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Abstract: Many proteins contain intrinsically disordered regions (IDRs), functional polypeptide seg-

ments that in isolation adopt a highly flexible conformational ensemble instead of a single, well-defined

structure. Disorder prediction methods, which can discriminate ordered and disordered regions from
the amino acid sequence, have contributed significantly to our current understanding of the distinct

properties of intrinsically disordered proteins by enabling the characterization of individual examples as

well as large-scale analyses of these protein regions. One popular method, IUPred provides a robust
prediction of protein disorder based on an energy estimation approach that captures the fundamental

difference between the biophysical properties of ordered and disordered regions. This paper reviews
the energy estimation method underlying IUPred and the basic properties of the web server. Through

an example, it also illustrates how the prediction output can be interpreted in a more complex case by

taking into account the heterogeneous nature of IDRs. Various applications that benefited from
IUPred to provide improved disorder predictions, complementing domain annotations and aiding the

identification of functional short linear motifs are also described here. IUPred is freely available for

noncommercial users through the web server (http://iupred.enzim.hu and http://iupred.elte.hu) . The
program can also be downloaded and installed locally for large-scale analyses.

Keywords: intrinsically disordered proteins; globular domains; statistical potential; short linear

motifs; sequence-based prediction methods

Introduction

Understanding how the structural properties of proteins

are linked to their function is an important challenge in

protein science. For many decades it was assumed

that the proper functioning of proteins requires the

formation of a well-folded three-dimensional structure,

motivating the determination and predictions of protein

structures. However, this structure-centric view had to

be revisited to accommodate intrinsically disordered

proteins and proteins regions (IDPs/IDRs), a novel class

of proteins whose importance has been recognized only

relatively recently.1 IDRs are polypeptide segments that

function by relying on highly flexible conformational

states instead of a single well-defined structure. This

can enable them to function by folding upon binding to

their specific biological targets, forming flexible linkers,

aiding the assembly of macromolecular complexes or

organizing membrane-less organelles through phase

separation.2–4 IDPs/IDRs are involved in important

biological functions and are particularly enriched in
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proteins implicated in cell signaling and regulation.5

Disordered regions are present in the proteome of any

organisms but are most prevalent in eukaryotic sequen-

ces.6–9 Further supporting their biomedical importance,

disordered regions have been implicated in various dis-

eases and can also hold a yet unexploited therapeutic

potential.10–12

So far, several hundreds of disordered proteins

have already been characterized experimentally.

Many of these have been collected into the DisProt

database which provides the largest collection of pro-

teins with disordered regions.13 Another rich source

of IDRs is the Protein Data Bank (PDB).14 While

this database is primarily dedicated to structured

regions, missing regions in X-ray structures or

highly mobile segments in nuclear magnetic reso-

nance (NMR) ensembles are usually taken as an

indirect evidence for the presence of disorder.15 It

was suggested that the longer disordered segments,

such as those collected in the Disprot database,

which were largely studied for their biological

importance, represent a different flavor of disorder

compared to shorter segments that dominate IDRs

collected from the PDB.3 However, these databases

sample examples that are distinct from globular pro-

teins, and both contributed to our understanding of

the basic characteristics of disordered protein

regions. They also served as the basis for developing

a novel class of computational tools that aim to dis-

criminate ordered and disordered segments based on

their amino acid sequence, enabling the large-scale

characterization of IDPs and study of individual

examples. Another important application of disorder

prediction methods is aiding structure determination

efforts by enabling construct optimization.16,17

The group of Keith Dunker had pioneered the

first disorder prediction method, even before the

concept of protein disorder had become widely

accepted. They collected a handful of examples of

disordered protein regions and compared the amino

acid composition of these proteins to that of globular

proteins. They noted that disordered protein regions

were generally enriched in polar and charged amino

acids and depleted in hydrophobic amino acids.18

The pronounced differences indicated that protein

disorder is encoded in the amino acid sequence, sim-

ilar to the way the structure of ordered proteins is

encoded in their sequence. Their first disorder

prediction method utilized a neural network using

various sequence attributes as inputs.19 Since then,

more than 50 different disorder prediction methods

have been developed by various research groups.20,21

One class of methods relies on simple amino acid

propensity scales, such as various types of hydropho-

bicity scales, the propensity to participate in regular

secondary structure elements, or the combination of

these factors. Another group of methods utilizes

more sophisticated machine learning algorithms.

