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Abstract

Mucormycosis is a fungal infection with fulminant angioinvasion leading to high morbidity and 

mortality in susceptible individuals. The major predisposing conditions are uncontrolled diabetes, 

neutropenia, malignancies, receipt of a transplant and traumatic injury [1]. Over the past decade, 

mucormycosis has become an emerging fungal infection due to the increase in patient groups 

presenting with these pre-disposing conditions and our medical advances in diagnosing the 

infection [2-4]. Yet, we currently lack clinical interventions to treat mucormycosis effectively. This 

in turn is due to a lack of understanding of mucormycosis pathogenesis.

Here, we discuss our current understanding of selected aspects of interactions at the mucormycete-

host interface. We will highlight open questions that might guide future research directions for 

investigations into the pathogenesis of mucormycosis and potential innovative therapeutic 

approaches.

Innate immune responses during mucormycosis

Once a pathogen has overcome our non-specific barriers (e.g. skin and mucosal layers), 

innate immune effectors such as macrophages and neutrophils are our first cellular response 

against the foreign attack. Many fungal pathogens (e.g. Cryptococcus, Candida, 

Coccidioides species and Histoplasma capsulatum) have been recognized as intracellular 

pathogens of phagocytes (reviewed in [5]). Similarly, there is growing evidence that 

pathogenic Mucorales species can adapt an intracellular life style within these innate 

immune effectors.

The infectious particles for mucormycosis are asexual sporangiospores found ubiquitously 

within the environment. These resting spores can swell and germinate to produce fast-
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growing hyphae during their natural life cycle (Figure 1) [6]. Germination and filamentous 

growth within a host causes angioinvasion, vessel thrombosis and necrosis [7-9].

Monocytes, macrophages and natural killer (NK) cells can recognize and damage, but are 

unable to kill, hyphae. Conversely, filamentous forms are effectively killed by human 

polymorphonuclear leukocytes (PMNs) in vitro [10-13]. Invasive fungal growth activates 

pro-inflammatory signaling. Hyphae interact with TLR-2 on the surface of human PMNs 

inducing transcription of the proinflammatory cytokines TNF-α and IL-1β [14]. Human 

monocyte derived dendritic cells recognize β-glucan exclusively expressed on the hyphal 

surface through the pattern recognition receptor dectin-1 to induce IL-23, IL-1 and TNF-α 
[15]. Damage and killing is mediated by oxidative means after monocyte or neutrophil 

attachment to fungal filaments [16-18], through degranulation, and release of cationic 

peptides or perforin by rabbit and human neutrophils or NK cells, respectively [12,18-20]. 

Hydrocortisone treatment inhibits neutrophil or macrophage induced hyphal damage [18,21] 

and macrophages from diabetic mouse have reduced ability to adhere to hyphae [17]. Even 

in healthy hosts, the extent of hyphal damage depends on the extent of fungal biomass 

[12,22].

Mucormycetes are extremely fast-growing fungi and thus are likely to outcompete our 

immune response when it is in state of suppression. Hyphal growth is essential for virulence 

in yeast-locked mutants of Mucor circinelloides. Inhibition of the calcineurin pathway that 

regulates hyphal growth chemically through the calcineurin inhibitor FK506 or by mutation 

of the calcineurin regulatory subunit cnbR significantly reduced virulence of M. 
circinelloides in wax moth larvae [23]. Mucorales species with fast germination rates (e.g. 

Cunninghamella bertholletiae) are significantly more virulent than species with slower 

germination rates (e.g. Rhizopus oryzae, R. microspores, M. circinelloides) in a neutropenic 

rabbit model of pulmonary mucormycosis. The increased virulence is characterized by 

higher lung burden, amplified angioinvasion and lower survival [24]. Likewise, M. 
circinelloides isolates with larger spores germinate faster and are more virulent in the wax 

moth larva and a murine intraperitoneal infection model [25]. Thus, a protective immune 

response might require spore clearance before onset of filamentous growth.

