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Abstract: PixelDB, the Peptide Exosite Location Database, compiles 1966 non-redundant, high-res-

olution structures of protein–peptide complexes filtered to minimize the impact of crystal packing
on peptide conformation. The database is organized to facilitate study of structurally conserved

versus non-conserved elements of protein–peptide engagement. PixelDB clusters complexes based

on the structural similarity of the peptide-binding protein, and by comparing complexes within a
cluster highlights examples of domains that engage peptides using more than one binding mode.

PixelDB also identifies conserved peptide core structural motifs characteristic of each binding

mode. Peptide regions that flank core motifs often make non-structurally conserved interactions
with the protein surface in regions we call exosites. Many examples establish that exosite contacts

can be important for enhancing protein binding and interaction specificity. PixelDB provides a

resource for computational and structural biologists to study, model, and predict core-motif and
exosite-contacting peptide interactions. PixelDB is available to the community without restriction

in a convenient flat-file format with accompanying visualization tools.
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Short Statement: The protein data bank (PDB) contains >100,000 solved structures and is a rich source of information about
how proteins execute their functions. To provide a resource for scientists studying how proteins bind to peptides, the database Pix-
elDB compiles 1966 high-quality structures of protein–peptide complexes and organizes them into related clusters. The database
annotates structurally conserved and non-conserved elements in interaction interfaces and can be used to study determinants of
peptide binding affinity and specificity.
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Introduction

Protein–peptide interactions govern many cellular

processes and can be important for structural scaf-

folding and complex assembly, signal transduction,

transcriptional regulation, intracellular localization,

and enzyme-substrate recognition.1 In many protein–

peptide complexes, a protein engages a relatively short,

conserved motif in an interaction partner. Experimen-

tally determined sequence motifs for numerous

peptide-binding proteins are documented in databases

such as the eukaryotic linear motif resource (ELM),2

and for many complexes there are high-resolution

structures in the protein data bank (PDB) that provide

insight into binding mechanism. Several previous stud-

ies have used structures of proteins bound to peptides,

or knowledge of peptide binding motifs, as the starting

point to design reagents that can block the formation

of protein–protein complexes.3–8

Despite the central importance of peptide motifs

for protein–peptide interactions, conserved motifs

may not contain all of the information needed to

fully determine the affinity and specificity of a pro-

tein–peptide complex. The interface formed with

many conserved motifs is small, and provides few

enthalpically favorable interactions compared to the

formation of larger protein–protein complexes.9 At

the same time, flexible peptide ligands have to over-

come entropy loss upon adopting a bound conforma-

tion, which contributes to making many protein–

peptide interactions quite weak. Furthermore, the

amount of information encoded in a short motif is

limited, and may not be sufficient to establish bind-

ing preferences among related proteins. Unsurpris-

ingly, given these considerations, studies of various

protein–peptide complexes have provided evidence

that sequence regions flanking core motifs, that is,

sequences N- or C-terminal to the motif, can in

many cases make additional interactions with a pro-

tein binding partner to enhance affinity and/or spe-

cificity.10–14 We refer to the region of a protein

surface contacted by core-flanking sequence as an

exosite, and the peptide region that contacts an exo-

site as an exosite contacting region (ECR).

Exosites, which are important for natural pro-

tein–peptide complexes, also offer opportunities to

protein designers. For example, to compete with an

endogenous interaction, a peptide inhibitor could be

designed to make affinity-enhancing interactions

with exosite regions. This could be achieved by design-

ing an ECR using structure-based computational

methods.15 However, we do not currently know much

about ECR interactions. Incomplete understanding of

ECR structural determinants was highlighted in the

latest CAPRI challenge, where participants were

tasked with predicting the binding mode of a peptide

to a known partner structure. For CAPRI targets 60–

64, most groups excelled at predicting the correct core

binding mode, but none were able to correctly predict

the flanking structure.16

Many databases have compiled examples of pro-

tein–peptide complexes and extracted interesting

structural trends.17 Some examples are mentioned

here and summarized in Table I to provide context

for our new database. Although existing databases

provide sets of protein–peptide complexes that are

useful for analysis and for benchmarking docking

algorithms, none of these databases has been ana-

lyzed for structural conservation of peptide binding

modes, or to provide examples of exosites. Closer to

our current focus is the work of Stein and Aloy, who

compiled structures of protein domains bound to

peptides containing motifs documented in the 2007

version of the ELM database.13 The resulting collec-

tion of 390 complex structures covers 30 different

domains and provides examples of the roles of both

ELM residues and surrounding “context” residues in

binding. The authors used FoldX to estimate the rela-

tive roles of motif versus context residues in binding,

and found an average contribution of 21% of the bind-

ing energy from the context. Analysis also revealed

that variation in the conformation of context residues

was significantly greater than variation of the motif

residues, when comparing complexes involving the

same family of binding protein.

To expand the amount of data available for

analysis, and to provide a resource useful for explor-

ing the roles of peptide core versus flanking regions

in protein–peptide molecular recognition, we built

PixelDB (Peptide Exosite Location Database). The

database is a highly curated compendium of protein

complexes that provides many examples of both

structurally conserved and non-conserved interac-

tions. To define core regions in structures without

any prior knowledge of core sequence motifs (and

therefore no reliance on databases such as ELM), we

developed a structural definition of such sites. In

our scheme, we defined a peptide structural core

motif as the part of a peptide that adopts a

conserved binding mode in different structures of

related complexes. The core region is an estimate of

the minimum peptide structure required for binding.

