
TOOLS FOR PROTEIN SCIENCE

Clustal Omega for making accurate
alignments of many protein sequences

Fabian Sievers and Desmond G. Higgins *

School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield,
Dublin 4, Ireland

Received 29 June 2017; Accepted 5 September 2017

DOI: 10.1002/pro.3290
Published online 7 September 2017 proteinscience.org

Abstract: Clustal Omega is a widely used package for carrying out multiple sequence alignment.

Here, we describe some recent additions to the package and benchmark some alternative ways of

making alignments. These benchmarks are based on protein structure comparisons or predictions
and include a recently described method based on secondary structure prediction. In general,

Clustal Omega is fast enough to make very large alignments and the accuracy of protein align-

ments is high when compared to alternative packages. The package is freely available as execut-
ables or source code from www.clustal.org or can be run on-line from a variety of sites, especially

the EBI www.ebi.ac.uk.
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Introduction

Clustal Omega1 is a package for making multiple

sequence alignments (MSAs). It was developed

almost a decade ago in response to greatly increas-

ing numbers of available sequences and the need to

make big alignments quickly and accurately. The

most widely used packages for making MSAs over

the past 30 years have been Clustal W2 and Clustal

X3 but well over a hundred MSA packages have

been released in that time. They have roughly fallen

into two main groups: those that are fast and able to

make very large alignments or those that are more

accurate and restricted to smaller numbers of

sequences. MUSCLE4 and MAFFT5 are widely used

examples of the former while T-Coffee6 and MAFFT

L-INS-i7 are examples of the latter. Clustal W and

Clustal X are widely used because of their wide-

spread availability for personal computers and on

servers and because of the robustness and portabil-

ity of the code as well as the very flexible and intui-

tive user interface. Our original motivation, when

designing Clustal Omega, was to make a package

that could make very large alignments but without

sacrificing accuracy.

The first Clustal package featured a fast and

simple method for making “guide trees.”8 These are

clusterings of the sequences that are used to decide

the order of alignment during the later progressive

alignment phase. Clustal is an example of a group of

related methods that date back to the first fully

automated MSA method from the 1970s.9 The gen-

eral idea is to start with alignments of just two

sequences, usually the closest ones in the dataset.

The alignment is then built up by aligning align-

ments with each other or sequences to alignments,

according to the topology of the guide tree. The com-

plexity of the guide tree construction is usually

O(N2) for N sequences because all N sequences have
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to be compared to each other. Earlier versions of

Clustal used fast word based alignments for these

comparisons which made it memory efficient and

fast enough to work on PCs and Macintosh com-

puters. However, as the number of sequences grows

above a few thousand, the O(N2) complexity becomes

very time consuming and makes very big alignments

difficult to make. We developed an O(NlogN) method

called mBed,10 that allows guide trees of hundreds

of thousands of sequences to be made by restricting

the calculation of sequence alignment scores to

NLog(N). This mBed method is what is used in Clus-

tal Omega to give capacity and scalability for very

large datasets.

The second main development in Clustal Omega

was to use an alignment engine for aligning profile

hidden Markov models (HMMs) to each other

instead of the conventional dynamic programing and

profile alignment. We used HHalign11 which had

been shown to have very high accuracy for profile

HMM alignment. This gives greatly increased accu-

racy to Clustal Omega when compared to earlier

Clustal programs, as measured on structure based

alignment benchmarks. Only a small amount of orig-

inal code from the earlier Clustal programs was

used for the new program: the fast word-based pair-

wise alignment routines. The rest of the code was

coded new from scratch or taken from publically

available libraries.

This gave a brand new program that was able

to align many thousands of sequences without losing

accuracy. It was released in 2011 and is freely avail-

able for download of all source code under an Open

Source license. Users can also download executables

for most operating systems (www.clustal.org) or use

the program on-line at many sites, especially the

EMBL European Bioinformatics Institute (www.ebi.

