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Abstract: Ensembles of protein structures are increasingly used to represent the conformational

variation of a protein as determined by experiment and/or by molecular simulations, as well as

uncertainties that may be associated with structure determinations or predictions. Making the best
use of such information requires the ability to quantitatively compare entire ensembles. For this

reason, we recently introduced the Ensemblator (Clark et al., Protein Sci 2015; 24:1528), a novel

approach to compare user-defined groups of models, in residue level detail. Here we describe
Ensemblator v3, an open-source program that employs the same basic ensemble comparison

strategy but includes major advances that make it more robust, powerful, and user-friendly.

Ensemblator v3 carries out multiple sequence alignments to facilitate the generation of ensembles
from non-identical input structures, automatically optimizes the key global overlay parameter,

optionally performs “ensemble clustering” to classify the models into subgroups, and calculates a

novel “discrimination index” that quantifies similarities and differences, at residue or atom level,
between each pair of subgroups. The clustering and automatic options mean that no pre-

knowledge about an ensemble is required for its analysis. After describing the novel features of

Ensemblator v3, we demonstrate its utility using three case studies that illustrate the ease with
which complex analyses are accomplished, and the kinds of insights derived from clustering into

subgroups and from the detailed information that locates significant differences. The Ensemblator

v3 enhances the structural biology toolbox by greatly expanding the kinds of problems to which
this ensemble comparison strategy can be applied.

Keywords: protein structure comparison; superposition; clustering; ensemble clustering; python;

NMR ensemble; Rosetta; template-based modeling; structure prediction

Broad Statement

To compare ensembles of protein structures with res-

idue level detail and without losing the ensemble

information, we have developed Ensemblator v3. It

is a versatile, user-friendly, and open-source tool

that allows the facile assembly of related protein

models to create an ensemble, the automatic
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clustering of these models into subgroups, and the

global and local comparisons of these subgroups,

pinpointing areas of significant difference or similar-

ity using a novel “discrimination index”.

Introduction

Proteins are dynamic biological macromolecules that

sample many different conformations depending on

their intrinsic structural properties and their envi-

ronment. Even for natively folded proteins, the true

native state cannot be perfectly represented by a

single model, meaning that an ensemble of struc-

tures is needed to capture the breadth of the native

state.1–3 Also, ensembles can be used to capture the

uncertainty associated with a structure determina-

tion or prediction approach. For both reasons, the

use of ensembles to describe protein structure is a

critical component of especially NMR, but also cryo-

EM, X-ray crystallography, molecular dynamics sim-

ulations, and structure predictions. In addition, even

though protein crystal structures are still typically

modeled as a single conformation, the gathering of

structures from multiple independent structure

determinations into an “X-ray ensemble” provides a

more complete view of the range of conformations

associated with the native state, as has been under-

scored by the creators of the Conformational Diver-

sity of the Native State (CoDNaS) database.4

To make the best use of such information, it is

critical to be able to quantitatively compare and

analyze ensembles of protein structures without los-

ing the ensemble information; yet few methods exist

for direct quantitative comparisons of ensembles.

For instance, authors of one recent report concluded

that to account for the role of conformational diver-

sity in assessing protein predictions” would neces-

sarily require new improvements and novel

methodologies of model evaluation.”5 To address this

need, in 2015, we introduced the Ensemblator 1.06

as a conceptually simple tool for global and local

comparisons of ensembles of structures that reveals

residue- (and even atom-) level details about system-

atic differences between ensembles. Also in 2015,

the ENCORE7 toolkit was released to address the

“need for algorithms and software that can be used

to compare structural ensembles in the same way as

the root-mean-square-deviation is often used to com-

pare static structures.” ENCORE very effectively

enables the comparison of large sets (10,000s) of pro-

tein structures, however, ENCORE does not provide

residue-level details of where differences occur. As

noted by the authors, “it is difficult to provide a sim-

ple geometric interpretation of the scores, [and] we

suggest they are currently best interpreted in a rela-

tive fashion (e.g., ensemble A is more similar to B

than to C).”

The power of Ensemblator 1.0 for providing geo-

metrically meaningful details of structural

differences was demonstrated in our original paper6

through analyses of an RNAse Sa8 NMR ensemble

and its comparison to a two-member X-ray ensem-

ble, as well as comparisons for a different protein of

an eight-member X-ray ensemble to three NMR-

derived ensembles generated by different refinement

approaches. In addition to illustrating the value of

Ensemblator 1.0 analyses, however, we acknowl-

edged a serious limitation related to the need to

have the compared proteins be identical in sequence

and have input files contain identical atoms in the

same order.