Non-structurally conserved peptide elements in com-

plexes, including elements that are observed only in

some structures and thus are probably not required

for binding, were considered as potential ECRs. To

obtain as many examples as possible, we imple-

mented automated search protocols to find protein–

peptide complexes in the PDB and annotate them

with structurally conserved and non-conserved pep-

tide positions.

This article presents the methods used to con-

struct PixelDB, including the processing used to

select examples, our clustering of complexes, and

initial analysis of the resulting data. We also include

a description of the files and scripts that we are

Frappier et al. PROTEIN SCIENCE VOL 27:276—285 277



releasing with the database, which is freely avail-

able on line. We expect that PixelDB will find multi-

ple uses in the protein modeling and structural

biology communities, both for studying protein–pep-

tide molecular recognition and for testing new

modeling methods. We have annotated the incorpo-

rated data with labels that will help users extract

subsets of examples appropriate for different uses.

We look forward to new insights into protein–peptide

recognition that may emerge from use of PixelDB.

Methods

Database building
PixelDB was constructed by analyzing structures

only, without reference to sequence or sequence con-

servation, except that very high sequence similarity

was used to limit redundancy. An overview of the

process is shown in Figure 1(A). The PDB (09/01/16)

was queried for protein–peptide complexes using the

following criteria: asymmetric unit with two or more

chains, X-ray structure with resolution of 2.5 Å or

better, a chain of at least 25 amino acids (candidate

receptor), and no DNA or RNA molecules. A second

filter was applied such that all retained structures

included a chain of 5–80 amino acids (candidate pep-

tide). Missing side chain atoms were added using

SCWRL4.22 Structures were standardized by removing

heteroatoms and hydrogens, renumbering residues for

each chain, and inserting a gap in residue numbering

when two consecutive alpha carbons were more than 4

Å apart. Processed PDB-format files are available as

part of the PixelDB distribution.

To assign one chain in each complex as peptide,

and others as receptor, we used length cutoffs, manual

curation and automated assignment by machine

learning. Every chain of 5–25 residues without a gap

in the sequence was classified as peptide, and every

chain of 50 residues or more was classified as receptor.

Also, chains with length >25% of all residues in the

asymmetric unit were classified as receptor. Remain-

ing chains of 25–50 residues were classified as recep-

tor or peptide either by using a nearest-neighbors

classification algorithm, or by manual assignment. To

train the nearest-neighbors classifier we used three

features: length of the chain to be classified in compar-

ison to the summed lengths of all chains, secondary

structure content determined from the structure using

STRIDE,23 and number of chains in the crystal struc-

ture. Complexes with classifications assigned by chain-

length cutoffs, as mentioned above, were used as the

training data. Training was performed using Scikit-

learn,24 and then applied to classify remaining com-

plexes. Many examples, including the smallest classi-

fied receptor and longest classified peptide (Supporting

Information, Fig. S1), were manually inspected to vali-

date the classification results.

Crystallographic symmetry mates were obtained

using Pymol,25 and the contacting surface area

between each chain in the asymmetric unit and all

symmetry-related complexes was obtained using

SurfNet.26 Peptides with more than 20% of their

surface area, in the context of the complex, in con-

tact with a symmetry-related complex were filtered

out, because their binding conformation might be

affected by crystal lattice packing [Fig. 1(B)]. The

binding partner chain(s) of a peptide were defined

as those classified as receptor that contacted at least

10% of the peptide surface. Peptides with <40% sur-

face burial with a binding partner were removed

from the database. Complexes involving interactions

between chains classified as peptide were removed.

Table I. Protein–Peptide Databases Compared with PixelDB

Database name
Number of
complexes Peptide definition Quality filter Availability

PepBind18 5314 <35 AA, MeSH definition and
manual curation

None Webserver

DOMMINO 2.019 13,592 <20 AA and no SCOP None Webserver

PepX20 1431 5–35 AA Resolution<2.5 Å Webserver

Receptor>35 AA

Removed sequence
redundancy >40%

PeptiSite21 650 5–50 AA, bound to receptor that
has Uniprot identifier, >25%
surface buried upon binding

None Webserver and
ICM format

peptiDB9 103 5–15 AA Resolution<2.0 Å List of PDB IDs

Removed sequence
redundancy>70%

PixelDB 1966 Length cutoffs and machine
learning

Resolution<2.5 Å Github

Crystal packing

278 PROTEINSCIENCE.ORG PixelDB: Protein2Peptide Complexes



Therefore, each PixelDB entry represents the struc-

ture of a single chain assigned as peptide bound to

one or more receptor chains.