Many of the more recent methods of protein disorder

are meta-predictors that achieve improved predic-

tions by combining the output of multiple disorder

prediction methods. Overall, disorder can be pre-

dicted from the amino acid sequence with around

80% accuracy by top performing methods.15,22–24

However, this number can vary depending on the

type of the dataset used for the evaluation. More

specific methods have also been developed to aid the

functional characterization of IDPs by predicting

regions that are involved in binding to proteins part-

ners or deoxyribose nucleic acid (DNA) or ribonucleic

acid (RNA) molecules, or act as linkers.25 Overall,

computational methods have contributed signifi-

cantly to our understanding of biological properties

of IDRs.2

The specific functional, evolutionary and system

level properties of disordered proteins emerge due to

their specific structural properties. From a biophysi-

cal point of view, however, it is not the existence of pro-

tein disorder that is really astonishing, rather the

existence of protein order: that is, the ability of spe-

cific protein sequences to adopt a well-defined three-

dimensional structure. To achieve this, globular struc-

tures have to form a large-number of energetically

favorable inter-residue interactions in order to over-

come the entropy penalty associated with the folding.

A key element of folded structures is the burial of

hydrophobic residues which form the hydrophobic

core. But other physical forces also contribute to the

stability of proteins, including hydrogen bonds, van

der Waals interactions and electrostatic forces. The

stability of some proteins relies on additional factors

such as disulfide bonds or interactions with small

ions. The over 100,000 structures collected in the PDB

database provide different manifestations of the same

principles to achieve a free energy state that favors a

well-folded structure. However, only specific amino

acid sequences allow the formation of a well-defined

structure. Our basic assumption was that protein

regions that contain amino acids which cannot form

sufficient enough favorable interactions in an ideal

compact state would be disordered.26

In theory, the contributions of the various ener-

getic terms to the stability of a conformation can be

characterized using the physical energies as calculated

in molecular dynamics simulations. However, existing

molecular force fields are still limited in their ability to

accurately capture basic properties of IDPs due to

problems with accuracy and speed.27 A more robust

way to characterize protein structures relies on empiri-

cal or knowledge based force fields. Such functions use

a coarse-grained approach and transform the observed

frequencies of amino acid pair interactions or other

characteristics into energy-like functions based on the

Boltzmann statistics.28 One of the most problematic

element of this model is the reference state which

accounts for the expected number of interactions.29 An
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elegant solution that circumvents this problem was

suggested by Ken Dill who proposed an iterative algo-

rithm that avoids making direct assumptions about the

reference state.30 Coarse-grained models based on

empirical force fields have been extremely useful in

various areas of structure prediction.31 However, such

applications were limited to cases when a structural

model was available. To overcome this limitation, we

developed an energy estimation method that opened

up a new way to predict ordered and disordered protein

regions from the amino acid sequence.26 This approach

underlines the IUPred disorder prediction method as

well as ANCHOR, a method that predicts specific

regions located within IDRs involved in protein

binding.26,32

The Energy Estimation Method

The energy estimation method relies on a statistical

pairwise potential that was derived using the

approach suggested by Thomas and Dill.30 This

choice of algorithm was shown to be crucial for the

optimality of the energy estimation-based disorder

prediction method.26 For the calculations, a nonre-

dundant dataset of globular protein structures was

collected from the PDB with a resolution of 2.5 Å or

better. The statistical potential, expressed as a 20 3

20 matrix, characterizes the general preference of

each pair of amino acids to be in contact as observed

in a dataset of globular proteins. From the coordi-

nates of known structures, it can be specified which

residues are in contact. Then, the energy of each

residue is calculated by considering the number and

types of the contacting amino acids and summing

the appropriate elements of the statistical potential

matrix.