In addressing this limitation, we have developed

Ensemblator v3, a substantially more robust, versa-

tile and user-friendly tool. It has been entirely devel-

oped in Python, and extensive new features have

been added such as multiple sequence alignments

using MUSCLE9 to handle proteins of diverse

sequence, “ensemble clustering” of the models into

subgroups, and the calculation of a novel

“discrimination index” to quantify the levels of simi-

larity/difference between any pair of compared sub-

groups, per atom or per residue. Recently, we

applied the Ensemblator v3 to readily locate subtle

differences between an NMR-based structure of the

HIV reverse transcriptase thumb domain and the

same domain as seen in the 28 highest resolution

reverse transcriptase crystal structures.10 Here, we

describe the novel features of Ensemblator v3, along

with three case studies which briefly showcase its

utility for generating useful information and facili-

tating insight.

Description of the Ensemblator v3

Strategy
The essential comparison strategies implemented in

Ensemblator v3 are identical to those of Ensembla-

tor 1.0 and involve: (1) carrying out a complete set

of pair-wise comparisons to define a set of global

core atoms with consistent positions in all structures

being compared [see Fig. 2(A) of Clark et al.6] and

using those to guide a global overlay from which

atom-level global comparisons can be made, (2) car-

rying out a complete set of pair-wise comparisons

using the locally overlaid dipeptide residual (LODR)

as a measure of residue-level local backbone similar-

ity (see Fig. 3 of Clark et al.6), and finally (3), for

both the global and local comparisons of the two

subgroups of structures for which comparison was

sought, calculate four quantities: the two intra-

subgroup variations, the inter-subgroup variation,

and the closest approach of any member of subgroup

1 with a member of subgroup 2 [see Fig. 1(A) of

Clark et al.6]. However, everything else about

Ensemblator v3 is different as a result of the com-

plete recoding from scratch in Python. The Ensem-

blator v3 has just two stages: “prepare” and
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“analyze.” In the prepare stage, input structure files

are processed to build a single PDB-formatted

“ensemble file” for analysis. In the analyze stage, the

comparisons noted above are carried out, and then

either user-defined subgroups are compared as noted

in step “(3)” above, or automated clustering is per-

formed and the resulting subgroups are compared

with each other. For each pair of sub-groups com-

pared, the Ensemblator reports three key metrics. A

“global” output file gives the RMSDs, global discrimi-

nation index (DI), and core-status for each atom based

on a final “best” overlay; a “local” output file, which

reports the LODR scores and local DI for each residue;

and a discrimination index file which reports for each

residue the global, local and unified DI values. The fol-

lowing sections provide a basic description of key

steps, and readers are referred to the Ensemblator

documentation (on GitHub) for further details12

including a detailed description of these and other out-

put files produced by the Ensemblator.

Preparation of an “ensemble file”

To prepare an “ensemble file” that contains the

atoms common to all input structures, the user must

provide a set of input structures in either PDB or

mmCIF format. The Ensemblator will first convert

each input file into a set of separate files for each

chain (or model), and each alternate conformation

present. Then either immediately, or after a

sequence alignment is done, these files are assem-

bled residue-by-residue into a set of models in which

any atoms not present in every included structure

are removed (e.g., truncating aligned Ser and Tyr

sidechains both to Cb, and for an aligned Lys and

Met removing Cd and Sd but retaining CE). If atoms

in regions of interest are lost in this process, a user

can identify and leave the causative input file(s) out

of the analysis. To facilitate this, a maximum num-

ber of allowed chain breaks per model can be speci-

fied. A benefit of this process is that by limiting the

residues present in any single input file one can

trivially create an ensemble file that only has a spe-

cific region of interest.

If all PDB files to be included have the same

residue numbering throughout, they can be com-

bined without carrying out a sequence alignment;

otherwise, an alignment using MUSCLE9 (which

must be installed separately) may be done as part of

the preparation. In this case, the sequences in the

split files are aligned and the residues are renum-

bered per the multiple sequence alignment. To filter

out nonhomologous chains from the final ensemble,

a series of alignments are carried out with increas-

ing stringency on model similarity (using a BLO-

SUM6213-based similarity score) until the cutoff

reaches a user defined value. In the aligned sequen-

ces, the residue numbers in all output files will

reflect the multiple sequence alignment numbering

rather than the original values.

