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Abstract

Recent years have seen a renewed interest in studies of the lymphatic system. This review addresses the
differences between in vivo and ex vivo methods for visualization and functional studies of lymphatic networks,
with an emphasis on studies of collecting lymphatic vessels. We begin with a brief summary of the historical
uses of both approaches. For the purpose of detailed comparisons, we subdivide in vivo methods into those
visualizing lymphatic networks through the intact skin and those using surgically opened skin. We subdivide
ex vivo methods into isobaric studies (using a pressure myograph) or isometric studies (using a wire myograph).
For all four categories, we compile a comprehensive list of the advantages, disadvantages, and limitations of
each preparation, with the goal of informing the research community as to the appropriate kinds of experiments
best suited, and ill suited, for each.
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Article

Recent years have experienced a surge in the number
of publications on the lymphatic system, with many

studies employing new imaging modalities to visualize
lymphatic vessels and/or networks. The development of
transgenic mouse and zebrafish models expressing fluores-
cent lymphatic reporters has played a fundamental role in this
increased interest, in many cases permitting the discovery of
new lymphatic beds or uncovering transcriptional programs
in other tissues that are shared by the lymphatic vasculature.
Beyond these anatomical and developmental advances, the
transgenic mouse is uniquely suited for imaging the function
of single, contracting lymphatic collecting vessels, or even
whole lymphatic networks, in certain tissue beds. A primary
role of these vessels is to actively transport lymph and they do
so through spontaneous active contractions of lymphatic
smooth muscle cells.1

The purpose of this review is to address the differences
between in vivo and ex vivo methods for visualizing and
studying the lymphatic system, with an emphasis on stud-
ies of collecting lymphatic vessels. We expand on a brief
comparison of methods to study lymphatic transport by
Liao et al.,2 but do not include a discussion of radiographic
methods, for example, lymphoscintigraphy, or clinical
positron-emission tomography (PET) or magnetic resonance
imaging (MRI). We do, however, address some aspects

of whole-animal fluorescence microlymphangiography that
have been covered elsewhere.3–6 We attempt to compile a
comprehensive list of the advantages and limitations of
in vivo and ex vivo methods with the goal of informing the
research community, particularly new investigators, as to
which method(s) may be best suited for addressing particular
experimental questions.

The Historical Use of In Vivo Lymphatic Methods

In vivo studies of intact lymphatic vessels have been per-
formed using intravital microscopy since the 1920s and
earlier, although many of the early studies focused on anat-
omy and/or were largely descriptive. Examples include the
observations of lymphatic contractions in testicular and in-
guinal lymphatics from rat and guinea pig by Pullinger and
Florey7 and the cinematographic recordings of spontaneous
lymphatic contractions in the rat mesentery by Webb.8 In
1949, Smith published important insights into modulators of
spontaneous lymphatic contractions in rats, mice, and guinea
pigs by using lymphatic or venous occlusions to broadly ma-
nipulate intralymphatic pressure in popliteal afferent lym-
phatics9; contractions were counted by eye, in lieu of diameter
measurement, to assess the spontaneous contraction rate. As
methods for online recording of microvascular diameter be-
came widely available in the 1970s–1980s,10 quantitative
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analyses of lymphatic contractions were introduced in the rat,
cat, sheep,11 and guinea pig mesenteries,12–16 as well as bat
wing.17 Extensive in vivo studies in the rat mesentery by Benoit
et al.14 and Zawieja et al.18 provided important insights as to
how lymphatic contractions were modulated by pressure and
coordinated among adjacent lymphangions. Later, when cou-
pled with fast video microscopy, these techniques also allowed
accurate recording of lymph flow within a single contracting
vessel through particle velocity tracking.19 Previous estimates
of lymph flow relied on cannulation of the thoracic duct or
other large vessels to collect bulk lymph flow over a period of
time, but, in doing so, disrupted the proper resistance and
pressure gradients against which this lymph normally must
traverse20,21; the earlier studies were limited to the estimation
of total lymph flow from a given tissue, not necessarily a single
vessel or network.