Receptor-based clustering and identification of

binding modes and exosites

A graph was built in which each node was a receptor

structure and an edge was added between nodes for

which the template modeling (TM) score from DeepA-

lign27 was higher than 0.8. The TM score used here

was the number of aligned residues within 4 Å of each

other, divided by the length of the longer chain. The

largest cliques in this network were iteratively found,

identified as receptor clusters, and removed from the

graph using the NetworkX python package.28 Each

cluster therefore represents a set of structures in which

the receptors all share a TM score above 0.8. The

restrictive threshold and stringent clustering algorithm

were used to ensure that variation in peptide conforma-

tion within clusters is not due to receptor structure dif-

ferences. Complexes within each cluster that contained

at least two members were structurally aligned based

on the receptor chain using 3DCOMB.29

Within a cluster, peptide sequences were aligned

based on their binding geometry (i.e. based on their

positioning relative to the receptor, not sequence).

Dynamic programming was used to generate a pair-

wise peptide alignment, with similarity based on dif-

ferences of the Cartesian coordinates of alpha

carbons in receptor-aligned structures, with a gap

penalty of 2.5 Å. Pairs of complexes that shared

more than 99% peptide sequence identity and 95%

receptor sequence identity were considered redun-

dant, and one of the two was removed.

For each receptor cluster, a second graph was

built in which each node represented four consecu-

tive peptide residues and, using the pairwise peptide

alignment previously obtained, an edge between two

nodes was created if all four residues in the peptide

segments from two different structures were struc-

turally aligned. Maximum cliques were iteratively

found, identified as binding modes, and all nodes

from those complexes were removed from the graph.

Therefore, each binding mode cluster is composed of

complexes that share at least four structurally con-

served residue positions. Finally, using dynamic pro-

gramming, all peptides within a binding mode were

aligned using their Cartesian positions, adding pep-

tides progressively to a growing alignment. For each

position in the alignment, a conservation score was

Figure 1. Overview of the construction of PixelDB. (A) Steps used to assemble the database, see Methods for details. (B)

Histogram showing the distribution of peptide contacts with symmetry-related complexes among 4385 structures considered

for PixelDB. Complexes with >20% surface contacts were filtered out. The inset shows an example of a protein–peptide com-

plex (PDB ID 4N7H34) in which the peptide (green) makes extensive contacts with both the WW domain receptor (gray) and a sym-

metry mate of the receptor (tan). (C) Cartoon illustrating the definition of core versus ECR regions based on structural conservation

across complexes. The alignment at the bottom of the panel reflects a structure-based alignment, not a sequence alignment.
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calculated as the percent of aligned examples that

conserve that alpha carbon position.

To avoid double-counting symmetry related

binding sites, for each receptor–peptide complex we

tested for high structural similarity to all other com-

plexes by identifying those with TM score >0.9.

When symmetry related complexes were identified,

we included both examples in clustering to identify

binding modes. In cases where the peptide/receptor

had near-identical sequence similarity, one example

of the complex was removed using the redundancy

filter described above.

Peptide residues with alpha carbon positions that

were conserved in 80% or more of the examples in the

binding mode were classified as core and are labeled

with “c” in the database. We imposed a binary classifi-

cation such that the rest of the peptide was classified

as (potential) exosite contacting region (ECR, marked

with “e” in the database) [Fig. 1(C)]. To smooth the

core/ECR partitioning, single residues of one classifica-

tion (core vs. ECR) that were flanked on either side

by residues of the opposite classification were re-

assigned (e.g. a three-residue assignment of core–

ECR–core would be re-coded as core–core–core). Resi-

dues designated as ECR were not required to contact

the receptor, although most do (see Results and Dis-

cussion). In a binding mode containing only one com-

plex, all residues were classified as core. Finally,

continuous core and continuous ECR regions were

defined as regions with at least four contiguous core

or ECR residues. On the receptor side of the interface,

core-binding sites and exosites were defined as resi-

dues that had a least one atom within 4.5 Å of any

atom of a peptide core or ECR residue. Continuous

core-binding sites and continuous exosites had to be

within 4.5 Å of a continuous core or continuous exosite

residue, respectively. Surface residues that were clas-

sified as both core-binding and exosite were labeled as

core-binding sites. Receptor residues not in contact

with any peptide but with at least 25% surface

exposed to solvent were classified as non-interacting

surface residues (NISR), and other receptor residues

were classified as interior residues. For receptors with

more than one binding mode, residues designated as

ECR with respect to a first binding mode can also be

core residues for a second binding mode. To avoid

such residues distorting the ECR statistics we report

here, we introduced a dual category. Residues desig-

nated as dual are indicated in the database with “d,”

and complexes including peptides with dual residues

were not included when compiling statistics reported

in the results. The criteria for a residue to be marked

as dual was that it be labeled as ECR, yet have its

alpha carbon positioned within 2.5 Å of a core residue

alpha carbon from another binding mode.