Determination of the common-core atoms and

global overlay
The global overlay of the structures is the standard

least-squares best overlay calculated using a set of

“common-core” atoms that are selected using the

process described by Clark et al.6 In Ensemblator

1.0, the common-core calculation was carried out for

a wide range of prespecified cutoff-distances (dcut)

and then the user had to decide which result to use.

In the Ensemblator v3, the user can define dcut, but

the recommended option is to have it identified auto-

matically by the Ensemblator. What dcut value is

“best” is subjective and will depend on the ensemble

and the goal of the analysis, but our experience with

a variety of proteins has led us to conclude that a

good place to start is with a common core including

20–40% of the atoms. So in the automatic mode, a

systematic process is followed to obtain a dcut value

producing a common core in that range.

Clustering of structures using evidence

accumulation and ensemble clustering

A completely new feature of the Ensemblator v3 is

automatic clustering. In the process of defining

the common-core (above), the program accumu-

lates for every pair of structures the fraction of

atoms (p) in the core of that pair (i.e., aligning

closer than dcut) and their RMSD (RMSDc) as well

as the RMSD of the non-core atoms (RMSDnc). The

distance score used for clustering is defined as:

distance score 5 RMSDc
p

3 RMSDnc
1 – p, which is

essentially a weighted geometric mean14 of the

RMSDc and RMSDnc. This novel distance metric has

a few useful qualities. First, its two extreme values

are simply RMSDc (if all the atoms are in the core) or

RMSDnc (if no atoms are in the core). Second,

because RMSDc will always be smaller than RMSDnc,

it will be more heavily weighted, due to the fact that

a geometric mean is always smaller than an arith-

metic mean when the terms are not all equal and all

the terms are positive.15 This is advantageous as we

are more interested in the similarity of the core

atoms than we are in the difference in the noncore

atoms (but we still want to utilize information pre-

sent in the non-core atoms). Third, the favoring of

RMSDc also makes the values more resistant to

extreme outliers. Using a more traditional distance

metric, such as the arithmetic mean or the total

RMSD, outliers would be far away from the other

points in the N-dimensional space (for N-models),

increasing the overall sparsity and worsening the

quality of the subsequent clustering experiments.

The clustering is done by “ensemble clustering,”

that combines the results from multiple independent

clustering approaches and is known to be more
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robust and insensitive to noise.16 First, affinity prop-

agation17,18 is carried out, perhaps a few thousand

times, varying the “preference” value from a low

number that results in a single cluster, increasing

by 1% each run until every point is its own cluster.

Next, k-means clustering19 is performed 10 3 (N-2)

times, increasing the specified number of clusters,

K, from 2 to N-1, and running ten iterations for

each K value with different initial conditions. Each

of these independent clustering results are used fill

a co-occurrence matrix, a form of evidence accumula-

tion,20 which records how many times each model is

clustered with each other model. Finally, agglomera-

tive hierarchical clustering is performed on this co-

occurrence matrix as a “finishing technique”,16 and

provides both the final clusters used for compari-

sons, and a dendrogram that indicates the relation-

ships between the models and clusters. The final

number of clusters, between 2 and a user-specified

maximum number of clusters, will be the solution

that provides the highest average silhouette index21

(a metric that captures how far each point is from

other members of its own cluster, relative to its dis-

tance to members of the nearest other cluster; it

ranges from 21 to 1 with higher values indicating a

greater distinction between the clusters). Finally,

the Ensemblator performs t-SNE dimensionality

reduction18 on the original distance matrix to pro-

vide a visual interpretation of the distribution inde-

pendent of the clustering results. Briefly, t-SNE

works by (1) constructing a probability distribution

to describe all pairs of points in the N-dimensional

space, (2) arbitrarily placing N points in a low-

dimensional space (in our case two-dimensional) and

constructing another probability distribution to

describe all pairs of these points, and then (3) mini-

mizing the divergence between the two distributions

by altering the locations of the points in the low-

dimensional space.22 In our implementation, the

Ensemblator uses the same set of default parame-

ters for every dataset, and may not show groupings

in two-dimensional space that are optimally analo-

gous to the results of the clustering experiment;

however, as all the distance information that is used

in the clustering and dimensionality reduction is

output to a file, users may carry out any further

analyses of their choice.