After infection with mucormycete spores, phagocytes are recruited rapidly to the site of 

infection to internalize and form tight clusters around spores in rabbit [26,27], mouse 

[9,28,29] and zebrafish larval models of disease [30]. A lack or delay of this early 

inflammatory response renders diabetic hosts susceptible to infection leading to disease 

dissemination [17,27,30]. Yet, phagocytes are not able to kill resting spores in vitro or in 
vivo in vertebrate [9,29,30] and non-vertebrate model systems [31]. To establish within the 

phagocytic niche, mucormycete spores must either withstand the harsh environment or 

subvert phagocyte anti-microbial mechanisms. It has been demonstrated that Rhizopus 
oryzae downregulates the transcription of host defense genes (e.g. immune-inducible 

peptides) in infected fruit flies [31]. Resting spores are not able to elicit a pro-inflammatory 

cytokine response in dendritic cells [15] whilst hyphae also inhibit IFN-γ expression by IL-2 

stimulated human natural killer cells [12,13]. The human macrophage-like cell line THP-1 

failed to express proinflammatory cytokines in response to M. circinelloides or R. oryzae 
compared to A. fumigatus or C. albicans [32]. The oxidative burst elicited from PMNs by 
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mucormycete spores is strain dependent and reflects the virulence potential. For example, 

intermediate virulent strains belonging to the Rhizopus genus induce a smaller reactive burst 

than the low virulence strain Lichtheimia corymbifera [33,34]. Resting spores are resistant to 

cationic peptides released from neutrophils in vitro [19]. Although phagocytes fail to kill 

spores, they effectively prevent spore germination in healthy murine hosts [17,35,36]. Rat 

alveolar macrophages, but not the human macrophage cell line THP-1, inhibit spore 

germination through nitric oxide [37]. In susceptible mice with induced diabetes or treated 

with corticosteroids, inhibition of spore germination by bronchoalveolar macrophages fails 

allowing for filamentous growth [17,36].

Interestingly, disease can be reactivated from granulomatous clusters during acute diabetic 

acidosis in rabbits [26]. This opens the possibility of latent infections with Mucorales and 

disease reactivation in previously healthy hosts after acquired immunosuppression. Yet, we 

have little knowledge on the virulence factors that enable Mucorales spores to reside insight 

phagocytes and granulomas. At the same time, the unique enhanced susceptibility of 

uncontrolled diabetics and DKA patients indicates that immune responses to Mucorales are 

distinct from other fungal pathogens and/or Mucorales possess virulence traits that enable 

them to thrive in such hosts (Table 1). Thus, we need a better understanding of the 

mechanisms employed to establish intracellular survival within phagocytes and the 

phagocytic defects induced by predisposing conditions that allow spore germination.

Platelets are known to play a role in antimicrobial host defense against several pathogens by 

secretion of platelet microbicidal proteins [38]. Platelets were shown to adhere to Mucorales, 

induce time dependent damage to fungal hyphae and suppress hyphal elongation through a 

granule dependent mechanism [39].

Taken together, protection from mucormycosis by the innate immune system relies on the 

control of spores residing in phagocytes and granulomatous clusters to inhibit spore 

germination. In susceptible individuals, this control is lost leading to filamentous fungal 

growth. Increasing evidence, supporting Mucorales as intracellular pathogens within 

granulomas, poses the possibility of latent infections. This might offer new therapeutic 

strategies targeting resting spores before onset of fulminant hyphal growth in prophylactic 

approaches.

Adaptive immunity during mucormycosis

There is limited evidence for a major role of the adaptive immune system in combating 

mucormycosis. HIV alone is not a predisposing condition for disease, though cases have 

been reported in this patient population in association with intravenous drug or 

corticosteroid use and neutropenia [40]. Similarly, T-lymphocyte depletion in mice does not 

increase susceptibility to mucormycosis [41].