Database statistics and organization

Each PixelDB entry was characterized using multiple

descriptors and is reported in a comma separated

values (CSV) file in which each entry corresponds to a

unique protein–peptide structure. Each entry contains

the PDB ID, the PDB title, publication Pubmed ID,

crystal structure resolution, receptor structural classi-

fication according to CATH,30 sequence domain anno-

tation using PFAM,31 and gene annotation using

Uniprot32 obtained from SIFTS.33 The peptide–protein

complex structures are described by the chain IDs and

lengths of the receptor chains, and by the chain ID

and the sequence of the crystalized peptide as

recorded in the PDB SEQRES field. The part of the

peptide sequence that is resolved in the structure,

which is sometimes shorter, is also given. The

assigned receptor cluster and unique binding mode ID

are included. Each peptide residue was given a

STRIDE secondary structure assignment (Bridge, Coil,

Strand, Helix310, AlphaHelix, Turn), a binned value

between 0 and 9 reflecting the percent of surface

exposed to solvent (9 fully exposed; 0 fully buried) and

a core, ECR or dual classification; capital letters are

used to denote a continuous region. Finally, b-factor

values, normalized for each complex, are reported for

each peptide residue using a value between 0 and 9,

where 9 represents 3 standard deviations or more

above the mean, and 0 represents 3 standard devia-

tions or more below the mean. In order to simplify b-

factor representation in the database, values were

rounded to the nearest integer. The length of the lon-

gest continuous peptide core or ECR region is

reported. Receptor surface descriptors include designa-

tion of residues as core-binding site or exosite, and

receptor secondary structure content and amino acid

composition.

PixelDB is organized around the principle of

receptor conformation clustering and peptide binding

mode. It is therefore structured in a series of directo-

ries, where each directory bears a receptor cluster

number and contains: all the protein–peptide com-

plexes in that cluster in PDB format (re-processed),

CSV files that describe the cluster and the pairwise

receptor sequence identities, and a PML file that

allows easy color-based PyMol visualization of the core

binding sites and exosites of each binding mode. PDB

files are named as: PDB ID followed by the receptor

chain(s), peptide chain, cluster number, and binding

mode number. For example, 4H26_DE_F_6_1.pdb

comes from PDB 4H26, and is part of cluster 6 and

binding mode 1; chains D and E are receptor chains,

and chain F is the peptide. All files constituting the

database and its analysis can be downloaded from a

GitHub repository: https://github.com/KeatingLab/Pixel

DB under the MIT license.

Statistical analysis

We analyzed the distribution of amino acids, solvent-

exposed surface area, secondary structure content, and

normalized b-factors for categories of residues as fol-

lows: peptide ECR, peptide core, receptor core-binding

280 PROTEINSCIENCE.ORG PixelDB: Protein2Peptide Complexes

info:x-wiley/pdb/4H26
https://github.com/KeatingLab/PixelDB
https://github.com/KeatingLab/PixelDB


site, receptor exosite, receptor NISR, and receptor

interior. Values were obtained for each binding mode

and a bootstrapped average was reported (from 10,000

iterations of sampling with replacement from the

binding modes). As indicated above, complexes with

residues designated as dual were removed for this

analysis; the observed general trends were not affected

by this additional filtering step. Full computational

details of the analysis are provided in a Jupyter

(http://jupyter.org) notebook file included in the

GitHub repository.

Results and Discussion

Protein complex identification and annotation
An overview of the steps used to create PixelDB is

shown in Figure 1(A). The initial query and filtering of

the PDB returned 3548 structures that encompassed

4832 potential peptide chains with fewer than 50 resi-

dues. Assigning each chain as peptide or receptor/pro-

tein binding partner is non-trivial. In previous studies

this was done using manual assignment or chain-

length cutoffs (see Table I). We used machine learning

to assist with the classification, as described in the

Methods section, leading to identification of 4385 com-

plexes of a peptide bound to a least one receptor chain.

The use of machine learning led to the inclusion of lon-

ger peptides and shorter receptors than would be

obtained by simple chain-length criteria. For example,

the longest chain assigned as peptide in PixelDB has

50 residues, and the shortest receptor has 36 residues

(Supplementary Information, Fig. S1). Including lon-

ger peptides increases the coverage of exosite-binding

peptides, which on average have a length of 19.9 resi-

dues (Supplementary Information, Fig. S2).

Among the 4385 candidate complexes, 1424 pep-

tides had more than 20% of their surface area in

contact with a crystallographic symmetry mate of

the complex and were therefore filtered out. An

additional 194 peptides were removed because they

had minimal surface area buried with the receptor

chain(s), and 100 were removed because they

engaged in peptide–peptide interactions. Finally, 658

sequence-redundant complexes were removed. The

1966 remaining entries in PixelDB were grouped

into 486 receptor clusters. The average pairwise

sequence identity within a cluster is, on average,

77% (see distribution in Supplementary Information,

Fig. S3). 687 unique binding modes were identified.

275 of these binding modes, represented by

1271 complexes, contained at least two structures.

122 binding modes had at least one entry with both

continuous ECR and continuous core of length four

or more residues, for a total of 321 complexes. 198 of

these complexes contained ECR sites that were

reclassified as “dual” and were therefore not

included in analyses described below. Including ver-

sus removing complexes with dual sites did not

affect the general trends identified in the results. A

Figure 2. Examples of peptide binding modes containing

one or more ECRs and exosite(s). (A) Cluster 28 binding

mode 2 (ankyrin repeat), (B) Cluster 25 binding mode 1

(eukaryotic initiation factor 4E), (C) Cluster 111 binding mode

1 (apical membrane antigen 1), and (D) Cluster 9 binding

mode 1 (major histocompatibility complex). Peptides are

shown in cartoon representation and one receptor of each

cluster is shown using a surface representation. Core resi-

dues and core-binding sites are shown in red and residues in

ECRs or exosites are shown in blue. Representative PDB IDs

for each binding mode are, respectively: 3UXG,35 5ABY,36

3RSI37 and 4H25.38

Figure 3. Examples of different binding modes within one

receptor cluster. (A) Cluster 28 (tankyrase and ankyrin), (B)

Cluster 53 (phospholipase A2), (C) Cluster 11 (WD-repeat),

and (D) Cluster 13 (protein kinase). Receptors (gray) are

bound to different peptides in different binding modes.