ac.uk). In this article, we wish to describe some fea-

tures of Clustal Omega that have been added since

the original release and to show some benchmark

results of various program options using a recently

described protein benchmark based on accuracy of

secondary structure prediction.12

Benchmarking Clustal Omega

We will benchmark the performance of Clustal

Omega, its various command-line options and some

other widely used programs using different data

sets. The most well established benchmark for mul-

tiple sequence alignment is BAliBASE.13 Here, we

will use BAliBASE version 3.0.14 It is comprised of

218 reference alignments, grouped into six catego-

ries: (BB11/12) equidistant sequences of similar

length, (BB2) families containing orphan sequences,

(BB3) equidistant divergent families, (BB4) N/C-ter-

minal extensions, and (BB5) alignments with inser-

tions. The number of sequences of the reference

alignments varies from four to 142, with a median of

21 sequences. Reference alignments range in length

from 88 positions to 8481 and in average pairwise

identity from 10.80% to 54.08%. We will measure

the time and memory required to construct the test

alignments and the quality of the alignments in

terms of the sum-of-pairs (SP) score and the total

column (TC) score. The SP score measures the frac-

tion of aligned residue pairs that agree in the refer-

ence alignment and the test alignment. The TC

score measures the fractions of columns that are

perfectly aligned. As already one misplaced residue

can nullify the contribution of an entire column, this

score is much more severe than the SP score.

Another widely used MSA benchmark is Prefab.

Prefab is a collection of 1682 reference sequence

pairs, whose alignment is known, to which between

0 and 48 (median 48, mean 45.2) nonreference

sequences are added. Prefab is therefore larger in

terms of the number of families than BAliBASE 3.0

with its 218 families. With 50 versus 21, Prefab’s

median number of sequences per alignment is larger

than in BAliBASE 3.0, but BAliBASE 3.0 has a

larger maximum number of sequences per alignment

(142 versus 50). The longest sequence in Prefab is

1132 residues long, while in BAliBASE 3.0 this

value is 7923. A qualitative difference between Pre-

fab and BAliBASE is that in BAliBASE every

sequence is a reference sequence and contributes to

assessing the alignment quality. In Prefab, however,

there are only two reference sequences which deter-

mine the alignment quality. Alignment of the nonre-

ference sequences does not impact on the score

given to the alignment. This is particularly true if in

the guide-tree the two reference sequences are

aligned early on. No sequence that is aligned to the

reference sequences after this can modify the rela-

tive positioning of the residues in the reference

sequences.

The largest alignment in BAliBASE, in terms of

sequence number, has 142 sequences. BAliBASE can

therefore not stress test MSA software regarding

memory or time usage for large datasets. A bench-

mark that is comprised of families with up to almost

100,000 sequences is HomFam.10 In HomFam, a few

sequences with a known alignment are blended with

a large number of homologous sequences with an

unknown alignment. The reference alignments are

derived from Homstrad15 and the bulk of sequences

come from Pfam.16 The MSA is performed of all the

sequences in a HomFam family, however, the quality

can only be assessed for the few Homstrad sequen-

ces. Using HomFam, one can certainly exercise MSA

software for large numbers of sequences but scoring

the alignment may be unreliable. This may occur, if

the Homstrad and Pfam sequences separate in the

guide-tree due to length mismatches or homology.

That way the effective size of the alignment that

can be probed may be reduced to not much more
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than the number of reference sequences. We will use

HomFam to exhibit memory and CPU consumption

only. We will not use the entire HomFam data set of

95 families but only some example families. To show

the scalability of the execution times we will use a

very short protein domain (Homstrad: zf-CCHH;

PF00096 Zinc finger C2H2 type; length range 23 to

34 residues), a medium length domain (Homstrad:

rvp; PF00077 Retroviral aspartyl protease; length

range: 94 to 124) and a long protein domain (Hom-

strad: RuBisCO_large; PF00016 Ribulose bisphos-

phate carboxylase large chain, catalytic domain;

length range 295 to 329). For the memory consump-

tion, we will use a long domain (Homstrad: p450;

Pfam PF00067, Cytochromes P450; average length

329.9).

Recently, benchmarks have been developed, that

are comprised of large numbers of sequences,

require few reference sequences but still guarantee,

that all the sequences in the alignment contribute to

the alignment score. In ContTest,17 one uses the test

MSA to construct a contact map prediction for one

(or few) of the reference sequences, the accuracy of

which serves as a proxy for the alignment quality.

