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Abstract: Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the

determination of high-resolution structures of macromolecular assemblies that have resisted X-ray
crystallography and other approaches. We developed the SIMPLE open-source image-processing suite

for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic

PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-
particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic

optimization algorithms that improve the robustness of the approach. Our refined method for

identification of homogeneous subsets of images in accurate register substantially improves the
resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now

obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent

parallel code performance on over-the-counter laptops and CPU workstations is demonstrated.
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Introduction

High-resolution imaging of biological macromolecules

with an electron microscope requires embedding of

the single-particles in vitreous ice, keeping the par-

ticles hydrated in a near-native state.1 Generation of

an accurate 3D density map from large sets of single-

particle cryo-EM projection images is challenging due

to the low SNR, the many parameters that need to be

determined in an unsupervised manner and the large

risk of getting trapped in local optima. Despite the

mathematical elegance of single-algorithm solutions

to ab initio single-particle 3D reconstruction,2–4 real

world data sets are generally too challenging for one-

step approaches to be successful. Multi-protein com-

plexes often partially unfold when they interact with

the air-water interface during specimen preparation,

they form micro-aggregations because of insufficient

solubility, or they are mistaken for ice contaminations

by automatic particle identification procedures. These

factors, and many more,5 contribute to single-particle

data sets being intrinsically heterogeneous. Hence,

the first task in single-particle image processing is to

identify the particle images we are interested in ana-

lysing further in terms of structure, dynamics and

composition. Clustering algorithms therefore play a

pivotal role in initial data quality assessment. How-

ever, referring to the problem of identifying particle

subsets that are homogeneous in projection direction

and structure as a bona fide clustering problem is mis-

leading, since it is non-trivial to define a function that

computes a distance between two images. Prior 2D

registration6 or generation of rotation and shift

invariant representations would be required,7 since

direct distance measures depend on the random in-

plane rotation and random rotational origin offsets of

the single-particle projections. Accurate registration

of image pairs or generation of good invariant

representations cannot readily be accomplished

because of the high level of noise. A common alterna-

tive approach is to view the problem of simultaneous

2D alignment and clustering (SAC) as a statistical

parameter optimization problem.8–11 Developing fast

and robust algorithms for solving SAC is important

because:

1. Large data sets need to be rapidly processed in

2D to assess their amenability to high-resolution

3D reconstruction.

2. Contaminating images of, for example, ice or particle

micro-aggregates often constitute a significant por-

tion of a data set because of errors in particle

identification. These images need to be identified and

removed.

3. Identifying highly homogeneous subsets of images

in accurate register allows averaging to improve

the SNR, which is important for the subsequent

steps of ab initio 3D reconstruction10 and structural

heterogeneity analysis.12,13

4. The dimensionality reduction provided by solving

SAC is �100-fold, which enables rapid downstream

analysis of the resulting cluster centers (often

referred to as 2D class averages) on lightweight com-

puter architectures, such as workstations or laptops.

One of the earliest proposed general approaches

for solving SAC was the multi-reference alignment

(MRA) algorithm.14,15 Most cryo-EM image-process-

ing packages13,16–21 implement their own variant of

MRA, deploying a k-means-like strategy that involves

randomized initialization of cluster centers, followed

by iterative greedy local-search-based optimization of

cluster assignments and in-plane rotations.

We recently developed a new SAC solver based on

formulation of the multi-reference alignment problem as

a combinatorial optimization problem.10 We applied sto-

chastic hill-climbing (SHC)22 to estimate the parameters

subject to optimization: cluster assignments, in-plane

rotations and rotational origin shifts. In the previous

study, we showed that our SHC-based SAC solver over-

comes inherent limitations of other commonly used

center-based clustering approaches. However, it remains

an open question of how far SAC solvers can be improved

in terms of the resolution of the cluster centers obtained

and the ability to resolve structural heterogeneity aris-

ing from conformational or compositional variations.