More recently, in vivo studies have used fluorescent dyes
injected distally into the interstitium to visualize lymphatic
vessel contraction/transport in the mouse to take advantage
of the genetic tools available for that species. For exam-
ple, injection of fluorescein isochiocyanate (FITC) dextran,
combined with fluorescence recovery after photobleaching,
allows measurement of fluid velocity in a superficial initial
lymphatic network.22 These tracer techniques, when com-
bined with computational models of transport in the tissue
space, were used by Swartz et al.23 to measure the effects of
particle size and interstitial fluid pressure on drainage at the
network level as well as to separate the conductance prop-
erties of the vessel network from those of the interstitial tissue
space. Hagendoorn et al.24 and Liao et al.25 injected FITC
dextran into the mouse foot pad to visualize collecting vessels
in the popliteal fossa of the lower leg; their method enabled
accurate diameter measurement of the popliteal afferent
lymphatics, but required removal of the overlying skin and
superfusion of the preparation with artificial solutions.
Sevick-Muraca and colleagues pioneered methods using in-
docyanine green (ICG), in conjunction with near-infrared
(NIR) illumination for deeper light penetration, to study lym-
phatic collectors and networks through the intact mouse skin.26

The use of a fluorescent fatty acid (BODIPY�FL-C16) has al-
lowed accurate visualization of the mesenteric lymphatic con-
tractile activity in the rat under the unique, chylomicron-rich
postprandial conditions of that network. This has enabled con-
tractile activity, lymph flow, and lipid uptake to be assessed
simultaneously after simple exteriorization of a loop of intes-
tine.27–30 The ICG/NIR technique now has been adapted for
imaging lymphatic networks in human limbs, where it is pos-
sible to characterize defects in lymph transport and/or hyper-
plasia in patients with primary lymphedemas.31–34 Additionally,
integration of these lymphatic imaging techniques with a ca-
librated occlusion cuff to temporarily block lymph flow has
allowed investigators to measure the effective pumping pres-
sure of a lymphatic chain in both animal models and humans
in the context of both normal function and disease.35,36

The Historical Use of Ex Vivo Lymphatic Methods

Ex vivo preparations of collecting lymphatic vessels can be
classified broadly as isobaric or isometric. Both of these ap-
proaches will now be discussed briefly.

Isobaric preparations of vessels harvested from the mes-
enteries of pigs, cows, or sheep37,38 were introduced in the

1970s–1980s. Notable among these is the pioneering study by
McHale and Roddie in which bovine mesenteric lymphatics
were isolated, cannulated, and held at defined pressures.38

The vessels were sufficiently large to allow direct measure-
ment of lymph outflow using a drop counter. The results
showed definitively that lymphatic vessels contract sponta-
neously ex vivo in the absence of external tethering forces and
intact innervation and that pressure modulates both con-
tractile strength and contraction frequency. McHale and
colleagues subsequently investigated neural control of lym-
phatic pumping using such preparations.39–41

In the 1990s, the isolated, pressurized (isobaric) lymphatic
vessel preparation was adapted for rat vessels42,43 and more
recently for mouse vessels.44–46 The contractile function of
these smaller vessels usually is assessed by measuring di-
ameter changes, with output calculated from the product of
contraction frequency and amplitude or ejection fraction; this
indirect measurement is necessitated by the unavailability of
flow meters that are accurate in the submicroliter/min range.
A primary drawback of this technique is that it requires the
assumption that the valves are 100% effective at prevent-
ing back flow and thus assumes that any change in volume
leads to the positive displacement of fluid. However, speckle
imaging techniques have recently been developed to allow
quantitative flow measurements in small vessels, includ-
ing lymphatics,47,48 in vivo and, although these require the
presence of scattering elements, they could in principle be
applied to ex vivo preparations. The primary focus of ex vivo
isobaric studies to date has concerned the influence of hy-
drodynamic forces (pressure, flow), neural/neurotransmitter
modulation, and cellular factors on contractile function and
consequences of different pathological states on the associ-
ated signaling pathways.1 However, recent work has begun to
investigate the impact of contractile function on immune cell
trafficking as well as immune cell modulation of contractile
function.49–53