Here, we will use QuanTest12 which is based on

using an MSA to predict the secondary structure of

three embedded reference sequences, of known

structure. The secondary structure prediction accu-

racy (SSPA) is then used to measure alignment qual-

ity. SSPA for one structure is the ratio of correctly

predicted secondary structure states (helix, sheet,

coil) over the total length of the structure. In

QuanTest, the SSPA for an alignment is the average

SSPA for the three individual structures embedded

in the alignment. QuanTest has two benchmark sub-

sets, a smaller one, comprised of 151 families and a

larger one of 238 families. Here, we will use the

smaller one to demonstrate the accuracy of the

aligners and their respective command-lines. In

QuanTest one can measure SP/TC scores apart from

the SSPA score. Here, all secondary structures are

predicted using JPred.18

Benchmarks were performed either on an 8-core

Intel i7–3779 CPU, clocked at 3.40 GHz with 8 MB

cache, 8 GB RAM and 8 cores, running Ubuntu

16.04.2 or a 48-core AMD Opteron 6234, clocked at

2.4 GHz with 2 MB cache, 256 GB of RAM, and run-

ning Ubuntu 14.04.5.

Clustal Omega Updates
The first working version (0.0.1) of Clustal Omega

was released on 2010-06-17. The version described

in Sievers et al.1 is 1.0.2, released on 2011-06-23.

This version was a fully functioning aligner for pro-

tein sequences only. One could read in unaligned

sequence data in various formats. For large enough

numbers of sequences, the mBed10 algorithm would

calculate a partial distance matrix. This step had

been parallelized. This distance matrix was used to

calculate a guide-tree, which encoded the order in

which pairwise alignments would be performed,

building up the final alignment. Depending on the

length of the sequences or sub-alignments the pair-

wise aligner would switch between high accuracy

MAC mode or lower accuracy Viterbi mode. This

stage had not been parallelized.

DNA/RNA Support
While version 1.0.2 of Clustal Omega was only

designed to align protein sequences, it did accept

nucleotide sequences as input. However, these were

treated as protein; in particular guanine was treated

as glycine, cytosine as cystine, adenine as alanine

and thymine as threonine. While this usually pro-

duced more or less sensible alignments it was clearly

unsatisfactory. Consequently, the first major update

to version 1.1.0 on 2012-04-25 added explicit support

for DNA and RNA. The sequence type was automati-

cally detected or could be specified by hand, using

the --seqtype flag. While the substitution matrix for

protein alignments is a 20 3 20 Gonnet matrix, the

nucleotide substitution matrix is an identity matrix,

with 1 along the diagonal and 0 elsewhere. Initial

pseudo-count transfer and gap parameters for RNA

were determined using BRaliBase II.19

Input Formats

Clustal Omega was able, from the beginning, to read

sequence input in various formats. These are a2m/

Fasta, Clustal, msf, phylip, selex, Stockholm, and

Vienna. Since version 1.0.4 as of 2012-03-27 these

input files are now also accepted as zipped input.

Ideally sequence labels should be comprised of

standard 1-byte characters but multi-byte characters

are accepted and will be rendered in the output.

However, prior to version 1.2.1 (2014-02-28) these

did upset the label justification in Clustal output for-

mat. This has now been remedied.

New Command-Line Flags

--is-profile

It is necessary to allow pre-aligned sequences

(sequence profiles) to be used as input. To recognize

that the input sequences are already aligned, Clus-

tal Omega requires that all sequences have the

same length and that at least one sequence contains

one gap. However, this failed to recognize valid

alignments that did not contain any gaps. The --is-

profile flag over-rules this check.

--pileup

By default, Clustal Omega aligns sequences in the

order specified by the guide-tree. Depending on

sequence similarities, this guide-tree can vary between

very balanced and very imbalanced. Recently, it has
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been shown20 that perfectly imbalanced (or chained)

guide-trees may produce high quality alignments.

Specifying the --pileup flag aligns sequences in a

chained fashion in the order in which they appear in

the input file. This option can be very slow.

--cluster-size

If the mBed mode is selected the sequences will be

clustered according to a bisecting k-means algo-

rithm, such that the final cluster sizes do not exceed

a certain threshold. This threshold has been set to

100. This value was selected at a time when usual

alignments would not routinely exceed 10,000

sequences. That way one would not end up with

more than 100 clusters of 100 sequences each. How-

ever, when the number of sequences is much greater

than 10,000, one will obtain more than 100 clusters

with 100 sequences each. This can be adjusted with

the --cluster-size flag.

--clustering-out

The clustering of sequences is perfectly encoded in

the guide-tree, which can be output using the

--guidetree-out flag. However, sometimes it may be

awkward to parse this guide-tree by hand or even

automatically. In this case the --clustering-out flag

may be useful. It attaches to every sequence label a

binary code, which encodes the splitting sequence of

the bisecting k-means in a supplemental file.