We introduce a probabilistic single-particle pro-

jection alignment framework that includes CTF-

dependent Wiener restoration23 and implements new

stochastic optimization methods with improved orien-

tation search diversity. We invested significant efforts

into optimizing the parallel CPU code and provide

benchmarks on several experimental data sets on dif-

ferent computer architectures. Data sets of realistic

size can now be processed on lightweight workstations

or laptops. Our implementation is simple, efficiently

parallelized, and improves the resolution of the clus-

ter centers and the ab initio 3D reconstructions

derived from them to subnanometer resolution.

Algorithms

Improved simultaneous 2D alignment and

clustering with PRIME2D
The PRIME2D algorithm has three components: (1)

an initialization step that selects a random subset of

the analysed images as initial references, (2) a

stochastic search step that updates the parameters

subject to optimization (cluster assignments, in-

plane rotations and rotational origin shifts) and (3)

a cluster center update step (a mathematical

description of the cluster center is provided in Sup-

porting Information Section 1). Steps (2) and (3) are

iterated until the parameter assignments are consis-

tent between successive iterations. Our improve-

ments to PRIME2D include a new stochastic search

approach described below, an accelerated algorithm
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for matching particle images with cluster centers

(see Supporting Information Section 2) and re-

implementation of a standard approach for CTF cor-

rection (briefly described in Supporting Information

Section 1).

A problem with iterative center-based approaches

for solving SAC is that decisions made early in the

search will strongly influence later decisions. The

effects of poor initial choices may be propagated all

the way to the final solution. This causes the final

result to strongly depend on the initialization condi-

tion and only convergence to a local optimum is guar-

anteed. In attempt to overcome these issues, we

designed a new stochastic optimization approach for

solving SAC. Consider optimization problems where

each solution element can be assigned an individual

score. In our case, a correlation-based score is associ-

ated with each particle image (Supporting Informa-

tion Section 2, Equations 8 and 9). It has been shown

that random update of the worst scoring elements,

without any improvement through search, cause all

individuals to reach fitness values above a certain

threshold.24 This so-called “Extremal Optimization”

(EO) approach provides means for wide exploration of

a configuration space and has been applied to solve

difficult combinatorial problems.25–27 However, direct

application of EO to SAC would be computationally

inefficient. Therefore, we designed a hybrid approach

that combines EO with our previous stochastic local

search method (SHC, refs 4, 10 & Supporting Informa-

tion Section 2, Equation 16), leveraging the diversity

of EO and its capability to continue the search beyond

a local optimum in a computationally efficient man-

ner. We define a temperature (Textremal) and a random-

ization rate (Rrate) to anneal the temperature

throughout the search via T(t)extremal 5 T(t – 1)*Rrate

where t denotes iteration number [see Fig. 1(B)],

analogous to simulated annealing.28 Textremal 5 0.5

causes half of the least fit images to be subjected to

extremal rather than SHC-based update, where the

extremal update is defined as

1. Assign the particle image a random cluster label

so that the label must change.

2. Optimize in-plane parameters by exhaustive search.

3. Accept the new parameter assignment

unconditionally.

The annealing causes the EO update rate to be

high initially (50%), when the need to overcome bias is

high, and low toward the end of a run when the SAC

solution needs refinement rather than re-shaping. Bal-

ancing EO and SHC in this way allows rapid identifica-

tion of a near-optimal SAC solution. The SHC-based

update is done as previously described by us10 (see also

Supporting Information Section 2). An initial tempera-

ture of Textremal 5 0.5 and randomization rate of Rrate 5

0.8 worked well for all data sets we have processed so

far. Figure 1(A) provides a schematic representation of

the PRIME2D algorithm.

We implemented an automated PRIME2D work-

flow that takes care of the initialization and automati-

cally downscales the images based on the input low-pass

limit range. The search is divided into two stages.

The first stage uses only low-resolution information

(typically 20 Å) and highly down-sampled images. This

substantially accelerates performance, since the compu-

tations grow with the square of the image size. In the

second stage, the low-pass limit and degree of downscal-

ing are updated. The final cluster centers are calculated

at the original sampling and ranked according to

decreasing population.