The local overlay strategy and LODR score

As described by Clark et al.,6 the locally overlaid

dipeptide residual (LODR) is a simple distance-

based quantity that assesses the similarity between

any pair of backbone conformations. Briefly, to calcu-

late it, the equivalent dipeptides from two models

are overlaid based on the Ca, C, O, N, and Ca atoms

of the peptide unit preceding the residue, and then

the LODR-score is defined as the RMSD between

the C, O, N, and Ca atoms in the subsequent

peptide unit [see Fig. 3(A) of Clarke et al.6]. Given

this definition, LODR values cannot be calculated

for the first and last residues in a protein or for resi-

dues bordering chain-breaks as there are not com-

plete peptide units on both sides of these residues.

LODR values range from 0 Å for identical conforma-

tions to �5 Å for residues differing by 1808 in their

phi values [see Fig. 3(B) of Clarke et al.6].

Calculation of the discrimination index (DI)

Our “discrimination index” combines local and global

information into a single metric that indicates how

similar or different a given residue or atom is

between two sets of structures. It is based on the

mathematics used for calculating silhouette scores.21

Considering two groups of structures (M and N), a

discrimination score assessing the significance of dif-

ferences can be calculated for each atom in each

group, as the mean of the pairwise distances

between the groups minus the mean of the pairwise

distances within the group, divided by the higher of

the two values:

discrimination score 5
mean dinterð Þ 2 mean dintrað Þð Þ

max mean dinterð Þ; mean dintrað Þð Þ

Because this measure differs depending on which

group is taken as the reference group, values are

calculated for group M and for group N and aver-

aged to create the global discrimination index (DI)

for each atom. To create a residue-level global DI,

the global DI values for the N, Ca, C, and O atoms

of each residue are averaged. A local DI for the

backbone conformation is similarly calculated for

each residue based on the LODR values. Each of

these scores is saved and output in a table contain-

ing all the global or local information about each

atom or residue, respectively.

A unified DI for each residue is then defined as

the average of the residue-based global and local DI

values. This measure goes from near 0 to near 1 as

the groups go from indistinguishable to systemati-

cally distinct. Whereas the individual local and

global DI values have additional information, the

value of the unified DI is that it provides a single

plot that allows facile identification of the most sig-

nificant regions of backbone difference between the

two groups being compared.

Program details
The Ensemblator v3 is written in Python, and is cur-

rently maintained and distributed from a GitHub

repository,12 where the source code is freely avail-

able. It exists as three python scripts: a core script

which does all the computation, and two handler

scripts which use either a command line or graphi-

cal user interface (GUI) to pass options and input
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files to the core script. As output, the Ensemblator

provides all the data produced during analysis, as

well as automatically generated plots for all the key

metrics. The Ensemblator v3 GUI was written using

the tkinter Python library, which should ensure com-

patibility with a wide range of systems. Further-

more, the Ensemblator is capable of running on

multiple processors in parallel to speed larger com-

parisons. Issues and bugs are reported and tracked

on GitHub. As they are developed, other useful,

related scripts will also available in this repository

(e.g., currently available is a script to choose a rep-

resentative model from each subgroup of a larger

ensemble).

Case Studies

Case study 1: Basic tests using the NMR

solution structure of RNase Sa

Because Ensemblator v3 was a rewrite from scratch,

we sought first to document that the basic algo-

rithms are correctly coded by showing that it deliv-

ers the same results for previous test cases. We

chose the analysis of an RNase Sa NMR ensemble8

for which we had identified a peptide flip between

residues 82 and 83 relative to the crystal structure

(PDB code: 1RGG), and also that residues 31–33

adopted a conformation in models 19 and 20 of the

NMR ensemble that were unusual enough to be con-

sidered implausible.6 The reanalysis of the RNase

Sa ensemble with Ensemblator v3 not only repro-

duced our earlier results (data not shown), but it

additionally illustrated the value of automatic clus-

tering to lead to further insight. The 20 RNase Sa

NMR models cluster into three subgroups, and con-

sistent with previous results, residues 30–33 are

highlighted by their high unified DI as a region of

difference between groups [Fig. 1(A)]. Notable is

that residues 45–53 have a DI even higher than res-

idues 30–33, and are thus a region of even greater

significant difference.