Ep
i 5
X20

j51
Mijc

p
j (1)

where Ep
i energy at position p of type i, M ij is the

interaction energy between amino acid types i and j,

and cp
j is the number of interactions of residue at

position p with residues of type j in the given confor-

mation. Variations in these energies arise depending

on the type and number of contacting residues, with

hydrophobic residues buried inside the protein core

generally exhibiting more favorable energies.

To eliminate the need to know the precise

arrangements of residues in the structure, an energy

estimation method was developed that can be used

to approximate the energies directly from the amino

acid sequence. For this, a crude approximation was

introduced assuming that energy of a given residue

mostly depends on its own type and the types of the

amino acids that surround it. The key component of

the calculations is the energy estimation matrix, a

20 3 20 matrix that connects the elements of the

amino acid composition vector to the energy of a

given residue. The energy of a given residues can be

obtained by multiplying the amino acid composition

vector elements with the appropriate elements of

this energy predictor matrix.

ep
i 5
X20

j51
Pijn

p
j (2)

where ep
i is estimated energy at position p of type i,

Pij is the ij element of the energy predictor matrix

and np
j is the jth element of the amino acid composi-

tion vector. This amino acid composition vector is

specific for position p, as it calculated by considering

only the local sequential environment within 2–100

residues in either direction. The choice of this range

represents a trade-off between the intention of cov-

ering most structured domains, but separating dis-

tinct domains in multidomain proteins.26 The matrix

elements were optimized using least square fitting,

to minimize the difference between energies esti-

mated from the amino acid composition vector and

the energies calculated from the known structure for

each residue in the dataset of proteins. The correla-

tion between the calculated and estimated energies

was surprisingly strong at the level of complete pro-

teins, confirming the validity of this approach.26

The energy estimation method enables the

approximation of the pairwise energy for each resi-

due without relying on the structure. Applying this

energy estimation method for sequences of ordered

and disordered proteins, a clear separation was

observed between the two datasets in terms of their

energy.26 However, this separation was less pro-

nounced for shorter sequences, contributing to a

wider twilight zone between ordered and disordered

proteins with smaller length.33 Overall, the results

confirmed that ordered residues can be discrimi-

nated from disordered ones based on their generally

more favorable estimated energies. For the actual

predictions, the position-specific estimations of ener-

gies were averaged over a window of 21 residues

and transformed into a score between 0 and 1, with

the 0.5 score corresponding to a threshold where 5%

of the positions of globular proteins were predicted

as being disordered (false positive rate). Using this

limit, 76% of positions of the IDP dataset were pre-

dicted to be disordered.26 This energy estimation

approach is at the core of the IUPred disorder pre-

diction method.26,34 The key to the robustness of

IUPred is that the main parameters of the method,

the elements of the energy prediction matrix, were

entirely derived from globular proteins, without

relying on the collection of disordered proteins. This

way, the pitfalls that originate from small and noisy

datasets for disordered regions could be largely

avoided.

Besides IUPred, the energy estimation approach

is also applied in the ANCHOR method which was
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developed to predict regions that are disordered in

isolation but can undergo disorder-to-order transi-

tion upon binding.32 Disordered binding have dis-

tinct properties compared to both globular proteins

and disordered regions in general. ANCHOR aims to

find these regions by the combination of three scores

calculated based on the energy estimation approach.

The first score corresponds to a smoothed IUPred

score and ensures that a given residue belongs to a

generally disordered region. The other two scores

aim to capture the fundamental features of disor-

dered binding regions by assuming that such regions

cannot form enough favorable intrachain interac-

tions to fold on their own but are likely to gain sta-

bilizing energy by interacting with a globular

protein partner. In accord, the estimated energy is

calculated using two different amino acid composi-

tion vectors: the first one is calculated from the local

sequential neighborhood, while the second one is cal-

culated using to the average composition of globular

proteins. The estimated energy calculated on this

second amino acid composition vector is expected to

yield more favorable energies in case of true binding

regions. The overall tendency to be in a disordered

binding region is obtained by a linear combination of

the three terms, with the weights optimized on a

small dataset of complexes formed between ordered

and disordered protein segments. The developed

method was shown to recognize disordered binding

regions with almost 70% accuracy at the segment

level tested on various datasets, largely independent

of the secondary structure element adopted in the

complex. In addition, disordered binding regions

could also be discriminated from generally disor-

dered regions, and the false positive rate on a data-

set of globular proteins was below 5%. ANCHOR

enabled the prediction of essential functional sites of

disordered proteins engaged in specific protein bind-

ing, offering an additional way to use the energy

estimation methods to characterize disordered

regions.32,35

The IUPred Web Server

The IUPred web server offers a per-residue prediction

of protein disorder.34 It takes a single amino acid

sequence as an input either in plain or FASTA format.