Isometric studies of ex vivo lymphatic vessels were intro-
duced in the 1970s by Orlov and colleagues, who used
standard force transducers and organ bath chambers to study
rings of excised segments of bovine and porcine lymphatics.
Unfortunately, because most of those studies were published
in Russian Journals,54–56 most remain untranslated and in-
frequently cited. The wire myograph technique, equipped
with high-sensitivity force transducers for isometric studies
of small arteries/arterioles,57 has been adapted to allow iso-
metric studies of small lymphatic collectors from rat58–61 and
mouse (M.J.D., unpublished). These preparations, whether
intact or skinned (permeabilized plasma membranes), have
provided insight into force production by these small vessels
and their contractile machinery proteins, their calcium sen-
sitivity, and the cellular signaling pathways that can retard or
potentiate their contractile strength.58,61 Isometric prepa-
rations are particularly suited to assess pharmacologic re-
sponses and/or facilitate sharp electrode measurements of
lymphatic muscle membrane potential since the latter tech-
nique requires a preparation with minimal movement. Si-
milar measurements in pressurized vessels or lymphatic
muscle strips require the use of myosin light chain kinase
inhibitors that may have off-target or unintended effects.
Telinius et al. have made extensive use of the wire myograph
to study ion channels controlling the membrane potential of
human lymphatics collected during surgery.62–65
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Comparison of Methods

In vivo and ex vivo methods for studying lymphatic func-
tion each have their inherent advantages and limitations.
Although several of the following issues have been discussed
or debated previously in the context of the blood microvas-
culature,66–69 many points are worth reiterating relative to
studies of the lymphatic system. Indeed, several historical
warnings about the limitations of both approaches have been
ignored in recent lymphatic publications. Table 1 summa-
rizes both the advantages and disadvantages of the two ap-
proaches, with some of the most salient points highlighted in
the following section.

Advantages of In Vivo Preparations

In vivo preparations can be classified broadly as intact, in
which lymphatic vessels or networks are visualized through
the intact skin (with no surgical intervention), or exposed, in
which the skin is opened surgically and removed or retracted
to expose the underlying vessels. Both variations offer the
potential advantage of retaining relationships between the
vessel, nerves, the parenchyma, and other extramural cells
such as adipocytes, mast cells, and the appropriate influx/
efflux of circulating immune cells. Critically, these prepara-
tions also maintain the appropriate pressure (assuming that
the injection of contrast agents does not significantly alter the
relevant tissue pressure—see ‘‘Limitations of InVivo Pre-
parations’’) and flow resistance relationships that exist within
the lymphatic network. The effects of both intrinsic and ex-
trinsic forces can be preserved, for example, extramural
forces such as passive compression by contractions of adja-
cent smooth muscle or skeletal muscle70 or by venular and
arteriolar vasomotion.71,72 A notable advantage of intact skin
preparations is that artificial superfusion solutions can be
avoided, thereby potentially maintaining the endogenous
interstitial hydrostatic/osmotic pressure gradients, pO2/
pCO2, and ion gradients, etc. However, these techniques are
usually employed in immobilized animals under anesthesia,
some forms of which may significantly impair the contribu-
tion of extrinsic forces such as skeletal muscle activity, res-
piration, and gastrointestinal motility or directly affect the
intrinsic contractile function of lymphatic vessels.

Traditional intravital microscopic methods have uti-
lized bright-field microscopy,14,18,71,73 but these methods are
generally restricted to thin transparent tissues such as the
mesentery, cremaster muscle, and bat wing that can be ex-
teriorized and transilluminated and with little, if any, tissue
overlaying the lymphatic vessel to be imaged. Such studies of
lymphatic networks have the potential advantage of being
able to measure volume flow rate by speckle microscopy,
utilizing scattering effects from cells and large proteins that
are present in lymph without injecting foreign particles.48,74

In recent years, in vivo studies of the lymphatic system have
made increasing use of fluorescence microscopy in which
appropriate tracers are injected distally to use as flow mark-
ers75 and/or to outline vessel edges for diameter measure-
ment.25 Forays into the development of new NIR molecules
with improved properties compared with ICG have increased
the quantum yield of the fluorophore, reduced the associated
toxicity, and enhanced intraluminal retention.76–79 For exam-
ple, NIR fluorescence (NIRF) imaging methods utilize dyes
such as the Food and Drug Administration-approved ICG,80

the PEG-coupled NIR dye P20D680,77 and the proprietary IR-
Dye 800CW poly(ethylene glycol) (PEG) from LI-COR.