Peptides within the same binding mode are shown using the

same color. To simplify representation, only one peptide per

binding mode and one receptor chain is shown in C and D.

Representative PDB IDs for each receptor are, respectively:

3TWR,39 3JTI, 4J81,40 and 1NVS.41
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final subset of 123 complexes and 76 unique binding

modes was used for analysis of core, core-binding

site, exosite, and ECR properties. Examples of com-

plexes with peptide core and ECR regions, and of

receptor clusters that contain multiple binding

modes, are shown in Figures 2 and 3.

Our structural definitions mean that residues

can potentially be designated as ECR based on deci-

sions made by crystallographers. For example, given

the same diffraction data, one author might decide

to model only the best-resolved part of a peptide

while another author might decide to model most of

it, perhaps with high b-factors. In such a case, the

uncertain part will be identified as an ECR in our

analysis. If this type of distinction were prevalent in

PixelDB, we might expect to see greater discrepan-

cies between the lengths of crystallized peptides ver-

sus resolved peptides in complexes that contain

ECR. However, this is not the case. The difference

between the length of the crystallized versus

resolved peptides is not significantly different for

entries that contain versus do not contain continu-

ous ECR (T-test P-value 5 0.88). After adjusting for

binding mode size, resolved segments in peptides

that contain vs. do not contain ECR are, respec-

tively, 6.5 and 6.3 residues shorter than the length

of the peptide used for crystallization.

The influence of the crystal lattice is a signifi-

cant concern when using crystal structures to study

the conformation of peptides bound to proteins. If a

peptide contacts adjacent complexes in the crystal,

this could perturb its conformation compared to the

interactions expected in solution. To our knowledge,

none of the previously published protein–peptide

databases have controlled systematically for crystal

packing artifacts, even though these may have large

effects using observed binding poses. Our database-

building process revealed that such contacts are

abundant, and parameterization of computational

methods using observed binding poses, without tak-

ing crystal packing into account, is likely to intro-

duce biases. One approach to this problem would be

to include the contacting chain in the symmetry

mate as part of the complex. But because such con-

tacts are not likely to be biologically relevant, we

chose to remove them instead. Even a moderate

threshold for removal, for example removal of all

peptides that bury more than 20% surface area with

symmetry mates, resulted in removing almost a

third of the initial database. A more stringent

threshold of 5% surface-area burial would have

removed more than two-thirds of the initial database

(2991 entries out of 4385 initial peptide-protein com-

plexes) [Fig. 1(B)]. Ultimately, we used the 20% cut-

off as a compromise. This analysis illustrates some

of the challenges associated with using X-ray struc-

tures to define peptide binding geometries.

The contents of PixelDB are described in Table

II. The database has relatively low coverage of

known domains. It includes proteins with 377

unique PFAM IDs, 758 unique Uniprot IDs, and 328

unique CATH superfamily assignments. These rep-

resent, respectively, 5.0%, 2.3%, and 4.6% of the

total unique entries found in the PDB. The coverage

is even lower in complexes that provide examples of

exosites, which represent 93 (1.2%), 168 (0.5%), and

87 (1.2%) unique PFAM, Uniprot, and CATH entries,

respectively. These results are consistent with the

observation of Kuang et al.,19 who noted that pro-

tein–peptide interactions are generally underrepre-

sented in the PDB. PixelDB coverage of structural

diversity is lower than that of some other databases,

due to the more stringent cutoffs applied that

decrease the number of examples but increase the

quality of complexes.

Protein interaction domains with multiple

peptide binding modes
Clustering protein complexes by receptor structure

allowed us to identify instances in which the same

receptor fold engaged peptide ligands differently. A

total of 93 out of the 486 receptor clusters had more

than one binding mode. By our definition, a different

binding mode does not require that a peptide inter-

act in a different pocket or change binding orienta-

tion, although we do include 21 cases in which the

same receptor (same PDB ID and receptor chain)

engages different peptides in different regions on its

surface. The stringent definition of binding mode

(four consecutive residues that are structurally

Table II. Features of PixelDB

Feature Mean Median Min:Max

No. of structures per receptor cluster/binding mode 4.0/2.7 1/1 1:291/1:171
No. of binding modes per receptor cluster 1.5 1 1:45
No. of unique CATH superfamilies per receptor cluster/binding mode 1.3/1.3 1/1 0:7/0:7
No. of unique PFAM families per receptor cluster/binding mode 1.2/1.1 1/1 0:10/0:10
No. of unique Uniprot IDs per receptor cluster/binding mode 1.8/1.4 1/1 0:46/0:31
Avg. pairwise sequence identity per receptor cluster/binding mode (%) 75/83 89/95 13:100/14:100
Length of peptide (AA) 14.1 11 5:50
Length of receptor (AA) 317.1 266 36:1360
Longest continuous core segment (AA) 12.9 10 3:50
Longest continuous ECR segment (AA) 0.86 0 0:35
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conserved) means that we include examples in

which two or more peptides engage the same bind-

ing pocket but with a conformation that is detect-

ably, yet perhaps modestly, shifted or rotated.