--use-kimura
This flag applies the Kimura distance correction for

aligned sequences.

--percent-id

In combination with the --distmat-out flag this flag

converts distances into percent identities.

--residuenumber, --resno

In Clustal output format this flag prints residue

numbers at the end of each line.

--wrap
This flag specifies the number of residues before

line-wrap in the output.

--output-order

By default the order of aligned sequences in the

output is the same as in the input. This order

in general does not reflect the clustering of the

sequences. Conversely, it may be useful to group

aligned sequences according to their similarity. If

the --output-order flag is specified then the sequence

order in the alignment is the same as in the guide-

tree.

Compliance

Since version 1.2.4 (2016-12-20) the Clustal Omega

code base is gcc6 compliant.

Results

BAliBASE

We use BAliBASE version 3.0 to measure the qual-

ity and execution times for alignments comprised of

small numbers of sequences. All aligners were run

using one thread. The results are shown in Figure 1.

The fastest aligner to align all 218 families is

MAFFT in default mode, requiring less than a

minute on the 3.4 GHz/8 GB RAM platform. Exclud-

ing options that use an externally generated guide-

tree, Clustal Omega default is the second fastest

method, using just over 4 minutes of compute time.

Since the alignments in BAliBASE 3.0 have few

sequences, there is no significant difference in run

time between Clustal Omega, using a full distance

matrix and using the default mBed algorithm, which

is only activated for more than 100 sequences. MUS-

CLE, MAFFT L-INS-i and ClustalW2 are slower

than Clustal Omega default. All the Clustal Omega

options invoking iteration or a background HMM

are between two to ten times slower than the default

version. A default Clustal Omega alignment of N

sequences involves one distance matrix calculation

plus clustering and one set of N-1 pairwise align-

ments. Any extra iteration adds on another distance

matrix calculation plus three sets of N-1 pairwise

alignments. The three pairwise alignments are due

to aligning the two sequences or sub-alignments

with the background HMM, derived after the initial

(or previous) alignment, and then aligning the two

sequences or sub-alignments themselves. Different

iteration schemes perform these operations a differ-

ent number of times, accounting for the wide spread

in computation times. Where we used maximum

likelihood trees as external guide-trees for Clustal

Omega, these were constructed from the reference

alignment using FastTree2. The time requirements for

this option are substantial and add another 20

minutes onto the total alignment time (for 218 fami-

lies). Since the quality of this option is poor (see below)

and a maximum likelihood estimation actually

requires the alignment that is to be constructed, this

is not a viable solution. However, calculating a dis-

tance matrix in Clustal Omega is fast (in total less

than half a minute for all 218 families) and construct-

ing the single linkage tree is almost instantaneous.

Considering the SP score, averaged over all 218

families, and excluding Clustal Omega’s external

HMM option, MAFFT L-INS-i exhibits the highest

score. ClustalW2, MAFFT default and MUSCLE

deliver the lowest average SP scores, slightly outper-

formed by Clustal Omega default. With the excep-

tion of refining the guide-tree twice but not using
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HMM information, all Clustal Omega iteration

schemes perform better than the default option, with

two outright iterations delivering the best average SP

score, only marginally less accurate than MAFFT L-

INS-i, but eight times as slow. The data suggest that

guide-tree refinement should not be performed more

often than HMM iteration. There are also listed three

nonstandard Clustal Omega options. The first uses as

a guide-tree the maximum likelihood tree derived

from the reference alignment, calculated by FastTree-

2.21 This option delivers a poor result, which is unsur-

prising as it has been systematically shown for small

alignments that phylogenetic trees do not make for

good guide-trees.22 The second option uses an exter-

nally generated single-linkage tree as a guide-tree.

For small alignments, as in BAliBASE3 this option is

of medium quality. The third nonstandard option uses

an external HMM, which has been constructed from

the reference alignment, using HMMER3.23 This, of

course, is an unashamed exercise in over-fitting, but

has been included here to demonstrate the potential of

using HMM background information. In terms of the

average SP score this option almost recovers 100% of

all residue pairs.

The overall picture is slightly different, when

considering the TC score. Here all Clustal Omega

default and iteration schemes perform better than

MAFFT L-INS-i, which in turn is better than MUS-

CLE, MAFFT default and ClustalW2. Using a maxi-

mum likelihood tree still is a bad option and using

an over-trained HMM retrieves more than three

quarters of all columns, delivering by far the highest

average TC score.