Inspection reveals three distinct conformations

for residues 45–53 that mostly but not perfectly

match the clusters [Fig. 1(B)]. Such local mis-

matches can occur if the outlier models are more

similar to their respective groups elsewhere, because

Figure 1. Analysis of the solution structure of RNase Sa. (A) Discrimination Index (DI) plots for the pairwise comparisons of the

three groups identified by the Ensemblator. The residue-based global DI (blue) and the local DI (green) are averaged to create

the unified DI (red). The median unified DI is also indicated (black line). (B) Wire-diagram tracing of the backbone path in the

region of largest inter-group difference (residues 44–49): Group 1 (blue; models 1,2,7,8,10,13–15); Group 2 (green; models 3–

6,9,11,12); Group 3 (red; models 16–20). (C) Wire-diagram as in (B), for groups identified by analysis of only residues 38–58:

Group 1 (blue; models 3–7,9,12,16–20); Group 2 (red; models 1,2,8,10,11,13–15). The tighter backbone spread results from the

more local overlay. (D) u,w values for residues 46 (circles), 47 (squares), and 48 (triangles) representative of the three groups

shown in panel (B) (blue, green, red) and the X-ray structures (purple). The 6308 boxes indicate the areas used in Protein

Geometry Database11 searches for tripeptides present in structures solved at 1.5-Å resolution or better that have no more than

25% sequence identity to one another. The tripeptide conformation in all the X-ray models was found 467 times (0.34% of all

tripeptides), while zero occurrences were found for the NMR conformations.
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the clustering is based on global similarity rather

than the similarity of this particular region. This

illustrates that the DI values, by taking all models

into account, is much more useful for discovering

significant differences compared with our previously

recommended strategy of looking for regions where

the closest approach distance is greater than the

within group variation; the latter criteria shows

nothing abnormal at this region. A quick rerun of

the Ensemblator on only residues 38–58 results in a

precise separation into two groups [Fig. 1(C)], with

one of the groups having two slightly different

conformations.

To determine the relative plausibility of the three

backbone paths, we looked at the u and w angles of

the three-residue segment with the highest devia-

tions (i.e., residues 46, 47, 48) in the 20 NMR models

as well as in a set of RNase SA crystal structures

[Fig. 1(D)]. Surprisingly, each of the three NMR

paths through u,w space differ substantially from the

conformations in all of the crystal structures. Even

more notable, Protein Geometry Database11 searches

showed that none of the conformations adopted by

residues 46–48 in the NMR models has ever been

seen in a large set of deposited high resolution crystal

structures, whereas the conformation observed in the

crystal structures is observed 467 times (�0.4% of tri-

peptides) [Fig. 1(D)]. This suggests that just like the

conformations seen for residues 31–33 in models 19

and 20,6 all of the conformations of residues 46–48 in

all of the NMR models are dubious.

Case study 2: Clustering of a mixed-source

ensemble using the FK506 binding protein

(FKBP)
Recently, Tyka et al.23 showed, using a set of FKBP

models produced from X-ray crystallography, NMR,

and Rosetta, that the models are all similar, with the

Rosetta-produced template based models (based on

an FKBP crystal structure) having less variability

than the NMR models, but more than the crystal

structures (see Fig. 6 of that paper). We requested

these models to test the extent to which the Ensem-

blator could guide the discovery of systematic differ-

ences among them. The ensemble we received

included 34, 30, and 25 models designated as “X-ray,”

“NMR” (from two studies), and Rosetta, respectively.

Ensemblator analysis with automatic clustering read-

ily divided the set into three subsets that as visual-

ized by the t-SNE dimensionality reduction plot [Fig.

2(A)] can be seen to largely, but not perfectly, corre-

spond to their original labels. Importantly, the excep-

tions all identified structures that had misleading

designations: the ten models of one NMR ensemble

(PDB entry 1F40) that clustered with the X-ray

structures were from a study24 in which the ligand

placement into FKBP was based on NMR observa-

tions, but the protein coordinates were taken

unchanged from a crystal structure (PDB entry

1FKG); and the two models designated as “X-ray”

(entries 1FKS and 1FKT) that grouped with the

NMR-derived models in PDB entry 1FKR,25 were

actually not crystal structures, but were a 21st mem-

ber of the NMR ensemble and an average structure

based on the other 21 models. Based on a consulta-

tion with the Baker Lab, it seems that the inclusion

of these models in the set we received stemmed from

a difficulty in retrieving archived data, and as these

mislabeled models brought no unique information, we

removed them from further analyses.