NIRF illumination allows greater light penetration through
intact skin due to excitation and emission wavelengths oc-
curring in the optical window, but this imaging method does
suffer decreased resolution with increasing depth of pene-
tration because light scattering though the overlying skin
distorts vessel diameter measurements, producing potential
errors of 2-fold at 2 mm and 10-fold at 5 mm of depth.81 The
difference in resolution of single vessel edges is documented
in a recent publication.82 As a result, NIRF studies through
the intact skin are typically limited to a temporal window of a
few contraction cycles and are able only to estimate con-
tractile parameters (strength, frequency, flow) by indirect
indices such as packet transfer of dye.83 However, over
longer periods of time, these techniques have been used to
measure more direct indices of lymphatic function such as
average clearance rates84 or the effective pumping pres-
sure.35,36 It is important to note that surgically opening the
skin to enable increased resolution of valve structure and
vessel edges obviates many of the other advantages of in vivo
preparations mentioned above and in Table 1.

Limitations of In Vivo Preparations

In vivo lymphatic preparations may be affected negatively
by the direct toxicity of some fluorescent tracers.85 For ex-
ample, one report suggests that ICG, at certain concentrations
in isolated vessels, has negative effects on lymphatic con-
tractile function,85 although this result was disputed as dif-
ferent concentrations of ICG injection in vivo did not result in
noticeable changes in acute lymphatic propulsion after in-
jection.86 However, another study demonstrated that while
ICG did not acutely alter lymphatic function in vivo, there
were long-term reductions in lymphatic function due to dye
retention at the injection site for up to 2 weeks after injec-
tion. This adverse effect was significantly reduced for
PEG-coupled NIR dyes.81 Another potential concern is that
prolonged illumination of fluorescent dyes, or even fluo-
rescent reporter proteins, can result in local heating and/or
the generation of reactive oxygen species that may impair
endothelium-dependent responses and contractile func-
tion.87,88–90 Phototoxicity is a function of illumination in-
tensity, wavelength, area, duration of exposure, and other
factors, most of which must be adjusted for the sensitivity of
the detection system used. On the other hand, phototoxicity
can be utilized to the investigator’s advantage, for example,
to intentionally photodamage and impair the function of cells
in one layer of the wall, as has been demonstrated for both the
smooth muscle and endothelial layers of blood vessels.88 This
property actually has been used with highly absorbent dyes to
create new animal models of lymphatic damage.91,92

In this context, intradermal or subcutaneous injection of
Evans Blue dye is a common tool to aid in the identification
of lymphatic vessels and mapping of lymphatic net-
works.23,93,94 The dye has also been used recently to assess
backflow through normal and defective lymphatic valves
in vivo.95–97 In the course of a recent study, we noted that
peripheral lymphatic vessels in the mouse, which show ro-
bust spontaneous contractions after cannulation/pressuriza-
tion ex vivo, failed to show any such spontaneous activity
after prior injection of Evan’s Blue dye into a distal portion
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of the network from which the vessel was dissected. We
therefore tested the possible toxic effect of Evans Blue dye, in
quantities and concentrations typical of those in the literature
(5–20 lL, 0.5%), on lymphatic contractions using popliteal
lymphatics studied ex vivo. All experiments were approved
by the University of Missouri Animal Care and Use Com-
mittee and conformed to the U.S. Public Health Service
policy for the humane care and use of laboratory animals
(PHS Policy, 1996). Mice were anesthetized with pentobar-
bital sodium (Nembutal; 60 mg/kg, i.p.). A solution of Evan’s
Blue (*10 lL, 0.5% in Krebs; Fisher Scientific #23860) was
injected into the dorsal surface of one foot 5–10 minutes
before dissection and isolation of popliteal lymphatic vessels.
A similar volume of Trypan Blue dye (0.4% in sterile saline;
VWR BioWhittaker, Atlanta, GA), a vital dye that does not
cross the cell membrane, was injected into the other foot.
Trypan Blue was used as a control dye since spontaneous
contractile activity was reported previously to persist after its
use.9 Popliteal afferent lymphatics from both legs were then

dissected and prepared for ex vivo assessment of contractile
activity as described previously.44 Vessels from hind paws
injected with Evans Blue exhibited complete loss of spon-
taneous contractions; in contrast, vessels draining hind paws
injected with Trypan Blue exhibited spontaneous contrac-
tions with amplitudes and frequencies similar to those re-
ported previously for popliteal afferent lymphatics dissected
from noninjected mice.44 Typical diameter recordings from
vessels treated with each dye are shown in Figure 1 panels A
and B, with the contraction patterns tested at seven different
pressure levels between 0.5 and 10 cm H2O in each case. All
vessels exposed to Evans Blue failed to develop spontaneous
contractions throughout the entire experimental protocol, a
period of over 3 hours. The summary data from six to seven
vessels exposed to each dye are shown in panels C–F, where
it is obvious that vessels exposed to Evans Blue dye showed
complete loss of spontaneous contractile activity, but with
little effect on tone. We therefore conclude that caution be
used when using Evans Blue dye in longitudinal studies,