Prefab

Results for Prefab follow a similar pattern as for

BAliBASE. As can be seen in Figure 2, default

MAFFT is the fastest program to align the 1682 fami-

lies with on average 45 sequences. MAFFT L-INS-i,

again is the aligner that achieves the highest average

sum-of-pairs (SP) score. There are only two reference

sequences in each Prefab alignment, therefore the SP

score is the same as the total column (TC) score. The

default version of Clustal Omega, again, strikes the

optimum balance, being faster than MAFFT L-INS-i

and more accurate than default MAFFT. All Clustal

Omega iteration schemes deliver an improvement in

the SP score; however, they increase the run time by

Figure 1. Performance measures for different aligners/command-lines for BAliBASE3. Left-hand panels show sum-of-pairs (SP)

score on top or total column (TC) score at bottom against execution time. Right-hand panels show SP vs TC score. Clustal

Omega data points are shown in red (default with a solid bullet, single linkage guide-tree with a cross, maximum likelihood

guide-tree with a star, various iteration schemes with circles, itr1 and itr2 are single and double iterations). The remaining Clus-

tal Omega data points correspond to options where guide-tree and HMM iterations are performed a different number of times.

For example, t2h1 performs two guide-tree iterations and one HMM iteration. MAFFT data points are shown in blue (default

mode with solid bullet, L-INS-i mode with triangle). MUSCLE data point is in green. The bottom-right panel contains the same

data points as the top-right panel, with two extra data points (ClustalW2 and HMM over-training) added
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a factor of two to six. The data point for ClustalW2

has been omitted from Figure 2, as its SP score is

0.06 lower than MUSCLE and its execution time

twice as long. Constructing all distance matrices

using Clustal Omega took around 2.5 minutes, con-

structing the single linkage trees less than ten sec-

onds; so there is an overhead to the single linkage

times of less than three minutes.

HomFam
We selected three HomFam data sets to demonstrate

how the execution time scales with the number of

sequences. Error bars indicate the run times for the

individual families. The lower edge of the bar corre-

sponds to the time for the shortest family (zf-

CCHH), the top edge for the longest family (RuBis-

CO_large) and the solid data point between the

upper and lower edge for the medium length family

(rvp). One can see that for 100 sequences, default

MAFFT is faster than default Clustal Omega and

default MUSCLE. MUSCLE has a higher-speed

option, which employs a smaller number of refine-

ments than the default (two as opposed to 16). For

100 sequences this option is faster than Clustal

Omega, but still not as fast as default MAFFT. How-

ever, as the number of sequences is increased to

around 2000, Clustal Omega overtakes the high

speed MUSCLE version, and for around 10,000–

20,000 sequences, overtakes default MAFFT. This is

because computation times in Clustal Omega scale

like Nlog(N), while for default MAFFT and both ver-

sions of MUSCLE they scale quadratically. In Figure

3, we fitted a power law to the data points for 1000

or more sequences. The exponent of this power law,

given in brackets in the key, is a measure for the

scalability. Small exponents correspond to a shallow

curve in double-logarithmic representation, and indi-

cate good scalability; high exponents correspond to

steeper curves and indicate poor scalability. MAFFT

also has an option called PartTree, that scales basi-

cally like Nlog(N) and for this data set is faster than

default Clustal Omega. However, alignments pro-

duced by this option are of lower quality than for

default MAFFT or Clustal Omega (results not

shown, but see, for example12). ClustalW2 and

default MUSCLE exhibit similar quadratic scalabil-

ity, being slower than Clustal Omega, while MAFFT

L-INS-i is consistently the slowest aligner in this

study. However, the exponent for MAFFT L-INS-i is

2.02, which is much smaller than would be expected

for a consistency based high-quality aligner.

QuanTest

The QuanTest data set, used in this study, is com-

prised of 151 families of 1000 sequences, containing

three reference sequences of known 3D structure,

for which the correct alignments and secondary

structures are known. The results are shown in Fig-

ure 4. Again, MAFFT default is the fastest aligner,

taking on average less than 10 s for each alignment.

The next fastest standard aligner is default Clustal

Omega with an average time of about one minute.