With the mislabeled models removed, Ensembla-

tor clustering perfectly separated the X-ray, NMR,

and Rosetta models into subgroups, implying that

systematic differences do exist between them despite

their similar appearances. Consistent with the find-

ings by Tyka et al.,23 the Rosetta models include

more overall variation than the X-ray models, and

the NMR models even more so [Fig. 2(B)]. However,

the Ensemblator analysis yields the additional infor-

mation that the higher variation in the NMR models

is not at all uniform, but the NMR models have

much more variation in two loops, even while they

have less variation than Rosetta in two other loops.

Examination of the unified DI plots reveals that

while the NMR ensemble appears to be roughly

equally distinct from the Rosetta and the X-ray mod-

els (Supporting Information Fig. S1), the Rosetta

and X-ray models are rather similar, but have a

handful of high DI peaks [Fig. 2(C)]. It is outside

the scope of this article to analyze all the differ-

ences, but as an example we consider here the high-

est peak, near residue 67. Inspection of the models

reveals that the absolute difference between the

Rosetta models and the crystal structures at this

position is quite small [Fig. 2(D)], but it is signifi-

cant because the variation in each subgroup is even

smaller. The difference originates in the u, w angles

of Ser67, with the Rosetta models having values

shifted toward the more densely populated PII-

region compared to most of the X-ray structures

(including 2PPP, the structure that was used as the

template for the Rosetta models) [Fig. 2(E)]. This

shift could plausibly be caused by the Rosetta

knowledge-based u,w-potential,26 which would favor

the more populated conformation.

Case study 3: Domain and hinge residue

identification using calmodulin (CaM) crystal
structures

In Clark et al.,6 it was noted but not demonstrated

that the Ensemblator is designed for the analysis of

single domains (or multidomain proteins that do not

undergo domain movements), but that the local

LODR comparisons done by the Ensemblator could

be useful for identifying flexible hinge regions. This

would in turn allow Ensemblator analysis of the
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separate domains. To illustrate this application we

used calmodulin, which has homologous N- and C-

terminal EF-hand domains, and undergoes a large

conformational change upon binding peptide ligands

with what has been described as “no significant con-

formational change within each domain (residues 4–

74 and 82–146).”27 Using the CoDNaS database,4 we

collected the set of all calmodulin crystal structures

solved at 1.8-Å resolution or better. This X-ray

ensemble contains 16 models from ten crystal struc-

tures that all have bound calcium and represent six

different crystal forms; the five crystal structures

without a peptide ligand are from the same crystal

form.

Ensemblator clustering splits these 16 models

into two groups, corresponding to the ligand-free

dumbbell conformation and ligand-bound globular

conformation with calmodulin wrapped around the

peptide ligand [Fig. 3(A)]. As seen in the global

RMSD plot, the first domains overlay well, making

the second domains very distant [Fig. 3(B), middle

panel]. Based on this plot, it is impossible to learn

about intra-domain global differences in the C-

terminal domains because the domain shift domi-

nates the plot. In contrast to the global analysis, the

local analysis [Fig. 3(B), lower panel], shows clearly

that within each domain the conformations are

highly similar (low LODR scores), and readily identi-

fiable is that residues 74–80 are linker residues that

not only change conformation upon peptide-binding

but also are somewhat variable among the ligand-

bound models. With this information in hand, it is

trivial to then build separate ensemble files after

truncating one PDB input file to either contain only

the N- or the C-terminal domain, to be able to per-

form a separate Ensemblator analysis for each

domain. These runs then yield meaningful global

results for both domains which combined with the

unchanged local results leads to a more informative

unified DI [Fig. 3(C,D)].