As with the innate immune response, CD4+ and CD8+ T-cell are only produced in response 

to hyphae [42] and during invasive mucormycosis [43]. However, these T-cells are lost soon 

after resolution of infection [43]. Both sets of T-cells produce a range of cytokines including 

IL-4, IFN-γ, IL-10 and IL-17 [43]. CD4+ cells are predominant and show cross-reactivity 
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with a range of other fungal pathogens (Aspergillus fumigatus, Penicillum chrysogenum and 

C. albicans) in healthy individuals [42]. Although spores can persist in hosts, clearance of R. 
pusillus from lungs of infected mice has been reported after approximately 30 days [35]. 

This indicates some relevance of an adaptive immune response that warrants further 

investigation and might be relevant for future development of immunotherapeutic 

approaches against the disease.

The mucormycete-epithelial and mucormycete-endothelial interface

There has not been much work conducted on studying the interactions of mucormycetes and 

epithelial cells, despite these interactions representing some of the earliest events during 

infection. A study linked outbreak of food poisoning due to intake of yogurt to 

contamination with Mucor circinelloides [32]. This study demonstrated that Mucorales 

produce secondary metabolites that are toxic to the gastrointestinal mucosa. Similarly, dead 

Mucorales can cause considerable host cell damage in vitro supporting the presence of 

toxins [44]. It is possible that these toxic substances are responsible for the clinical feature 

of extensive tissue necrosis. It is also known that Rhizopus spores can adhere to extracellular 

matrix proteins such as laminin and type IV collagen [45] that embeds epithelial or 

endothelial cells.

Unlike epithelial cells, considerable work has been conducted on interactions of Mucorales 

and endothelial cells because of the angioinvasive nature of the disease. It was found that 

Mucorales adhere to, and invade human umbilical vein endothelial cells through specific and 

unique binding capacity to the heat shock glucose-regulated protein 78 (GRP78) [46]. This 

interaction occurs via the unique cell surface CotH invasins (Figure 2) [47] and results in a 

substantial injury to the endothelium in vitro [46]. CotH proteins are universally present in 

Mucorales and absent from other pathogens [48]. Interestingly, elevated glucose, iron, and 

β-Hydroxy butyrate (BHB) concentrations (relevant to levels seen in diabetic ketoacidosis 

patients) induces endothelial cell invasion and damage by Rhizopus and promotes virulence 

in mice due to surface overexpression of both GRP78 and CotH proteins [46,47,49]. It 

appears that during these interactions acquisition of host iron via several mechanisms (e.g. 

high affinity iron permease, and ferrioxamine receptors) is critical in determining the fate of 

infection [50-52]. Importantly, antibodies targeting GRP78/CotH interactions reduce 

Mucorales-induced invasion and injury of endothelial cells and protect mice from 

mucormycosis [46,49]. These results provide insights into why patients with diabetic 

ketoacidosis are uniquely predisposed to mucormycosis infections and point to potentially 

novel immunotherapeutic interventions.

Clinical relevance and application

Much of the focus in understanding the immune responses to mucormycosis is focused on 

invasive disease. While this knowledge is critical in our understanding on how 

mucormycosis progressively develops into a disseminated infection and ultimately will help 

in designing adjunctive therapies to improve outcome, understanding early events in the 

course of infection is likely to add therapeutic strategies that act synergistically with 

strategies targeting angioinvasion. Further, understanding early infection events can develop 
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preventative measures in targeted populations. For example, this review highlights the 

inability of innate immune effectors in susceptible hosts to inhibit the transition to 

filamentous growth and the quick growing nature of Mucorales hyphae as the main 

contributors to the high mortality during mucormycosis. Together with the possibility of 

latent infections of this emerging intracellular pathogen, development of new treatments can 

focus on either inhibiting the fungal ability to undergo germination or enable protective 

immunity targeting spores before onset of invasive disease.

