of urine PIIINP was associated 

with a 22% higher odds of CKD progression [51].

Inflammatory Biomarkers

A complex interaction between cytokines and immunologic cells play an essential role in 

mediating inflammation. Chronic low grade inflammation appears to play an important role 

in the initiation and progression of CKD. Inflammation is due to the initial, continuous, or 

recurrent kidney injury from the primary disease, hypoalbuminemia, and reduced clearance 

of cytokines and metabolites. Furthermore, proteinuria, which is very common in CKD, 

appears to contribute to renal injury and a pro-inflammatory state. Several candidate 

Greenberg et al. Page 5

Pediatr Nephrol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory biomarkers have been hypothesized to not only predict GFR decline but also 

contribute directly to renal injury and CKD progression [52, 53].

Blood Soluble Urokinase-type Plasminogen Activator Receptor (suPAR)

Blood Soluble Urokinase-type Plasminogen Activator Receptor (suPAR) is directly 

involved in the regulation of cell adhesion and migration through binding of integrins. 

suPAR interferes with podocyte migration, induces apoptosis, and is implicated in the 

pathogenesis of kidney disease. Wei et al. studied 70 children and adults with biopsy proven 

FSGS and found that a reduction of circulating suPAR concentration was positively 

associated with complete remission as well as a reduction of proteinuria [54]. This research 

suggests that suPAR may be a biomarker of future decline in GFR, as proteinuria is an 

established risk factor for CKD progression. Additionally, plasma suPAR concentration was 

higher in pediatric patients with steroid resistant nephrotic syndrome versus steroid sensitive 

nephrotic syndrome (3,744.1 ± 2,226.0 vs. 2,153.5 ± 1,167.0, p < 0.05) [55]. In a cohort of 

3683 adults from the Emory Cardiovascular Biobank, higher plasma suPAR predicted 

incident CKD such that the patients with the lowest quartile of suPAR levels had an annual 

eGFR change of −0.9 ml/min/1.73m2 compared with −4.2 ml/min/1.73m2 in the highest 

quartile [53].

Blood Tumor Necrosis Factor receptor 1 & 2 (TNFR1 &TNFR2)

Tumor necrosis factor (TNF) is a central mediator of inflammation, cell proliferation, 

cellular differentiation, and cell death [56]. TNF exerts its effect on intracellular signaling 

pathways through interaction with two cell membrane receptors, TNFR1 and TNFR2. A 

pediatric study implicated the TNF pathway in the recurrence of FSGS and showed 

improvement in proteinuria after TNF antibodies were administered [57]. Serum TNFR1 

was studied in children with vesico-ureteric reflux and higher levels were able to distinguish 

children with reflux nephropathy versus those without [58]. Patel et al. studied 25 children 

with systemic lupus erythematous and 20 healthy controls and displayed that TNFR2 is 

higher in children with SLE, and highest in children with lupus nephritis [34]. The TNF 

pathway has been implicated in several causes of CKD including diabetic nephropathy, 

obstructive nephropathy, lupus nephritis, non-diabetic CKD, and ANCA induced nephritis 

[56, 59–61]. In a study of 410 patients with type 2 diabetes, TNFR1 was a strong predictor 

of progression to ESRD [52]. The cumulative risk of ESRD in the fourth quartile of TNFR1 

was 54% after 12 years versus 3% for all other patients. The hazard ratios for ESRD show 

that non-proteinuric patients in the fourth quartile of TNFR1 are over 7 times more likely to 

progress to ESRD than all other patients. TNFR1 and TNFR2 were also found to predict 

incident stage 3 CKD in type 1 diabetics [17]. Animal models of obstructive uropathy, a 

common cause of CKD in children, showed that renal tubular TNFR2 was markedly 

increased [62]. Furthermore, TNFR2 deficient mice were found to have significantly less 

tubulointerstitial fibrosis in models of obstructive uropathy [63].