Alternatively, a UniProt identifier or accession num-

bers can also be submitted in which case the corre-

sponding sequences are retrieved from the Uniprot

web site. The results are returned in either text or

graphical format, specifying the disorder tendency of

each residue along the sequence. The core program to

calculate the pairwise energy profile and disorder

probability was written in C, the web server was writ-

ten in PHP. The graphical output is generated on the

fly using the JPGraph program (JpGraph, 2005,

http://jpgraph.net/), producing a figure in PNG

format. The default option for graphical/text output is

automatically determined by the browser type, but it

can be also changed by the user. The server can only

take one sequence at a time. However, there is no limit

on the number of requests per IP address, so predic-

tions can be collected for large number of sequences

via programmatic access. Alternatively, the IUPred

program can be downloaded and installed locally,

using the source C program.

IUPred offers three prediction types corresponding

to long disorder, short disorder and structured domains.

The long disorder option is the recommended choice for

predicting biologically relevant disordered segments,

such as those collected in the DisProt database. The

short disorder option offers a variation of the algorithm

that was optimized to predict missing residues in PDB

structures. Such disordered regions are characteristi-

cally short and are most often located at the termini of

the constructs.15 Correspondingly, one of the most obvi-

ous difference between short and long disorder predic-

tions is that in the former case the terminal residues are

generally predicted as more disordered. This is a com-

mon feature of many prediction methods aimed to per-

form well on CASP datasets and can be useful in terms

of construct design. However, the biological relevance of

these types of predictions is not well-founded. The

“structured domain” option was developed to delineate

regions that are most likely to correspond to self-

contained globular domains from the relatively noisy

prediction profiles by eliminating short disordered seg-

ments inserted within regions that are mostly predicted

as ordered.

Thanks to the relative simplicity of algorithm and

the advantage of C programming language, IUPred is

impressively fast. In fact, it was shown that by taking

into account the trade-off between speed and accuracy,

IUPred is a particularly good choice.36 While there are

methods that achieve better performance by relying

on multiple sequence alignments, these programs

deliver predictions almost two orders of magnitude

slower compared to IUPred. For this reason, IUPred

is often the favored application for large-scale predic-

tion of protein disorder. Taking advantage of the

graphical output, IUPred predictions can be used to

explore the structural features of individual proteins

as well.

The Interpretation of a Prediction Output
As most disorder prediction methods, IUPred

provides a score which characterizes the disordered

tendency of each position along the sequence. This

score can take a value between 0 and 1. Residues

with a predicted score above 0.5 are considered dis-

ordered, while residues with lower scores considered

to be ordered. In theory, the location of ordered and

disordered segments can be easily deciphered form

such prediction profile. However, due to the com-

plexity and heterogeneity of the protein disorder

phenomenon as well as to noises in the predictions,
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the interpretation of the disorder profiles in many

cases is more challenging. To illustrate how the pre-

diction output can be interpreted in a more complex

case, the human E3 ubiquitin-protein ligase Mdm2

(MDM2) was selected as an example. The disorder

prediction profile generated by IUPred for this pro-

tein is shown on Figure 1.