Improved analysis of cluster centers of cn

symmetric molecules with PRIME3D

We have previously demonstrated that PRIME3D

provides a robust solution to the ab initio 3D recon-

struction problem4,10 and the algorithm has been

used in the hands of others to generate starting

models that were subsequently refined to near-

atomic resolution.29–34 PRIME3D can be used to

obtain 3D reconstructions directly from the noisy

individual images. However, a faster route that pro-

vides better success/failure statistics is to first clus-

ter the data with PRIME2D to generate cluster

centers that are subjected to PRIME3D analysis.

Asymmetric molecules (ribosomes, spliceosomes and

so forth) and molecules with point-group symmetries

equal to or higher than D2 (b-galactosidase, protea-

some, GroEL, and so forth) are easy to reconstruct.

We have found Cn-symmetric particles to be the

most difficult targets. Although it is possible to con-

straint the orientation search from the start accord-

ing to the input point-group symmetry, we typically

start off assuming no symmetry and then analyse

the converged asymmetric map to identify the cor-

rect point-group and principal symmetry axis orien-

tation.35 However, this approach sometimes fails for

Cn symmetric single-particles due to incorrect identi-

fication of the symmetry axis. A brute force method

to overcome this problem would be to restart the

procedure, which is a practical but costly solution to

the problem. We hypothesized that Cn-symmetries

do not constraint the orientation search enough to pro-

vide any useful regularization of the inverse problem.

In support of this notion, asymmetric reconstructions

of dihedral, tetrahedral, octahedral and icosahedral

molecules come out almost perfectly symmetrical,

whereas asymmetric maps of Cn-symmetric molecules

can be distorted due to the orientations tending to clus-

ter within a single asymmetric unit rather than

spreading evenly over the point-group. We therefore

designed a new stochastic optimiser—stochastic neigh-

borhood hill climbing (SNHC)—to overcome this bias,

resulting in a success rate of 97% over 60 test runs (see

Results). Briefly, SNHC defines a small stochastic

neighborhood per cluster center, consisting of five pro-

jection directions randomly sampled from the entire
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discrete search space of 1000 directions. The stochastic

neighborhood is evaluated exhaustively and the best

orientation found is assigned to the cluster center,

whether or not it improves the correlation vs. the

previous orientation. This approach is more than an

order of magnitude faster than the original PRIME3D

approach. Large fluctuations ensure that many local

optima are being explored. The extreme diversity of

SNHC ensures rapid identification of a low-resolution

molecular shape. We use SNHC in replacement of

random initialization of PRIME3D to improve the

success rate for Cn-symmetric single-particles. We

implemented an automated PRIME3D workflow for

analysing cluster centers obtained with PRIME2D

(executed via simple_distr_exec prg 5 ini3D_from_

cavgs), outlined in Figure 1(C).

Resolution estimation

The parameters determined for the individual particle

images by PRIME2D (cluster assignments, in-plane

rotations, origin shifts) are combined with those

obtained with PRIME3D for the cluster centers (pro-

jection directions, in-plane rotations, origin shifts) to

yield per-particle 3D orientation estimates. This step

is implemented in the SIMPLE application map2ptcls.

A resolution estimate is obtained by calculating even/

odd 3D reconstructions and applying the FSC 5 0.143

threshold criterion.36 None of the maps presented

below were obtained by 3D refinement of the individ-

ual particle images—the analysis was done exclusively

using cluster centers and the resolution was estimated

following mapping of the orientation parameters back

to the particle images.

Shared-memory parallelization

One PRIME2D iteration consists of (1) update of the

parameters subject to optimization followed by (2)

update of the cluster centers. Step (1) represents the

majority of the computations but can be done for

every particle image independently (“embarrassingly

parallel” problem). We encapsulate the entire sto-

chastic parameter update procedure in an abstract

Figure 1. Flowcharts for PRIME2D/PRIME3D. (A) Flowchart for the PRIME2D hybrid EO/SHC SAC solver. Loop constructs are

gray hexagons, computations blue rectangles and decisions light blue diamonds. (B) Extremal temperature (Textremal), controlling

the rate of EO vs. SHC update, plotted as a function of iteration number. (C) PRIME3D workflow for analysis of cluster centers
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data type and declare an array with one search