FIG. 1. Evans Blue, but not Trypan Blue, critically impairs murine collecting vessel contractions. Trypan Blue (10 lL) and
Evans Blue (10 lL) were injected into opposite hind paws and popliteal collecting vessels were dissected from the respective
hind limbs and cannulated for ex vivo isobaric myograph studies. Raw diameter traces are shown in (A, B). frequency (C),
ejection fraction (EF) (D), and vessel tone (E) were calculated for popliteal vessels exposed to Trypan Blue (n = 6) or Evans
Blue (n = 7). *indicates significantly different at p < 0.05 using 2-way analysis of variance with Tukey’s post-hoc test.
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when active lymph uptake or transport is being measured, or
when valve backflow is assessed under conditions where it
can be affected by the loss of contractile function.98

Apart from toxicity concerns, a seldom discussed limi-
tation of using tracers is that dye injection, even at a remote
site, will almost inevitably alter both the normal filling
pressure of the local lymphatic capillaries and the in-
traluminal pressure in the downstream collecting vessel(s). In
addition to the rapid change in interstitial volume and pressure
during injection and the associated distortion or damage of the
interstitial matrix, there is likely to be a local effect on the
interstitial oncotic pressure that may acutely increase capillary
filtration and enhance lymph production over the physiologi-
cal baseline levels. This is supported by a recent publication
that showed enhanced lymphatic function after injection of a
tracer that did not reach a steady state until around 10 minutes
after injection.78 Moreover, such changes will not be known
and may be variable from day to day depending on the site and
volume of injection and the retention of the injected molecule
within the tissue. The consistency of injecting a very small dye
volume (<5 lL) at a controlled depth (e.g., intradermal rather
than subcutaneous) can be improved with significant practice
and care. Using microneedles to deliver the contrast agent
could minimize some of the variability.99

In this context, interstitial and intralymphatic pressure
gradients100 and/or flow changes19 are seldom measured in
in vivo lymphatic preparations even though methods for do-
ing so have been developed and even though interventions
are often imposed that likely change one or both variables.
For example, acute injection of a tracer will likely produce a
transient elevation in the driving pressure for lymph flow that
will override intrinsic propulsive mechanisms, initially pro-
ducing misleading measurements of tracer clearance and/or
dye movement. Furthermore, the time course of the decay
of this artificial pressure head will vary with a number of
factors, including the injection volume, the degree of tissue
displacement, compliance of the injection target (intradermal,
subcutaneous, and/or intralymphatic compartment), and the
extent to which the injection device (i.e., needle) is withdrawn.

The scenarios just described highlight the need to know the
hydrostatic pressures in and around initial and collecting
lymphatic vessels under the conditions used in many in vivo
experiments. Unfortunately, no measurements of intralu-
minal pressures in any lymphatic network of the mouse have
been made in vivo, either in wild-type mice or any of the
transgenic mouse strains used increasingly for lymphatic
studies. Indeed, only a few studies have measured lymphatic
intraluminal pressure in any species in vivo.14,17,70,73,100–102

For example, Hogan and Unthank73 and Clough and Smaje103

investigated the hydrostatic driving forces controlling the
filling of initial lymphatics in a bat and cat, respectively, by
measuring interstitial and intraluminal pressures simulta-
neously. Zweifach and colleagues measured the pressure
profile through an entire lymphatic network (in rat and cat
mesenteries12,100), thereby establishing the concept that
collecting vessels pump against an adverse pressure gradient.
However, the hydrostatic pressure profile has not been veri-
fied for any lymphatic network other than the mesentery, with
the possible exception of the diaphragm.102 Alterations in the
normal hydrostatic pressures may well occur in transgenic
mice with elevated blood pressure (e.g., eNOS-/- mice), which
may have increased net filtration across blood capillaries,

leading to changes in interstitial fluid pressure and/or lym-
phatic capillary pressure that are unknown. Likewise, mice
with engineered lymphatic valve or lympho-venous valve
defects will likely experience changes in lymphatic capil-
lary pressure secondary to elevated pressures in their central
lymphatic trunks, and these animals may be particularly
susceptible to the slightest changes in body position if
nonfunctional valves allow backflow. Any mice with ede-
ma, lymphedema or inflammation will likely have elevated
pressures in some portions of their lymphatic trunks that
can indirectly influence contractile activity. Additional in-
formation regarding baseline hydrostatic pressures inside
and outside of lymphatic capillaries and collecting vessels,
particularly from the mouse, would not only inform in vivo
studies but would also aid investigators using ex vivo methods
to gauge the physiologically relevant range of pressures over
which to perform studies.