The slowest aligners are MUSCLE, ClustalW2 and

Clustal Omega, using an externally generated

single-linkage tree. Single linkage trees tend to be

more imbalanced than neighbor joining or UPGMA

trees. It has long been recognized that Clustal

Omega produces high quality alignments but slow

response times when using highly imbalanced guide-

trees.20 MAFFT L-INS-i is roughly five times slower

than default Clustal Omega. There is a small differ-

ence in the run times of default Clustal Omega and

its full distance matrix option. Times for external

tree options do not include times for construction of

the trees.

In terms of the SP score, averaged over all 151

QuanTest families, MAFFT L-INS-i achieves the

highest score, followed by Clustal Omega, using a

Figure 2. Performance measures for different aligners/command-lines for Prefab, showing sum-of-pairs score versus execution

time in seconds. The data point colors and symbols are the same as in Figure 1 (Clustal Omega red, MAFFT blue, MUSCLE

green etc.). The main panel shows options without external HMM information. The small inset shows the same points as in the

main panel with the one data point for external HMM added
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single linkage tree. Again, iteration schemes, where

the guide-tree is refined more often than HMM

background iteration, perform poorer than default

Clustal Omega or its other iteration schemes. Using

the full distance matrix delivers a marginally better

average SP score than the Clustal Omega default

option. For QuanTest, we do not have a standard

reference alignment of all (in this case 1000) sequen-

ces. Therefore, a maximum likelihood tree cannot be

derived from a reference alignment but is calculated

from the default Clustal Omega alignment. Using

this as a guide tree, we get an SP score that is only

slightly better than Clustal Omega default but not

worse, as for BAliBASE. This appears to justify

using maximum likelihood trees as guide-trees for

large alignments but not for small ones. Equally, the

background HMM is not over-trained, like for BAli-

BASE, but is “off the shelf,” down-loaded from Pfam.

Figure 3. Execution times for different aligners/options as number of input sequences is changed. The color scheme is the

same as in Figures 1 and 2 (Clustal Omega red, MAFFT blue, MUSCLE green, ClustalW2 orange). Solid bullets are used for

default options: blue triangle for MAFFT L-INS-i, blue box for MAFFT PartTree, green box for fast MUSCLE option, orange

circles for ClustalW2. Error bars indicate times for short (bottom), medium (middle) and long (top) protein domains. Solid lines

connecting middle points are used to guide the eye

Figure 4. Performance measures for different aligners/command-lines for QuanTest. Top-left panel shows sum-of-pairs (SP)

score versus secondary structure prediction accuracy (SSPA). Bottom-left panel shows total column (TC) score versus SSPA

score. Top-right panel shows SP score versus TC score. Bottom-right panel shows TC score versus execution time. Colour

scheme and symbol shapes are the same as in Figures 1 and 2
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The SP scores vary by about 7% for the different

Clustal Omega and MAFFT options.

The first thing to notice about the SSPA score is

that it varies much less than the SP score, that is,

by about 1% for the different Clustal Omega and

MAFFT options. This variation grows to about 2% if

ClustalW2 and MUSCLE are included. Unlike BAli-

BASE, the ranking of the different options is better

preserved when switching from SP score to SSPA

score (or TC score). The only noticeable exception

being Clustal Omega’s full distance matrix option,

which moves from tenth best to fourth best in terms

of SSPA score.

Memory and parallelization
In Figure 5, we show the CPU utilization and mem-

ory consumption, when aligning 20,000 HomFam

sequences (Homstrad: p450; Pfam PF00067, Cyto-

chromes P450; average length 329.9) on the 48-core/

256 GB platform. On the top row we show the utili-

zation, when using six threads, on the bottom row

the memory requirements. The left-hand panels

shows the initial phase of the MSA process, plotted

against user time. User time measures the amount

of work done by all threads together. The right-hand

panels show the entire alignment process, plotted

against wall clock time, which is the actual time

experienced by the person performing the alignment.

Results for version 1.0.2 (2011) are shown in blue;

results for the current version 1.2.3 (2016) are

shown in red.

The part of a progressive multiple aligner, that

is easiest to parallelize, is the distance matrix calcu-

lation. The calculation of every distance between

sequence pairs is completely independent from all

the other distance pairs. Work can be effectively

allocated at the beginning to different compute

nodes, and the results can be easily combined at the

end of the distance matrix calculation. This had

already been implemented in version 1.0.2 of Clustal

Omega1 and perfect load balancing was achieved for

full distance mode, where the distance matrix is

square. In default mBed mode, however, one does

not calculate an all-against-all distance matrix but a

distance matrix of all sequences against a small

number of seed sequences. The distance matrix is

therefore not square but oblong, with a large aspect

ratio. However, the full matrix implementation was

naively adapted to mBed mode, leading to imperfect

load-balancing. This can be seen in the top-left

panel. The process begins, after a negligible time for

reading in the sequence data, with the mBed phase.