Interestingly, the DI plots for the separate

domains each contain a dominant peak occurring at

Figure 2. Analysis of a mixed-source ensemble of the FK506 binding protein (FKBP). (A) t-SNE dimensionality reduction results

showing a 2D visualization of the relationships between the models in the N-dimensional space used to cluster them. Per the

key, the shape of each point represents the original label for a given model, and the clusters are differentiated by color (1—

blue, 2—green, 3—red). (B) Backbone RMSDs along the chain for the final set of X-ray (blue), NMR (green), or Rosetta (red)

produced models. The bars indicate positions of b-strands (purple), and a/3–10 helices (orange). (C) Discrimination Index (DI)

plots for the Rosetta models vs. the X-ray models. Residue-based global (blue), local (green), and unified (black) DI are shown,

along with the median unified DI (horizontal black line). Secondary structure indicated as in (B). (D) Wire-diagram tracing the

backbone for the X-ray (blue), the NMR (green) and the Rosetta (red) models. The N- and C-terminal are indicated, as well as

the position of residue 67, at the base of an a-helix. (E) The u,w-angles for serine 67 in the Rosetta (red) and the X-ray struc-

tures (blue) are shown. As context, the u,w-values of all serine residues in crystal structures at 1.5 Å resolution or better with

�25% sequence identity to one another are indicated (black dots).
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residues 41 and 114 [Fig. 3(C,D), upper panel].

These residues are at equivalent positions in the

two EF-hand domains, in a loop between the E and

F helices. Whereas both have been noted before as

residues that commonly interact with the bound

peptides,28,29 we have not found any mention in the

extensive calmodulin literature that upon ligand

binding these residues tend to undergo a similar

conformational change from the beta-region to the

PII-region of the u,w-plot (Supporting Information

Fig. S2). This backbone conformational change does

not occur in every ligand bound conformation, but

may be of interest for further analysis. Additional

extensions of this work could involve comparing the

X-ray ensembles of calmodulin with NMR ensembles

of the free and peptide-bound forms that have been

used to characterize its motions.30

Discussion
Ensemblator 1.06 introduced a tool that allowed the

direct comparisons of ensembles of protein struc-

tures, rather than requiring the ensembles to be

represented by a single exemplar or average struc-

ture. It also provided detailed information, for both

global and local comparisons, that allowed an

unprecedented residue-level pinpointing of signifi-

cant differences between the sets of structures. Our

original goal in improving on Ensemblator 1.0 was

to make the program much more widely applicable,

by making it robust to: differences in the input

coordinate files such as missing atoms and changes

in residue numbering or atom order, and minor dif-

ferences in sequence such that point mutants and

homologs could be included in comparisons. That we

have done this is well documented though Case

Study #3 in which a diverse set of PDB entries

obtained from the CoDNaS database for calmodulin

are quickly combined for analysis, and when a sepa-

rate analysis of the N- and C-terminal domains is

targeted as a follow-up study, these files are also

easily prepared. Three additional minor program

enhancements are an algorithm for finding a suit-

able dcut value for carrying out the global overlay, a

GUI interface, and the ability to run on multiple

processors to increase speed and scalability. The

most time-intensive part of the Ensemblator is the

pairwise comparisons, and running on eight cores,

its runtime is about 2 h for an ensemble of �1000

200-residue structures.

In addition to these important technical improve-

ments, the Ensemblator v3 also includes two innova-

tions that greatly enhance the information it can

provide. These are a clustering option that automati-

cally finds conformational subgroups, and the report-

ing of a novel “discrimination index” as a useful

metric for identifying regions of significant difference

or similarity. In Ensemblator 1.0, the user had to

define which models belong to each group of struc-

tures being compared—such as comparing two NMR-

ensembles to each other, an X-ray ensemble to an

Figure 3. Ensemblator analysis of calmodulin (CaM) crystal structures. (A) Wire-diagram backbone tracing for the ligand-bound

models (blue), and the ligand-free models (red), as overlayed by the Ensemblator. (B) Discrimination indices (top panel; global

(blue), local (green), unified (black), and median unified (horizontal black line)), and RMSDs from the global (middle panel) and

local (bottom panel) comparisons for the entire CaM protein. In the global and local comparisons, the within group variation is

shown for the ligand-bound (green) and ligand-free (blue) conformations. Also indicated is the inter-group variation (black) and

the closest approach distances (grey). (C) As in (B), except the analysis only included the N-terminal domain. (D) As in (B),

except the analysis only included the C-terminal domain.
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NMR ensemble, or a set of liganded structures to

unliganded structures—but this user-driven approach

is much less powerful than allowing features common

to groups of structures to be automatically recognized

through clustering. Whereas there is no universal

best-approach to clustering, we have implemented a

type of “ensemble clustering” that has been docu-

mented as being broadly effective, especially on bio-

logical data.16 Each of the three case studies

illustrates utility of the clustering for discovering

interesting subgroups among ensembles analyzed.