Advantages of Ex Vivo Preparations

For purposes of comparison, ex vivo methods can be sub-
divided into isobaric preparations and isometric (wire myo-
graph) preparations. Isobaric preparations allow lymphatic
vessels to be studied under defined hydrodynamic conditions
so that pressure and flow, to a lesser extent, can be controlled.
Pressure control is the primary advantage of the isolated,
cannulated vessel method (termed pressure myography) be-
cause lymphatic vessels are exquisitely sensitive to changes
in transmural pressure and can double their contraction fre-
quency in response to as little as a 0.5 cm H2O increase in
pressure.104 With a cannulated lymphatic vessel containing at
least one valve, setting both input (upstream) pressure and
output (downstream) pressure to equal levels allows deter-
mination of the effect of changing baseline pressure and
preservation of pulsatile flow associated with spontaneous
contractions, while eliminating continuous forward flow.105

Alternatively, elevating input pressure while simultaneously
reducing output pressure by an equivalent amount (relative
to baseline) allows the maintenance of a constant midpoint
pressure to assess the effect of net forward flow42,106,107

(although the contraction wave typically initiates from one of
the severed ends rather than the middle of the cannulated
vessel). Other combinations of pressure and flow changes are
also possible. One limitation of these preparations is that flow
changes are induced by changing pressure at some point
significantly upstream and/or downstream of the vessel itself
and thus actual volume flow rates (and the imposed wall shear
stress) remain unknown. Additionally, theses flow studies
require pipettes with similar hydraulic resistances and that
also are of comparable size to the vessel being studied.
However, a recently developed system using feedback con-
trolled displacement pumps has overcome this limitation, as
the actual imposed flow on the vessel is continuously re-
corded through the position of syringe pistons that displace
the fluid through the vessel.108,109

Lymphatic vessels also can be excised and studied under
isometric conditions. For larger vessels, such as those from
bovine and sheep, the segments are cut into rings and
mounted on standard force transducer systems in organ
baths.54,110,111 For smaller vessels (<200 lm in diameter),
wire myograph systems112 are required. In the latter, the
vessel is threaded by two 40-lm stainless steel wires, with
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one wire attached to a force transducer capable of detecting
force transients as small as 1 mN60,61,113 and the other at-
tached to a movable jaw to stretch the vessel and set the level
of basal force (i.e., preload). For murine vessels (e.g., pop-
liteal lymphaties), wires thinner than 40 lm must be used
because the inner diameter can be as small as 50 lm, leading
to potential damage of the endothelium during mounting.
Although thinner wires, such as 17 and 25-lm wires, are
commercially available, they cannot be stretched as tightly
and undergo more deflection, leading to substantial deviation
from a truly isometric state, which may or may not be a
critical issue for a particular experiment. Some advantages
and limitations of isometric preparations, in comparison with
isobaric preparations, are listed in Table 1.

Two additional points are worth mentioning. First, a se-
lective advantage of isobaric over isometric preparations
is that in the former composition of intraluminal as well
as extramural solutions can be controlled and inhibitors/
activators can be added inside114 or outside, as appropriate.
However, in either preparation, matching the solution com-
positions to those found in vivo can be problematic.115 Sec-
ond, both isobaric and isometric vessel preparations are well
suited for high-resolution fluorescence imaging under an
inverted microscope because the use of thin coverslips as
chamber bottoms in conjunction with high-magnification
objectives allows light collection from a narrow focal plane
for improved optical sectioning and resolution.116–119