Here the blue curve starts off with perfect utiliza-

tion of 6 (given 6 threads). However, it then

Figure 5. Resource requirements to align 20,000 p450 sequences, using default Clustal Omega. Top panels show utilization

(out of 6 cores) when using six threads. Bottom panels show memory requirements. Left-hand panels show requirements during

initial alignment phase (pairwise distances and clustering), plotted against user time. Right-hand panels show requirements dur-

ing entire execution, plotted against wall clock time. Results for old Clustal Omega version 1.0.2 in blue, for current version

1.2.3 in red

142 PROTEINSCIENCE.ORG Clustal Omega for Many Protein Sequences



gradually decays until the k-means phase begins at

around 800 s of user time. The new 1.2.3 version (in

red) maintains perfect utilization for longer, and

only drops off, once the mBed phase has come to an

end. The area between the blue and red curve dur-

ing the mBed phase corresponds to a speed-up in

the actual running time. Memory consumption dur-

ing the mBed phase is constant, as can be seen in

the bottom-left panel.

The next phase is the k-means clustering. There,

the sequences are clustered into groups of around 100

sequences. This phase has not been parallelized, and

the utilization is 1. The bottom-left memory panel

shows a modest spike in memory consumption, which

quickly decays, as the bi-partitioning breaks down the

clusters. However, this phase scales very unfavorably

with the number of sequences. If, say, one million

sequences were to be aligned, then this stage would be

the bottle-neck, consuming hundreds of GB of RAM

(results not shown). Since the left-hand panel are plot-

ted against user time, which corresponds to the total

amount of work being done by all threads, the red and

blue segments for the k-means memory requirements

are congruent and are not shifted against each other

as might have been expected due to the improved uti-

lization of version 1.2.3 during the mBed phase.

During the final phase, full distance matrices

are being calculated for each cluster, produced dur-

ing the previous phase. Since the clusters are small,

usually smaller than 100 sequences, utilization does

not quite reach the maximum possible value of 6.

Again, the red and blue curves for the small dis-

tance matrix calculation are congruent, because

times are given in user time.

After the small distance matrix calculation fol-

lows the pairwise alignment phase. This phase had

not been parallelized in version 1.0.2, and conse-

quently the utilization is constantly 1 for the rest of

the run-time. This can be seen at the right edge of

the top-left panel but especially in the top-right

panel. Here the utilization is 1 for most of the time

with two small blips at the left edge correspond to

the mBed and small distance matrix calculation,

described in the previous paragraphs. The red curve,

however, shows utilization of greater than 1 for most

of the time. This can be seen at the right edge of the

top-left panel but especially in the top-right panel.

The right-hand panel is plotted against wall clock

time, and one can see that the red curve giving

results for version 1.2.3 terminates much earlier

than the blue curve for version 1.0.2, reducing the

over-all time by roughly half. It should be noted that

Clustal Omega by default tries to allocate all physi-

cally available compute nodes. This is not always

necessary or desirable. On a busy machine, that is

running other processes than Clustal Omega, this

can lead to over-threading, which may cause a dra-

matic increase in the response time. Also, due to

Amdahl’s law (law of diminishing returns), good

speed-up can be achieved for small numbers of

threads, but very large numbers of threads are only

useful for very large numbers of sequences.