MDM2 is an E3 ubiquitin ligase and one of the

main cellular regulator of the p53 tumor suppressor by

targeting it for proteasome-mediated degradation

through ubiquitination. MDM2 is a hub protein with

over 100 protein and other macromolecular part-

ners.37,38 Based on known structures and domain

assignments, three larger ordered segments have been

located within this protein. The N-terminal region

(24–101) corresponds to the substrate binding SWIB

domain, while the C-terminal contains the RING

domain (amino acid residues 430–480) that confers the

catalytic ubiquitin ligase activity to the protein. MDM2

also contains a zing finger domain with unknown func-

tion (289–331). These regions are largely predicted as

ordered. According to the DisProt database, the disor-

dered nature of the first N-terminal 24 residues was

experimentally verified.39 At a closer look, this region

is only partially disordered as region 18–24 forms a

“lid” over part of the p53 peptide-binding site and is dis-

placed upon ligand binding. Regions with a similar

dual character are often predicted by IUPred with

scores hovering around the cutoff line. The remaining

of the sequence is predicted largely disordered. These

regions also mediate interactions with multiple

partners, therefore contribute significantly to the large

interaction capacity of MDM2.38 While there is no

direct experimental evidence available to confirm the

disordered status of this central region, the presence of

a large number of PTMs and various short linear

motifs (SLiM)37,40—such as nuclear localization and

export signals together with multiple binding sites for

the USP7 (HAUSP) deubiquitinating enzyme—lends

further support for this hypotheses, as such regions are

usually located within IDRs. While the structure of two

of the USP7 binding regions have been resolved by X-

ray crystallography,40 this cannot be taken as a proof of

order, as the well-defined conformation is only observed

in a complex. The disorder tendency still shows varia-

tions within predicted IDRs indicating the presence of

some locally more ordered segments. Such behavior is

usually associated with binding sites that can undergo

a disorder-to-order transition upon binding or with seg-

ments that adopt more compact but still flexible confor-

mational states. One example for this can be seen

around residue 200, showing a sharp dip in the IUPred

prediction profile. The more ordered tendency of this

region is also supported by multiple predictions col-

lected in the MobiDB database.41 The actual segment

was suggested to be involved in multiple protein inter-

actions and overlaps with the nuclear export signal.38

When individual proteins are studied, the main

strategy is to confirm disorder predictions by multiple

methods and integrate information from the PDB and

DisProt databases, domain and family annotations in

addition to linear motif and PTM sites.42 As the

Figure 1. Prediction of protein disorder using the IUPred web server for the human E3 ubiquitin-protein ligase Mdm2. The

IUPred output was generated using the long option. Various structural and functional elements are shown below the prediction

profile: PTMs plot various phosphorylation sites collected from PhosphositePlus,78 known linear motif sites (SLiMs) are

indicated with lighter (USP7 binding motifs) and darker orange boxes (nuclear import and export signals), the experimentally

verified disordered region (DIS) form the DisProt database is shown as a red box, while regions found in the PBD are indicated

as blue boxes. The three regions corresponding to globular domains are shaded. Most of the phosphorylation sites and linear

motifs are located outside these regions and are believed to be largely disordered, in agreement with the IUPred prediction.
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presented example indicates, the disorder prediction

provides a good starting point for exploring the main

structural features of a protein, but many further stud-

ies are required to fully understand how regions with

differing structural properties contribute to the molec-

ular function of a protein.

IUPred Integrated Into Other Approaches
IUPred has inspired other methods of protein disor-

der predictions. Specifically, the UCON method

follows similar principles compared to IUPred but it

relies on a direct prediction of contacts based on a

machine learning approach.43 A novel approach to

estimate position specific estimated energy (PSEE)

of a residue using contact energy and predicted rela-

tive solvent accessibility was also incorporated into

the DisPredict2 method.44 IUPred is a frequent

choice as one of contributing programs of various

meta predictors of protein disorder,42 as it provides

an orthogonal approach to most methods which were

trained on either short or long disordered seg-

ments.45–50 A particular application of disorder pre-

diction methods is the optimization of construct

design, for which IUPred has been used indepen-

dently51 or as part of the DisMeta server.17 IUPred

predictions have been also incorporated into novel

databases that aim to provide genome level annota-

tion of protein disorder. Among such databases,

D2P2 collects predictions generated by multiple pro-

grams for a large number of available genome

sequences.52 MobiDB provides disorder predictions

for sequences available through the UniProt data-

base and it is regularly updated to keep up with

novel sequences.41 Both resources incorporate addi-

tional information, such as PTMs or known struc-

tures and provide their own consensus predictions.