Limitations of Ex Vivo Preparations

The most common criticism of ex vivo preparations is
that the removal of extrinsic regulatory mechanisms can
substantially alter lymphatic vessel tone and/or contractile
properties. The simple excision of the vessel inevitably re-
sults in damaged cells at the two ends, where the vessel has
been both cut and subsequently tied to glass pipettes. This
damage is unavoidable for vessel excision but may alter
calcium dynamics and charge accumulation, and may ex-
plain the fact that otherwise undamaged isobaric lymphatic
preparations almost always initiate contraction from one of
the two cut ends. Additionally, once cannulated, the vessel
is typically stretched lengthwise to remove slack, but unless
the in vivo length was measured before excision and used as
a reference point, the ex vivo length and axial tension will be
approximate at best. This limitation will be further compounded
for long segments where the lack of an extracellular matrix
tethering the vessel may result in a gradient of axial strain
(diminishing toward the center) that can directly affect the re-
corded diameters, amplitudes, vessel tone, and compliance
measurements based on the region analyzed. Thus, significant
variability from preparation to preparation could be reduced
by having standardized protocols for setting axial length.

Other drawbacks of ex vivo preparations include the dis-
ruption of acute and tonic neural input and the influence of
parenchymal cells, such as adipocytes and immune cells,
which potentially release vasoactive products.42,120 On the
other hand, the removal of such neural and parenchymal cell
influences might be desirable for testing certain hypotheses.
Despite excision of the collecting vessel from the tissue, ex
vivo lymphatic preparations may still have significant popu-
lations of immune cells (including neutrophils, macrophages,
monocytes, dendritic cells, fibroblasts, and mast cells) that

reside on, nearby, or within the vessel wall and can modulate
contraction121–123; thus, it may be difficult to completely
eliminate the influence of such factors, both in healthy vessels
and when assessing contractile function (or permeability) in
disease states. In other contexts, it may be advantageous to
preserve cross talk between immune cells and other cells in the
lymphatic wall and/or to target local immune cells for mech-
anistic studies. These factors should be weighed carefully
when assessing the advantages and disadvantages of using an
ex vivo preparation. Of course, alternative and intermediate
strategies are also possible, for example, cleaning only a small
section of a collecting lymphatic vessel wall to accurately
measure the diameter in that region ex vivo, while leaving
intact the adventitial/adipose cells along the rest of the vessel.

The microdissection techniques used for isolating lym-
phatic vessels in preparation for ex vivo studies can be (but
are not necessarily) highly traumatic, depending on the lo-
cation of the vessel, its size, and the amount/type of pa-
renchymal tissue, fat, or connective tissue surrounding it.
Typically, there is a steep learning curve for successful dis-
section/cannulation, particularly for small vessels (<80 lm
I.D.) such as those from the mouse. Additional precautions
are warranted for wire myograph-mounted vessels, where
extra care must be exercised to prevent damage to the en-
dothelium, with some damage being inevitable along the
inner surface of the vessel in contact with the wires. On the
other hand, it may be advantageous to intentionally denude
the vessel of its endothelium using a larger wire, a thread, or
an air bolus.124 Isometric preparations are particularly suited
for membrane potential118,125,126 and/or intracellular Ca2+

measurements117 because movement is minimized, allowing
sharp electrode impalements and/or focus to be maintained.
However, a potential confounding factor is the lack of os-
cillations in stretch that the smooth muscle cells normally
undergo during the contraction/dilation cycle, which may in
turn alter calcium and/or membrane potential dynamics. Fi-
nally, the limitations regarding dye toxicity and phototoxicity
discussed above for in vivo methods also apply to ex vivo
methods if fluorescence imaging is used in place of, or in
conjunction with, bright-field illumination.

Conclusions

In summary, the relative advantages/disadvantages of
in vivo and ex vivo preparations to study lymphatic function
must be evaluated in light of the particular goals of a study;
for example: Is pressure control the most important factor? Is
having an intact parenchymal cell coverage required? Is ac-
curate diameter measurement critical? Is maintaining the
influence of iNOS generation from inflammatory cells? In
some cases, comparing results from ex vivo vs in vivo studies
can lead to conflicting conclusions.62,127,128 In other cases,
there may be close agreement between the two. Examples in
support of the latter statement come from comparisons be-
tween the in vivo14 and ex vivo behavior of rat mesenteric
collecting lymphatics,14 where striking similarities have been
found in the optimal pressure for contractile function, in the
effects of elevating pressure on contractile strength and fre-
quency,104,129 and in the maximum shortening velocity of
lymphatic smooth muscle.130

Ultimately, information obtained using both in vivo and
ex vivo preparations must be weighed and integrated to
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produce an accurate understanding of lymphatic vessel and
network behavior, with the goal of translating those findings
to human disease and helping patients who suffer from
lymphedema and other lymphatic disorders.
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