object per particle image. Shared-memory paralleli-

zation is applied to the loop over particle indices to

allow the reference and particle images to be shared

across CPUs. Since the time taken to process one

particle image is stochastic, we use a scheduling

scheme where large batches are assigned to each

CPU initially and, as the loop progresses, the

batches decrease in size to allow efficient load bal-

ancing. The cluster center update (Step 2) also

involves significant computations (rotation of the

images with convolution interpolation,37 CTF multi-

plication, origin shifting and summation). For each

cluster in sequence, we identify the indices of the

particle members and create load-balanced batches

of images (one batch per available CPU) so that the

update of the cluster centers can be executed effi-

ciently in parallel.

Multi-user distributed computing environments
We developed our own tool for distributed-memory

parallelization, supporting common cluster queuing

systems (PBS, SLURM and SGE) in addition to local

execution on multi-socket workstations. In multi-

user environments, this tool has distinct advantages

over codes based on the message-passing interface

(MPI). Instead of requesting a large number of CPU

cores for the entire duration of the program execu-

tion, the computations associated with individual

PRIME2D/PRIME3D iterations are divided into bal-

anced partitions and submitted as individual jobs to

the queuing system. If there are multiple SIMPLE

users on the same cluster, there is no risk that any

single user uptakes more time than it takes to com-

plete a single PRIME2D/PRIME3D iteration, before

a user competing for the same resources is given

chance to access. There is a slight overhead (matter

of seconds) with this mode of execution, since the

assembly of cluster centers from partitions

(PRIME2D) and the assembly of a 3D reconstruction

from partial volumes (PRIME3D) are done serially.

However, this short delay has the advantage of free-

ing the computer resources so that other users may

gain access. The best resource utilization when

using SIMPLE on distributed computer systems is

accomplished in multi-user environments where

many users compete for the same machines. The

PRIME2D and PRIME3D cluster center analyses

are executed as follows in a distributed computing

environment:

$nohup simple distr exec prg5prime2D stk5particle stack:mrc smpd51:28

msk580 ncls5200 ctf 5yes deftab5ctf params:txt nparts520 > PRIME2DOUT &

$nohup simple distr exec prg5ini3D from cavgs stk5cavgs final ranked:mrc

smpd51:28 msk580 pgrp5c1 nparts520 > INI3DOUT &

where prg is the program name, stk is the input

image stack (MRC or SPIDER format), smpd is the

sampling distance of the images (in Å), msk is the

Gaussian mask radius in pixels, ncls is the number

of clusters, ctf is the CTF status flag; yes meaning

images have CTF, flip meaning images have been

pre-corrected with phase-flipping, no meaning

images have no CTF, deftab is a text-file with CTF

parameters, nparts is the number of partitions to

divide the job into and pgrp is the point-group

symmetry.

Results

Benchmarking on over-the-counter computers

We tested the PRIME2D/PRIME3D approach using

data sets available at the Electron Microscopy Public

Image ARchive (EMPIAR). All data characteristics

are described online.38 The first two benchmarks were

executed on a laptop (MacBook Pro mid 2015, 2.8 GHz

Intel i7, four physical cores) using 5000 images ran-

domly selected from larger data sets (Figs. 2 and 3).

Already after �10 PRIME2D iterations (wall-clock

time of �40 minutes for the proteasome vs. �20

minutes for b-galactosidase), we saw evidence of pro-

jected secondary structure elements in the cluster

centers (100 centers in total). The proteasome recon-

struction obtained from cluster centers (Fig. 2)

had better resolution than the b-galactosidase map

(Fig. 3) because the effective number of images is

50,000 (D7 point-group symmetry) vs. 20,000 for b-

galactosidase (D2 point-group symmetry). PRIME2D

achieves a 50-fold dimensionality reduction (from

25,000 to 500 free parameters) in these tests. There-

fore, the following PRIM3D step can be executed rap-

idly (�10 minutes) to generate an initial 3D volume.