By going beyond the general prediction of disor-

dered regions, some methods aim to identify the spe-

cific functions these regions are involved in.

Dedicated methods have been developed to predict

linker regions, disordered DNA and RNA binding

segments, and binding regions that undergo

disorder-to-order transitions.53–56 All these methods

are based on machine learning approaches that use

a combination of calculated and predicted sequence

features, including disorder predictions generated by

IUPred. The prediction of bioactive peptides—which

can play important roles in signalling, regulation

and immunity within an organism and also poten-

tially carry therapeutic possibilities—represent an

additional area where IUPred was found useful.57

Another major applications of disorder predic-

tion methods, and IUPred in particular, is the iden-

tification of functionally relevant SLiM sites. SLiMs

are generally defined by a specific sequence pat-

tern—usually expressed as a regular expression—

that contains the key amino acids required to bind

to a given domain.58 The known motif can be used

to find additional binding partners for a domain by

scanning sequences of various proteins. However,

due to the low information content of such motifs,

matches can also occur purely by chance. Disorder

prediction methods are used to reduce the number

of potential false positive hits by ensuring that puta-

tive motifs hits reside within disordered regions,

hence they are accessible for interactions and regu-

latory modifications.59 The Eukaryotic Linear Motif

server, the largest collection of SLiMs and a motif

prediction tool, enables the filtering of motif hits by

providing the output of IUPred.60 Such filtering was

also found useful in the interpretation of phosphory-

lation data extracted from the scientific literature

and phosphoproteomic analyses.61 Various other

motif-centric tools, such as SLiMPrints or SLiM-

Search, also rely on IUPred.62,63 In these applica-

tions, a lower cutoff of 0.4 is suggested, to allow for

a locally more ordered tendency that disordered

binding regions often possess. ModPepInt, a method

that offers predictions of binding partners for spe-

cific domains, such as SH3, SH2 and PDZ domains,

also uses IUPred as a filter in a similar way.64

Disorder predictions are also be used to comple-

ment sequence family and domain annotations.

Compared to globular domains that are usually

evolutionary well conserved, IDRs in general can

accommodate more sequence variations over time

due to the lack of structural constraints.2 Conserved

disordered regions have been observed in a rela-

tively few cases, such as the kinase-inhibitory

domain of Cdk inhibitors or the Wiskott–Aldrich

syndrome protein-homology domain 2 of actin-

binding proteins.65 While it was recently suggested

that protein disorder might not be the dominant fac-

tor behind the lack of sequence family annotation,66

the application of disorder prediction methods can

direct the attention to ordered regions that are more

likely to yield novel sequence families. The Pfam

site, one of the most commonly used family annota-

tion tool, uses IUPred as its disorder prediction

method to complement its annotations together with

prediction of coiled coil regions and low complexity

segments.67 Similarly, the HMMer web server which

generates the profile hidden markov models underly-

ing Pfam annotations now also incorporates informa-

tion about putative disordered regions according to

IUPred.68 Besides speed, the other main require-

ments for such commonly used annotation tools, is

low false positive rate. To improve on IUPred in this

regard, it was combined with other tools to create a

novel method, called MobiDB-Lite.69 This fast and

accurate method was integrated into the InterPro

sequence family and domain annotation tool,70 and

through this, it provides information for billions of

sequences collected in the UniProt database with no

additional annotation. The importance of combining

sequence family annotation with predicted disorder
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is further underlined by the recent application of

such information in the interpretation of cancer

genome data. This type of information is used to

visualize and analyze the structural properties of

specific regions that are enriched in cancer muta-

tions indicating critical functional sites targeted by

the disease.71,72 IUPred and ANCHOR predictions

were also found to provide useful contribution to

enhance the prediction of phenotype of single amino

acid variants.73 The list of various approaches that

take advantage of the energy estimation approach or

directly the output of IUPred predictions is given in

Table I.

Future Directions
Current prediction methods, including IUPred, are

based on a binary classification of order and disorder.