Although we know a range of environmental factors that initiate spore germination (e.g. pH, 

nutrient availability, hydrophobicity), we currently lack an understanding of the genetic 

regulation of this developmental process. Likewise, we have little information on the 

virulence determinants enabling spores to survive within phagocytes. Whilst research has 

been hindered by lack of genetic tractability of Mucorales, a range of tools has become 

available in recent years. Whole genome projects and comparative genomics have revealed a 

genome wide duplication and gene family expansions for ergosterol synthesis pathway (e.g. 

lanosterol 14α-demethylase), GTPases, secreted proteases and cell wall synthesis enzymes 

that could support resistance to antifungals and adaptation to changing environments 

[48,53]. In addition, targeted gene attenuation in Rhizopus can reliably be achieved using 

RNAi techniques [47,51,52]. Finally, the community will benefit from a recently published 

RNAi-based knock out library of M. circinelloides enabling screens for genes involved in 

germination and virulence [54].

Protective immunity could be achieved by correcting immune deficiencies in susceptible 

patients or inhibition of virulence strategies employed by Mucorales (e.g. neutralization of 

CotH with antibodies [47]). In the context of mucormycosis, adjuvant cytokine treatments 

have proven some efficacy. GM-CSF and GM-CSF in combination with IFN-γ increase 

antifungal activity of PMNs by increasing the oxidative burst in vitro [33,34], whilst GM-

CSF in combination with liposomal amphotericin B improved the survival of mice with 

systemic mucormycosis [55]. Recovery of normal blood pH in mice with β-Hydroxy 

butyrate (BHB) induced acidosis through bicarbonate treatment significantly increased 

survival of mucormycosis in prophylaxis or therapeutic mouse models [49]. Lastly, isolation 

and proliferation of T-cells increased phagocytic capacity and reactive oxygen burst in 

response to mucormycetes in vitro and might offer the possibility of adoptive immune cell 

transfer in the future [42,56]. The timing of any clinical intervention and immunomodulation 

should be considered carefully in the context of mucormycosis.

Conclusion and Future Research Directions

The rise of the number of susceptible individuals together with current lack of effective 

treatment requires further research into the host-pathogen interactions during mucormycosis 

and will enable us to devise new and more effective treatments for this debilitating disease.
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Highlights

• The innate immune system controls mucormycete spores by inhibiting spore 

germination

• There is limited evidence for adaptive immunity in combating mucormycosis

• Host iron acquisition is the determining factor for progression of 

mucormycosis on the endothelial interface
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Figure 1. Spore germination and filamentous growth of Rhizopus microsporus
Resting spores start to swell shortly after incubation in rich media. First germ tubes are 

produced after approximately 7 hours incubation with a hyphal network established at 13 

hours incubation. Scale bar 50 μm.
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Figure 2. Colocalization of host cell GRP78 and R. delemar CotH during invasion of human 
umbilical vein endothelial cells
GRP78 (green) is labeled with Alexa Fluor 488, CotH (red) is labeled with Alexa Fluor 658. 

Merged image show colocolization (yellow) of endocytosed fungal swollen spores ∼60 min 

after incubation. Scale bar 10 μm.
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Table 1
Proven virulence traits of Mucorales

Virulence trait Function References

High affinity iron permease (Ftr1p) Acquisition of host iron [51,57]

Ferrioxamine receptors (Fob1 and Fob2) Acquisition of iron from ferrioxamine [52]

Fungal Spore coating protein (CotH) Invasion of the endothelium [47]

Host Glucose regulated protein 78 (GRP78) Invasion of the endothelium [46,49]

Host Platelet-derived growth factor receptor (PDGFR) Invasion of host cells [48]

Spore size Faster germination [25]

calcineurin pathway Regulation of hyphal growth [23,58]

Uncharacterized toxins Host cell damage and possible induction of inflammatory response [32,44]
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