PRIME3D automatically updates the low-pass limit

based on search statistics and the final limit is set to

10 Å by default. That we obtain resolutions (following

the FSC 5 0.143 criterion36) that extend beyond the

hard low-pass limit is reassuring and reflects the

quality of cluster centers obtained. We further bench-

marked the approach on additional data sets; the

results are summarized in Figures 4 and 5. In all

tests, we obtained maps with a resolution better than
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10 Å (8.0–9.6 Å) in less than two hours wall-clock time

on over-the-counter machines that cost less than 2000

USD. Cluster centers produced without the use of a

3D reference volume in other widely used program

packages17–21,39,40 have not been demonstrated to

yield maps with a resolution better than 10 Å.

Robustness analysis of PRIME3D when applied

to cn symmetric molecules

We repeated our improved PRIME3D analysis 20

times on cluster centers derived from three data sets

that were difficult targets for our previous

approach.4 The three data sets analysed were all of

Figure 2. Benchmark on a laptop (MacBook Pro mid 2015, 2.8 GHz Intel i7, four physical cores) using 5000 images of the

proteasome extracted from a larger data set (EMPIAR-10025): (A) Grouping of the 5000 images (box 5 224) into 100 clusters

with PRIME2D. The left panel shows the evolution of two cluster centers throughout the stochastic search. The right panel

shows examples of the experimental images (top) and the time per iteration (bottom). (B) Ab initio 3D reconstruction from clus-

ter centers obtained in 10 minutes on a two-year-old laptop. (C) Map obtained by mapping the orientations obtained for cluster

centers back to the particle images (left) and Fourier Shell Correlation plot (FSC) (right), demonstrating a resolution of 8.0 Å
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C4 symmetric membrane receptors: (1) the calcium

release channel IP3R41 (kindly shared by Steven

Ludtke), (2) TRPA1 (EMPIAR-10024), and (3)

TRPV1 (EMPIAR-10005). We obtained success rates

of (1) 100%, (2) 100%, and (3) 90%. Figure 6 shows

the spatial median map and the map furthest from

the spatial median map for each of the tests, illus-

trating the variance of the map distribution for the

set of successful runs. In conclusion, the PRIME3D

approach is robust (failure rate of 3% over 60 tests)

but when it fails, it fails dramatically [see example

in Fig. 6(C)]. The 2/20 TRPV1 failures are caused

by the rotational symmetry axis being incorrectly

identified because of a pseudo 4-fold axis orthogonal

to the true axis. We therefore recommend users to

restart the procedure a few times and compare the

results obtained, which is not a huge effort as it

takes roughly ten minutes.

Discussion

Because of the rapidly increasing popularity of cryo-

EM techniques and the many newcomers to the field,

it is important that we address the outstanding prob-

lems in data analysis. We have identified five areas

that need further investigation/development:

1. Reproducibility and comparative analysis of exist-

ing algorithms.

Figure 3. Benchmark on a laptop (MacBook Pro mid 2015, 2.8 GHz Intel i7, four physical cores) using 5000 images of

beta-galactosidase extracted from a larger data set (EMPIAR-10013): (A) Grouping of the 5000 images (box 5 256) into 100

clusters. The left panel shows the evolution of three cluster centers throughout the stochastic search. The right panel shows

examples of the experimental images (top) and the time per iteration (bottom). (B) Asymmetric ab initio 3D reconstruction from

cluster centers obtained in 10 minutes on a two-year-old laptop. (C) Symmetrized map obtained by mapping the orientations

obtained for cluster centers back to the particle images (left) and Fourier Shell Correlation (FSC) plot (right), demonstrating a

resolution of 9.6 Å
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2. Development of new robust image-processing

methods.

3. Reducing execution speed and computational

requirements.

4. Automation and creation of high-level workflows

that are less prone to user mistakes and can be

stitched together to create protocols.

5. Development of hybrid orientation search techni-

ques and intelligent algorithms.

Reproducibility and comparative testing is

strengthened by developments like Scipion42 that

integrate many different packages under a unified

graphical user-interface, allowing users to mix and

match algorithms while the complete workflow is

being stored so that it can be automatically re-

executed at any later point. We have integrated the

developments described here within the Scipion

framework (planned release August 2017) and they

are available for download at http://simplecryoem.

com/as part of SIMPLE 2.5.