However, protein disorder is a heterogeneous phe-

nomenon that encompasses various conformational

states ranging from random coil-like to molten

globule-like states with increasing transient second-

ary and tertiary elements.2 The length and position of

discorded segments also vary, and include fully disor-

dered proteins, longer disordered segments, domain

linkers and loop regions. Disordered protein regions

can be accurately described only in terms of conforma-

tional ensembles. In recent years, experimental meth-

ods have made significant advances to capture

various properties of the conformational ensemble

using small-angle X-ray scattering, fluorescence reso-

nance energy transfer, and various types of NMR

measurements. The experiments were complemented

with various computational approaches to generate a

set of conformations that conformed to the experimen-

tal constraints.74 The PED database was launched to

systematically collect the generated conformational

ensembles and to initiate their comparisons and anal-

yses and to promote standardization and further

improvements in this field.75 However, currently only

a limited number of proteins have been characterized

in such a detailed way. Computational methods that

would enable the large-scale characterization of the

conformational ensembles of disordered proteins are

lagging behind. One of the main challenges of future

disorder prediction algorithms it to be able to recog-

nize not only disordered regions in general but also

their detailed properties, such as the presence of tran-

sient secondary structure elements or overall molecu-

lar dimension.76 Another frontier is the prediction of

functionally important regions located within IDRs.

Table I. List of Prediction Tools Based on an Energy Estimation Approach or Using IUPred Predictions

Prediction methods based on
estimated energies

IUPred34 http://iupred.enzim.hu/
or
http://iupred.elte.hu

ANCHOR35 http://anchor.enzim.hu
or
http://anchor.elte.hu

UCON (available through
PredictProtein)43

http://ppopen.rostlab. org/

DisPredict244 https://github.com/tamjidul/DisPredict2_PSEE
Metaservers of

protein disorder
MD (available through

PredictProtein)45
http://ppopen.rostlab.org/

MFDp48 http://biomine.cs.vcu.edu/servers/MFDp/
MFDp246 http://biomine.cs.vcu.edu/servers/MFDp2/
Genesilico Metadisorder47 http://iimcb.genesilico.pl/metadisorder/
metaPrDOS50 http://prdos.hgc.jp/cgi-bin/meta/top.cgi
DisMeta17,50 http://www-nmr.cabm.rutgers.edu/

bioinformatics/disorder/
Metadatabases of

protein disorder
D2P252 http://d2p2.pro/
MobiDB41 http://mobidb.bio.unipd.it/

Predictions of functional
sites of IDPs

DFLpred53 http://biomine.cs.vcu.edu/servers/DFLpred/
DisRDPbind54 http://biomine.cs.vcu.edu/servers/DisoRDPbind/
MorfPred56 http://biomine.cs.vcu.edu/servers/MoRFpred/
fMorfPred55 http://biomine.cs.vcu.edu/servers/fMoRFpred/
PeptidLocator57 http://bioware.ucd.ie/~compass/biowareweb/

Server_pages/biopred.php
Tools for SLiMs ELM60 http://elm.eu.org/

PhosphoELM61 http://phospho.elm.eu.org/
SLiMSearch62 http://slim.ucd.ie/slimsearch/
SLiMPrints63 http://bioware.ucd.ie/~compass/biowareweb/

Server_pages/slimprints.php
ModPepInt64 http://modpepint.informatik.uni-freiburg.de/

Domain annotation tools Pfam67 http://pfam.xfam.org/
HMMer68 https://www.ebi.ac.uk/Tools/hmmer/
MobiDB-Lite69 http://protein.bio.unipd.it/mobidblite/

Mutation effect COSMIC71 http://cancer.sanger.ac.uk/cosmic
SuSPect 73 http://www.sbg.bio.ic.ac.uk/~suspect/
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While there are several methods that can recognize

protein binding regions, DNA or RNA binding sites or

linker regions,25 the performance of these methods

falls behind that of general disorder prediction meth-

ods. A particularly challenging subset of IDPs corre-

sponds to conditionally disordered segments: regions

whose disordered status is regulated via specific phys-

iological conditions such as pH, reducing agents or

post-translational modifications.77 Methods that

would enable the characterization of the more detailed

structural properties of IDPs would greatly advance

our understanding of the functional properties of

IDRs. In the future, the energy estimation method

underlying IUPred might be able to address these

problems as well.
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