Especially noteworthy in our view is Case Study #2

in which the clustering makes it absolutely clear that

FKBP models derived from crystal structures, NMR

analyses, or from Rosetta modeling are not simply

versions of the same average structures with differ-

ing amounts of uncertainty or spread; instead they

are readily distinguishable as being different from

each other, despite that not being obvious by visual

examination. At the suggestion of a reviewer, we

tested if Ensemblator clustering was sensitive to sub-

tle differences reported by Monzon et al.31 to be

important functional motions of side-chains that

could open up cavities or tunnels in proteins that

have “rigid” backbones. The Ensemblator grouped the

eight cellulase cel48F structures shown in Figure 5 of

Monzon et al.31 into two clusters, with seven chains

in one cluster and chain 1F9O_A—the chain identi-

fied by those authors as uniquely having a long tun-

nel—as the sole member of the second cluster,

indicating that in at least some cases the Ensembla-

tor is sensitive to these very subtle differences.

Each of the case studies also nicely illustrates

the value of the novel discrimination index (DI) as a

major improvement over our previous suggestion6

that the most significant differences between sub-

groups of structures will be the places at which the

closest approach of any member of the two sub-

groups was larger than the spread of the ensembles.

The latter metric completely misses cases in which

two sets of models are widely different, but happen

to have at least one member that is similar. The uni-

fied DI, in contrast, takes the full ensemble informa-

tion into account as well as giving weight to both

the global comparison and to the local comparison.

For RNase Sa, this DI strongly identifies residues

45–50 as a segment of major difference between sub-

groups [Fig. 1(A)] even though each subgroup has a

member that is like the other subgroup [Fig. 1(B)].

When comparing the X-ray FKBP structures to the

Rosetta produced structures, the top DI peak identi-

fied a small but significant difference would other-

wise be entirely nonobvious from visual inspection of

the ensembles [Fig. 2(D)], but that could be a clue to

how to improve the Rosetta force field (e.g., Song

et al.32). For calmodulin, in addition to making the

hinge region readily identifiable, the discrimination

index enabled the identification of a small

conformational change within each domain that

seems to strongly correlate with ligand-binding and

that, as far as we found, had not been noticed before

despite extensive studies that have been done on

calmodulin. The DI metric is simple to understand

and use in practice, and further examples of its util-

ity can be seen in our recently published identifica-

tion of regions of significant difference between a

solution NMR structure of HIV reverse transcriptase

thumb domain and the same domain as seen in crys-

tal structures of reverse transcriptase.10

The effective analysis of ensembles of protein

structures requires many tools, and the Ensemblator

fills a gap by being able to compare ensembles of on

the order of hundreds of structures and provide exqui-

sitely detailed information about atom- and residue-

level differences in conformation between groups of

models. This purpose is quite different than that of

ENCORE which enables the comparison of very large

sets (10,000s) of protein structures, but does not pro-

vide residue-level details.7 We suggest that the pro-

grams could effectively be used in concert with each

other, for instance by using ENCORE to group very

large sets of structures and then using the Ensembla-

tor to analyze representatives of each of the ENCORE

groups, to identify the nature of the most notable con-

formational differences between them.

The Ensemblator v3 takes the conceptual advan-

ces of the original Ensemblator,6 and makes them eas-

ily applicable to a much wider set of protein models.

Furthermore, it extends the general methodology such

that the only strictly required user-input is a set of

protein structures to analyze; the user no longer needs

to have any preconceived knowledge about the struc-

tures (e.g., subgroups to compare or the dcut value

that would identify the ideal core). While the Ensem-

blator provides the greatest amount of information

when applied to single domains, its application to

multi-domain proteins allows the identification of

domains that have consistent internal folding as well

as variable linker regions that may connect them, and

as is seen in Case Study #3, it can be serially applied

to the whole protein and then to identified domains to

maximize the information gained. Also, even for a sin-

gle domain, as seen in Case Study #1, it can be effec-

tively applied to any substructure of interest to ensure

that the global overlay and clustering provide the

greatest information about that region [Fig. 1(C)]. The

kinds of insights generated here in the three well-

studied proteins used as case studies, along with our

recent analysis of an NMR-derived structure of the

HIV thumb domain10 illustrate how Ensemblator com-

parisons add a unique and useful tool to the structural

biology toolbox.
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