Because receptors were clustered based on

structural, not sequence, similarity, we investigated

whether the proteins that use different binding

modes diverge in sequence. In 37 receptor clusters

that had at least two binding modes with more than

two complexes per binding mode, average sequence

identity of receptors was compared within or

between binding modes. We found that receptors

engaging peptides in the same binding mode were

80% identical in sequence (on average, corrected for

cluster size), and there was on average 56% identity

between receptors that bind peptides differently

(Supporting Information, Fig. S3). We found many

examples of protein receptors in the same family

engaging peptides using different binding modes.

Using PFAM ID, Uniprot ID, or CATH superfamily

classification to reflect evolutionary relationships,

we found that, on average, 97% of CATH homolo-

gous superfamilies, 44% of Uniprot IDs and 67% of

PFAM family examples found in one binding mode

were also found in at least one other. Within Pix-

elDB, the CATH superfamilies with the most unique

binding modes are the immunoglobulins (CATH

2.60.40.10), with 32 different binding modes, fol-

lowed by quinoprotein amine dehydrogenase (CATH

2.130.10.10), and trypsin-like serine proteases

(CATH 2.40.10.10), each with 10 binding modes.

Features of core versus exosite interactions

Our definition of core versus ECR regions initially

used a binary classification, so every peptide residue

was placed in one category or the other. Residues

that had properties of both core and ECR were sub-

sequently designated as dual, as described above.

Consequently, not all ECR residues contact the

receptor, although most do: 91% of ECR residues

have solvent-accessible surface area <40%. Simi-

larly, not all ECRs flank core sequences. We uncov-

ered interesting examples, such as MHC complexes,

in which peptides are anchored by N- and C-

terminally conserved interaction modes with more

variability in the middle of the peptide. Neverthe-

less, most segments classified as ECR lie at the N-

or C-terminus of the peptide in the solved structure

and thus do flank core regions. Of 123 complexes

that have a continuous ECR, 117 (95%) have an N-

terminal and/or C-terminal ECR.

We investigated whether protein–peptide con-

tacts involving continuous core versus continuous

ECR had different characteristics, because differ-

ences might be important for interpreting structural

roles and could facilitate automated identification of

different types of sites for protein design. First, we

calculated the frequencies of different amino acid

types at continuous receptor core-binding sites ver-

sus continuous exosites versus NISR versus interior

sites, which encompass respectively 2883, 643, 6365,

and 27529 residues (Fig. 4). Core-binding sites and

exosites are different in composition: exosites tend

to be more charged, with a higher proportion of Asp,

Lys, Arg, and His. Core-binding sites have more

hydrophobic residues Leu, Met, and Phe. Compared

to the amino-acid distribution of NISRs, the compo-

sition of exosites is similar, but includes a higher

fraction of Leu, Ile, and Tyr, and somewhat fewer

polar residues (especially Thr, Gln). Core-binding

sites and residues in the protein interior shared sim-

ilar profiles, consistent with previously published

findings.42 Peptide chain differences in the amino-

acid composition of core versus ECR regions were

similar to receptor core-binding site versus exosite

amino-acid compositions (Fig. 4). Core residues are

slightly more hydrophobic than ECRs (e.g. more Leu

and Ile), consistent with peptide cores forming hydro-

phobic interactions with a hydrophobic core-binding

site. ECR in our dataset have a notably higher con-

tent of serine (ECR vs. core content of 13% vs. 5%),

which we cannot explain at this time.

When we compared the solvent accessibility of

core versus ECR residues, we found a strong tendency

for the core residues to be more buried and the ECR

residues more exposed (Supporting Information, Table

Figure 4. Amino-acid composition (%) of different peptide and

receptor regions. See text for definitions of different types of

sites. Types of sites are clustered by compositional similarity.
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S1). This was true for residues in these regions regard-

less of amino-acid type (Supporting Information,

Fig. S4). Unsurprisingly, given their greater exposure,

ECR tend to have higher normalized b-factors than

core residues (Supporting Information, Table S2). The

b-factors for peptide residues in PixelDB complexes

are correlated well with solvent accessible surface

area (Pearson correlation of 0.45), independent of their

annotation (core vs. ECR). We observed that ECR

regions have less helix and beta-strand secondary

structure than the core regions, and more coil (Sup-

porting Information, Table S3). It is possible that ECR

may be more flexible. However, the X-ray structures

analyzed here do not provide reliable information

about flexibility and dynamics, and beyond reporting

normalized b-factors, we have not investigated that

further at this time.

Conclusions

PixelDB is a database of high-quality protein–pep-

tide complex structures that we designed as a

resource to study the roles of core-motif flanking res-

idues in peptide binding. Compared to complexes in

other such compendia, PixelDB peptide conformations

are less affected by crystal contacts. The clustering

scheme that we used facilitates the identification of

domains that can engage peptides in different binding

geometries and provides examples where a core motif

is structurally conserved but other parts of the peptide

sequence make variable interactions with a receptor.