Urinary Monocyte Chemoattractant Protein-1 (MCP-1)

Urinary Monocyte Chemoattractant Protein-1 (MCP-1) is a chemokine which recruits 

monocytes and promotes their transformation into macrophages. Urinary levels of MCP-1 
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were significantly higher in pediatric CKD patients compared to controls. Additionally, 

patients with glomerular disease had higher MCP-1 as compared with non-glomerular 

disease patients [64]. Urinary MCP-1 was identified as a marker of kidney disease severity 

in children with SLE [65]. In animal models of lupus nephritis, MCP-1 antagonists have 

limited kidney disease progression, suggesting MCP-1 has a primary role in disease activity 

[66]. In patients with diabetic nephropathy, urine MCP-1 levels correlate with kidney 

macrophage accumulation, fibrosis, and GFR decline [67, 68]. Urine MCP-1 levels also 

correlate with the rate of decline in GFR in non-diabetic CKD [69]. MCP-1 has been 

identified as a potential therapeutic target in patients with CKD with multiple ongoing 

MCP-1 inhibitor trials [70].

Conclusion

Numerous longitudinal studies in adults describe the association between novel biomarkers 

and CKD progression. However, none of these biomarkers have yet been qualified by the 

FDA for clinical use. In the field of pediatric medicine, studies in CKD biomarkers are 

mostly restricted to cross-sectional analyses, and only six studies have included more than 

50 children. CKD biomarkers that more precisely identify chronic injury and act as 

surrogates of CKD progression are sought for advancing pediatric clinical trials. In 

particular, if prognostic biomarkers could be identified, strategies to enrich recruited subjects 

at high risk of meeting study endpoints could be employed which may decrease the cost and 

sample size necessary to identify effective treatments. In the clinical setting, these 

biomarkers may help to predict response to therapy and to predict long-term outcomes in 

patients with CKD. When using biomarkers of therapeutic response, consideration should be 

given to biomarkers that correlate with a proposed therapy, depending on the targeted 

pathway of CKD progression. Although there is a paucity of treatments for pediatric CKD 

progression, clinical trials in adult CKD participants targeting inflammatory, hemodynamic, 

or fibrotic pathways may soon yield candidate therapies that can be trialed in children [71].

Importantly, novel biomarkers must first be shown to enhance prediction of CKD 

progression when added to a model that includes serum creatinine and proteinuria. Liu et al. 

demonstrated that urine NGAL predicted CKD progression, but did not significantly 

improve upon a clinical model of CKD risk factors including eGFR and proteinuria [18]. 

However, TNFR1 and TNFR2 were found to have a strong association with progression to 

ESRD even after controlling for albuminuria and eGFR [52].

Novel biomarkers of CKD may be more readily identified studying pediatric cohorts as 

adults have more comorbidities and concurrent disease, which may affect biomarker 

concentrations and modify CKD progression. Additionally, CKD in children is most 

commonly caused by isolated congenital anomalies of the kidney or urinary tract (CAKUT), 

which is not a systemic multi-organ disease such as diabetic nephropathy. The CAKUT 

model of CKD progression may be easier to characterize with less systemic and 

inflammatory influences. With additional research we will learn whether these novel 

biomarkers have an associative relationship with GFR decline or whether they also have true 

mechanistic roles in CKD progression.
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Novel biomarkers may identify children with the earliest stages of injury and repair, before 

proteinuria or serum creatinine identifies irreversible injury and nephron loss. Since CKD 

progression involves multiple processes in the kidney, it is unlikely that one biomarker will 

best predict GFR decline. It is likely that panels of biomarkers which leverage the additive 

properties of each individual biomarker will be the most useful clinical tools in identifying 

risk for CKD progression in children. A panel of biomarkers that represent the multifactorial 

pathophysiologic mechanisms leading to CKD progression including tubulointerstitial 

injury, fibrosis, inflammation, and repair may prove useful for predicting GFR decline in 

children. Further pediatric research, preferably prospective longitudinal studies, will be 

needed to assess whether these novel biomarkers can be used to predict CKD progression. In 

addition to research applications, novel biomarkers could help guide the prognosis given to 

families as well as the timing of follow-up visits and referral for transplant evaluation. The 

application of novel biomarkers has the potential to revolutionize clinical decision-making 

as well as clinical trials of CKD progression.
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Figure 1. 
Novel biomarkers of chronic kidney disease (CKD) progression: mediators or byproducts 

associated with the pathophysiology of glomerular filtration rate (GFR) decline
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Table 1

Candidate biomarkers of chronic kidney disease in children

Biomarker Biospecimen

Tubulointerstitial injury NGAL Urine

IL-18 Urine

KIM-1 Urine/Blood

EGF Urine

Tubulointerstitial fibrosis MMP-9 Urine/Blood

PIIINP Urine

TGF-β1 Blood

BMP-7 Blood

Inflammation MCP-1 Urine

TNFR 1 & 2 Blood

suPAR Blood
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