With “robustness” we mean the ability of the algo-

rithm to cope with erroneous input. Single-particle

cryo-EM data sets have large errors because of the

high-level of noise of the images, the structurally het-

erogeneous nature of macromolecules and errors in

particle identification. We previously demonstrated

the robustness of the PRIME3D approach toward ini-

tialization by erroneous starting models.4 Here, we

demonstrate increased convergence radius for Cn-

symmetric molecules when using SNHC to initialize

PRIME3D. Restarting the algorithm many times and

analysing the success/failure statistics is important

during development, to identify and eliminate bottle-

necks. It is also important for the user to understand

what to expect, how many times the algorithm should

be restarted and how much the obtained solutions will

differ. We do anticipate larger map variations upon

restart analysis of more challenging (i.e., conforma-

tionally heterogeneous) data sets than those analysed

here. This will be a subject of future studies.

Reducing execution speed and computational

requirements is essential for making the technique

available to as many as possible. Computer clusters

are expensive to buy and maintain and not available

to all end-users. GPU acceleration will play a central

Figure 4. Benchmark on a workstation (3.0 Ghz Intel i7, eight physical cores) using, 35,645 images of TRPV1 (EMPIAR-10005;

left panel) and 43,585 images of TRPA1 (EMPIAR-10024; right panel): (A, E) Sample images from the data set. (B, F) Wall-clock

time as a function of PRIME2D iteration number. (C, G) Cluster centers (top) and corresponding re-projections of the ab initio

maps (bottom). (D, H) Top- (left) and side-view (right) of the density maps obtained with PRIME3D from cluster centers. The

resolutions obtained are 8.6 Å (TRPV1) and 8.7 Å (TRPA1)
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role.2,43 However, not all algorithms are well

suited for GPUs and not all computers have GPU

capabilities. Therefore, it is equally important to

engineer high-performance CPU code. In this release

(SIMPLE 2.5), we have focused exclusively on accel-

erating the CPU code via code optimization techni-

ques such as data reorganization, pipelining and

load balancing of the parallel implementation.

As the number of cryo-EM users increase, the

“synchrotron model” for data acquisition will become

more common, as evidenced by the number of cen-

tralized cryo-EM resources being established world-

wide. Enabling users to analyse a substantial subset

of the images while the data is still being acquired,

using their own laptops or a nearby workstation,

will increase insight into the nature of the data and

potentially change the way the images are being

collected.

Automation is another key area that we address

here by creating highly automated workflows for

generating cluster centers with PRIME2D and for

calculating ab initio 3D reconstructions from cluster

centers with PRIME3D. A web-based graphical user-

interface is planned for the next SIMPLE release,

but even novice computer users will be able to exe-

cute the two command lines controlling PRIME2D

and PRIME3D, respectively.

We believe that development of hybrid orientation

search techniques and the use of intelligent algo-

rithms will accelerate progress in the area of cryo-EM

image processing. A few mature tools implement tune-

able 3D reconstruction algorithms. For example,

EMAN217 implements a large number of different

scoring functions; some work better for certain molec-

ular shapes and their suitability may vary with the

quality of the map during the refinement cycle.

Figure 5. A gallery of ab initio maps obtained from cluster centers with the improved PRIME2D/PRIME3D approach
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Rather than experimenting with different scoring

functions, we have focused on implementing different

variants of stochastic orientation search that we now

try to combine in intelligent ways to accelerate the

execution speed and improve the robustness of the

PRIME approach. We anticipate that hybrid methods

and algorithms capable of making on the fly decisions

about what search procedure or scoring function to

use will make single-particle 3D reconstruction more

automated, accessible and reproducible.

Conclusions

We introduced improved methods for analysis of

single-particle cryo-EM projection images: PRIME2D

for simultaneous 2D alignment and clustering and

PRIME3D for ab initio 3D reconstruction. These

algorithms are part of the open-source SIMPLE

image-processing suite, version 2.5, available for

download at http://simplecryoem.com/.
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