We anticipate that PixelDB will find use as a bench-

mark for peptide binding site prediction and for pep-

tide docking. Examples where a single type of receptor

binds to peptides using different sites may provide

particularly interesting and challenging tests for pre-

dictors. PixelDB will also advance work on the difficult

problem of predicting and designing the structures of

flexible peptide tails.15,43

In this work, we applied a binary classification

that assigned all peptide residues as core versus

ECR (although those that met both criteria were

subsequently re-labeled as dual), and all peptide-

binding regions on the protein as core-binding or

exosite regions. It is likely that ECR regions in some

complexes may be flexible and dynamic, whereas in

other complexes the ECR may engage the protein

binding partner in a well-defined conformation. Nev-

ertheless, many of the extra-motif interactions that

we capture in PixelDB are likely to be important for

modulating protein–peptide affinity and specificity.

It is notable that Stein and Aloy estimated that as

much as 88% of peptide binding energy can come

from non-motif residues in examples where a protein

domain binds to a short linear motif.13 Although the

crystal structures used to build PixelDB do not read-

ily allow us to further subdivide complexes based on

flexibility or dynamics, computational analysis of

the energy landscapes surrounding the observed

structures could be a useful way to make further

distinctions.

We urge prospective users to think carefully

about what types of complexes they wish to analyze

when using PixelDB, and to take advantage of the

annotations we provide to identify those examples

that best suit their purposes. We do not wish to

imply that our classification of residues as core ver-

sus ECR is absolute, nor do we intend to ascribe spe-

cial roles to cores or ECRs as we have labeled them

here. We do, however, hope that the availability of a

large number of annotated example complexes in

PixelDB will propel further investigation of the roles

of structurally conserved versus non-conserved pep-

tide residues in biomolecular recognition.

Acknowledgments

The authors thank NSERC and FRQNT for postdoc-

toral funding to V.F., and Gina De Felice and Robert

M. Lefkowitz (1975) for funding to M.D. We thank

all Keating lab members for insightful discussions.

The content is solely the responsibility of the authors

and does not necessarily represent the official views of

the National Institutes of Health.

References

1. Wright PE, Dyson HJ (2014) Intrinsically disordered
proteins in cellular signalling and regulation. Nat Rev
Mol Cell Biol 16:18–29.

2. Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B,
Altenberg B, Milchevskaya V, Schneider M, K€uhn H,
Behrendt A, Dahl SL, Damerell V, Diebel S, Kalman S,
Klein S, Knudsen AC, M€ader C, Merrill S, Staudt A,
Thiel V, Welti L, Davey NE, Diella F, Gibson TJ (2016)
ELM 2016 - data update and new functionality of the

eukaryotic linear motif resource. Nucleic Acids Res 44:
D294–D300.

3. Cushing PR, Fellows A, Villone D, Boisgu�erin P,
Madden DR (2008) The relative binding affinities of

PDZ partners for CFTR: a biochemical basis for effi-
cient endocytic recycling. Biochemistry 47:10084–
10098.

4. Chang YS, Graves B, Guerlavais V, Tovar C, Packman

K, To KH, Olson KA, Kesavan K, Gangurde P,
Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z,
Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE,
Horstick J, Annis DA, Manning AM, Fotouhi N, Nash
H, Vassilev LT, Sawyer TK (2013) Stapled a-helical
peptide drug development: a potent dual inhibitor of

MDM2 and MDMX for p53-dependent cancer therapy.
Proc Natl Acad Sci USA 110:E3445–E3454.

5. Golemi-Kotra D, Mahaffy R, Footer MJ, Holtzman JH,
Pollard TD, Theriot JA, Schepartz A (2004) High affinity,

paralog-specific recognition of the Mena EVH1 domain
by a miniature protein. J Am Chem Soc 126:4–5.

6. Foight GW, Ryan JA, Gull�a SV, Letai A, Keating AE
(2014) Designed BH3 peptides with high affinity and

specificity for targeting Mcl-1 in cells. ACS Chem Biol
9:1962–1968.

7. Jenson JM, Ryan JA, Grant RA, Letai A, Keating AE
(2017) Epistatic mutations in PUMA BH3 drive an

alternate binding mode to potently and selectively
inhibit anti-apoptotic Bfl-1. Elife 6:1–23.

284 PROTEINSCIENCE.ORG PixelDB: Protein2Peptide Complexes



8. Wang Y, Ho TG, Bertinetti D, Neddermann M, Franz E,
Mo GC, Schendowich LP, Sukhu A, Spelts RC, Zhang J,
Herberg FW, Kennedy EJ (2014) Isoform-selective dis-
ruption of AKAP-localized PKA using hydrocarbon sta-
pled peptides. ACS Chem Biol 9:635–642.

9. London N, Movshovitz-Attias D, Schueler-Furman O
(2010) The structural basis of peptide–protein binding
strategies. Structure 18:188–199.

10. Procko E, Berguig GY, Shen BW, Song Y, Frayo S,
Convertine AJ, Margineantu D, Booth G, Correia BE,
Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard
BL, Stayton PS, Baker D (2014) A computationally
designed inhibitor of an Epstein-Barr viral Bcl-2 protein
induces apoptosis in infected cells. Cell 157:1644–1656.