The bottom-right panel shows the memory con-

sumption over the entire run-time, plotted against

wall clock time. At the very left edge one can see the

exponentially decaying memory requests for the k-

means phase. These are displaced because the right-

hand panels show wall clock time. The displacement

corresponds to the improved utilization due to

improved load-balancing of the mBed phase in ver-

sion 1.2.3. The most noticeable feature of the

bottom-right memory panel is that the memory con-

sumption during the pair-wise alignment stage can

soar to much higher values than during the distance

matrix or clustering phase. Memory consumption

during the initial phase is predominantly deter-

mined by the number of sequences. However, mem-

ory consumption during the pair-wise alignment

phase is exclusively determined by the lengths of

the sequences and/or sub-profiles to be aligned. In

Clustal Omega’s high accuracy MAC mode, one

requires 48 times L1 times L2 bytes to perform an

alignment, where L1 and L2 are the lengths of the

two sequences or sub-alignments to be aligned. In

version 1.0.2 there were by default 2 GB available

for MAC mode, which allowed to align two sequen-

ces or sub-alignments that were each about 6500

residues long. In version 1.2.3 there are now 8 GB

available to MAC by default. This allows us to align

two sequences or sub-alignments that are each

about 13,000 residues long. While most protein

sequences are shorter than 13,000 residues, large

numbers of difficult to align sequences may incorpo-

rate many gaps, thereby inflating the total align-

ment size to well beyond the length of the longest

unaligned sequence. In this case, Clustal Omega

will switch from the high-accuracy but memory hun-

gry MAC mode to the lower-quality but more

memory-frugal Viterbi mode. The point where this

transition occurs can be specified by the user.

It is essential to note that all versions of Clustal

Omega have always been thread-safe. This means,

that the alignment output does not depend on the

number of threads used. Programs that are thread-

safe can create alignments in a reproducible man-

ner. This is not the case if nonthread-safe programs

like MAFFT L-INS-i or PASTA are run with more

than one thread. Here, every invocation may pro-

duce a different alignment, as the algorithm is

inherently chaotic. If alignments have to be repro-

ducible, then MAFFT L-INS-i or PASTA must be

run using one thread only.

Discussion
Clustal Omega is now 8 years old and this paper is

a convenient place to describe updates and to
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explore the accuracy of some of the iteration options

that are provided. These options were described in

the original paper but never explored in any detail.

Here, we can see trade-offs between speed and accu-

racy for some options and these are compared to

some alternative MSA packages.

Over the past 8 years, the code of Clustal Omega

has been maintained and numerous bug fixes dealt

with. We have also added new functionality, often as

a result from feedback from users. The most obvious

of these is support for nucleotide sequences but we

have also added a range of extra input and output

features, including the ability to read zipped files and

multi byte characters in sequence names. New output

features include printing of residue numbers and con-

trol of line lengths and sequence order. Clustal

Omega run times scale well with numbers of sequen-

ces. This is due to the use of the mBed algorithm for

guide trees as well as parallelization of the distance

matrix calculation to use multiple threads. The pro-

gressive phase has also now been partially parallel-

ized, giving further scalability, especially for large

numbers of sequences.

In terms of measuring accuracy, we have used

three benchmarks, based on protein structural simi-

larity. These were BALiBASE and Prefab which use

relatively small alignments that have been carefully

curated and QuanTest which is automatically gener-

ated and can realistically test large alignments.

With BALiBASE, default Clustal Omega is almost

as good as MAFFT L-INS-i in terms of SP score but

better in terms of TC score. MAFFT L-INS-i is

designed for very accurate alignment of just a few

hundred sequences. It uses a consistency based algo-

rithm, like that in the original T-Coffee program.

The QuanTest benchmark alignments we use, all

have embedded sequences with known structure.

These are used to test secondary structure predic-

tion accuracy as a proxy for alignment accuracy; the

alignments are used to predict secondary structure

and the predicted structures are compared to the

known ones. The alignment of the embedded refer-

ence sequences can also be used to test alignment

accuracy by comparing their alignment to a struc-

ture based alignment, with TC and SP scores. Here,

the QuanTest and SP/TC scores agree well but the

QuanTest benchmarks are easier to generate fully

automatically and properly test the alignment of all

the sequences, not just the references.

All of the iteration schemes improve alignment

quality but at the expense of run-times. There is tre-

mendous potential to use the external HMM facility

to improve accuracy. Here, we use an existing profile

HMM of sequences that are homologous to the input

sequences. Then, each sequence is aligned to the

HMM and residue pseudo counts are taken from the

HMM and transferred, position by position to the

sequences to be aligned. It is a way to use existing

alignment information. These profile HMMs can be

generated locally from a curated alignment or taken

from HMM repositories such as Pfam.

Finally, we notice a great deal of variation in

accuracy, depending on the algorithms used to gen-

erate the guide trees. These algorithms vary enor-

mously in terms of algorithmic complexity. In a

worst case scenario we would like to point out that

some supposedly rigorous methods for calculating

pair-wise distances and clustering can give the worst

of both worlds: slow run times and poor alignments.

This is an area that has great potential for further

improvements.
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