11. Godkin AJ, Smith KJ, Willis A, Tejada-Simon MV,
Zhang J, Elliott T, Hill AVS (2001) Naturally processed
HLA class II peptides reveal highly conserved immuno-
genic flanking region sequence preferences that reflect
antigen processing rather than peptide-MHC interac-
tions. J Immunol 166:6720–6727.

12. Chang CW, Counago RM, Williams SJ, Boden M, Kobe
B (2013) Distinctive Conformation of minor site-specific
nuclear localization signals bound to importin-a. Traffic
14:1144–1154.

13. Stein A, Aloy P (2008) Contextual specificity in peptide-
mediated protein interactions. PLoS One 3:1–10.

14. Ball LJ, K€uhne R, Hoffmann B, H€afner A, Schmieder
P, Volkmer-Engert R, Hof M, Wahl M, Schneider-
Mergener J, Walter U, Oschkinat H, Jarchau T (2000)
Dual epitope recognition by the VASP EVH1 domain
modulates polyproline ligand specificity and binding
affinity. EMBO J 19:4903–4914.

15. Sood VD, Baker D (2006) Recapitulation and design of
protein binding peptide structures and sequences.
J Mol Biol 357:917–927.

16. Lensink MF, Velankar S, Wodak SJ (2017) Modeling
protein–protein and protein–peptide complexes: CAPRI
6th edition. Proteins 85:359–377.

17. Abriata LA (2016) Structural database resources for
biological macromolecules. Brief Bioinform 18(4):659–
669.

18. Krivov GG, Shapovalov MV, Dunbrack RL (2009)
Improved prediction of protein side-chain conforma-
tions with SCWRL4. Proteins 77:778–795.

19. Frishman D, Argos P (1995) Knowledge-based protein
secondary structure assignment. Proteins 23:566–579.

20. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg
V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E (2011) Scikit-learn: machine
learning in {P}ython. J Mach Learn Res 12:2825–2830.

21. Schr€odinger LLC (2010) The {PyMOL} molecular
graphics system, version 1.8r4.

22. Laskowski RA (1995) SURFNET: a program for visual-
izing molecular surfaces, cavities, and intermolecular
interactions. J Mol Graph 13:323–330.

23. Wang S, Ma J, Peng J, Xu J (2013) Protein structure
alignment beyond spatial proximity. Sci Rep 3:1448.

24. Hagberg A, Swart PJ, Schult DA, Exploring network
structure, dynamics, and function using NetworkX. In:
Varoquaux G, Vaught T, Millman J, Eds. (2008) Pro-
ceedings of the 7th Python in science conference
(SciPy2008), Vol. 2008. Pasadena, CA USA, pp. 11–15.

25. Wang S, Peng J, Xu J (2011) Alignment of distantly
related protein structures: algorithm, bound and impli-
cations to homology modeling. Bioinformatics 27:2537–
2545.

26. Das S, Lee D, Sillitoe I, Dawson NL, Lees JG, Orengo
CA (2014) Functional classification of CATH superfami-
lies: a domain-based approach for protein function
annotation. Bioinformatics 31:3460–3467.

27. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt
RY, Eddy SR, Heger A, Hetherington K, Holm L,
Mistry J, Sonnhammer ELL, Tate J, Punta M (2014)
Pfam: the protein families database. Nucleic Acids Res
42:D222–D230.

28. Pundir S, Magrane M, Martin MJ, O’Donovan C (2015)
Searching and navigating UniProt databases. Curr
Protoc Bioinforma 50:1.27.1–1.27.10.

29. Velankar S, Dana JM, Jacobsen J, Van Ginkel G, Gane
PJ, Luo J, Oldfield TJ, O’Donovan C, Martin MJ,
Kleywegt GJ (2013) SIFTS: structure integration with
function, taxonomy and sequences resource. Nucleic
Acids Res 41:D483–D489.

30. Kuang X, Dhroso A, Han JG, Shyu CR, Korkin D
(2016) DOMMINO 2.0: integrating structurally
resolved protein-, RNA-, and DNA-mediated macromo-
lecular interactions. Database 2016:1–12.

31. Levy ED (2010) A simple definition of structural
regions in proteins and its use in analyzing interface
evolution. J Mol Biol 403:660–670.

32. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ
(2009) Rapid E2-E3 assembly and disassembly enable
processive ubiquitylation of Cullin-RING ubiquitin
ligase substrates. Cell 139:957–968.

33. O’Hayre M, Gutkind JS, Hurley JH (2014) Structural
and biochemical basis for ubiquitin ligase recruitment
by arrestin-related domain-containing protein-3
(ARRDC3) shiqian qi1. J Biol Chem 289:4743–4752.

34. Das AA, Sharma OP, Kumar MS, Krishna R, Mathur
PP (2013) PepBind: a comprehensive database and
computational tool for analysis of protein–peptide
interactions. Genomics, Proteomics Bioinforma 11:241–
246.

35. Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L,
Schymkowitz J, Rousseau F (2009) PepX: a structural
database of non-redundant protein peptide complexes.
Nucleic Acids Res 38:545–551.

36. Acharya C, Kufareva I, Ilatovskiy AV, Abagyan R
(2014) PeptiSite: a structural database of peptide bind-
ing sites in 4D. Biochem Biophys Res Commun 445:
717–723.

Frappier et al. PROTEIN SCIENCE VOL 27:276—285 285


