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Purpose: The limited number of 3D patient-based breast phantoms available could be augmented by
synthetic breast phantoms in order to facilitate virtual clinical trials (VCTs) using model observers
for breast imaging optimization and evaluation.
Methods: These synthetic breast phantoms were developed using Principal Component Analysis
(PCA) to reduce the number of dimensions needed to describe a training set of images. PCA decom-
posed a training set of M breast CT volumes (with millions of voxels each) into an M-1-dimensional
space of eigenvectors, which we call eigenbreasts. Each of the training breast phantoms was com-
pactly represented by the mean image plus a weighted sum of eigenbreasts. The distribution of
weights observed from training was then sampled to create new synthesized breast phantoms.
Results: The resulting synthesized breast phantoms demonstrated a high degree of realism, as supported
by an observer study. Two out of three experienced physicist observers were unable to distinguish between
the synthesized breast phantoms and the patient-based phantoms. The fibroglandular density and noise
power law exponent of the synthesized breast phantoms agreed well with the training data.
Conclusions: Our method extends our series of digital breast phantoms based on breast CT data,
providing the capability to generate new, statistically varying ensembles consisting of tens of thou-
sands of virtual subjects. This work represents an important step toward conducting future virtual tri-
als for task-based assessment of breast imaging, where it is vital to have a large ensemble of realistic
phantoms for statistical power as well as clinical relevance. © 2017 American Association of Physi-
cists in Medicine [https://doi.org/10.1002/mp.12579]
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1. INTRODUCTION

1.A. Virtual clinical trials

Enrolling patients in clinical trials for medical imaging is
time consuming, costly, and difficult. Thus, there is consider-
able interest in conducting virtual trials as an alternative
method for the optimization and assessment of medical imag-
ing systems.1,2

Typically, virtual clinical trials (VCTs) consist of three
main parts: virtual patients, a virtual imaging system, and a
set of virtual radiologists. Computerized phantoms model-
ing the human anatomy and physiology can serve as the
virtual patients. The virtual imaging system is provided by
computer algorithms that model the imaging physics,
acquisition, and reconstruction which enables simulation of
image data from the patient models. Finally, model obser-
vers implement a task-based statistical assessment approach
to analyze the simulated data thereby serving as the virtual
radiologists.

Similar to an actual clinical trial, a large number of
virtual patients or phantoms are needed to achieve the
desired statistical power. In addition, the phantoms must

provide a realistic representation of the background anat-
omy and include accurate lesion models; otherwise, the
results obtained from them would not be indicative of
clinical reality. The work presented here demonstrates a
method to generate large numbers of realistic virtual
breast phantoms from a limited number of training cases.
This represents an important step toward conducting VCTs
to rigorously evaluate three-dimensional (3D) breast imag-
ing systems.

1.B. Previous breast models

In previous work, we have presented a population of breast
phantoms based on segmented breast CT (bCT) data3 (seen
in Fig. 1) and a method to deform the phantoms to achieve a
realistic compressed shape using Finite Element (FE) analy-
sis.4 Since the phantoms were developed from segmented
bCT data, they have a high level of anatomical realism. How-
ever, clinical bCT data is still not widely available and the
segmentation process is computationally expensive. Thus, it
is difficult to directly scale-up these patient-based breast
phantoms for VCTs, where large quantities of phantoms
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would be necessary to tune the model observers and account
for nonstationary of the data statistics over different locations
with-in the breast.5–7

Here, we present methods to extend these breast phantoms
and create large ensembles of synthesized virtual subjects
based on smaller training sets of subjects. Large ensembles
of realistic phantoms would enable future virtual trials for
task-based assessment of breast imaging with appropriate sta-
tistical power and clinical relevance.

Other popular breast phantoms have used anatomically
informed geometric rules to generate large populations of vir-
tual models. Bakic developed a widely used rule-based breast
phantom with a breast tissue model composed of a large scale
tissue region model, adipose compartment model, and breast
ductal network model.8 This compartment model has also
been extended to replace some of the adipose compartments
with a power law noise model.9 A more complex breast phan-
tom has recently been presented that models breast shape,
glandular tissue compartments, ductal network, interglandular
fat lobules, Cooper’s ligaments, vasculature, and compres-
sion.10 The advantage of these rule-based phantoms is infinite
mathematical diversity and relatively fast computational speed.

1.C. Eigenanalysis

Principal Component Analysis (PCA) is a statistical tech-
nique used to reduce the dimensionality of a dataset and iden-
tify the principal modes of variation. Here, PCA was used to
decompose a set of M training images into orthonormal prin-
cipal components or basis images such that the kth eigen-
value, kk,

kk ¼ 1
M

XM
n¼1

uTkUn
� �2

(1)

is maximized subject to the orthonormal condition on the
eigenvectors, uk

uTl uk ¼
1;
0;

�
if l ¼ k
otherwise

(2)

This eigen decomposition is applied to a covariance
matrix C built from the training set of images, which are first
rearranged from a 3D image to a vector.

C ¼ 1
M

XM
n¼1

UnU
T
n (3)

where Φi is the difference between each training image Ci,
and the average of the training images, Ψ,

Ui ¼ Ci �W (4)

The original training images, Γi, can be represented effi-
ciently by the mean image Ψ, and a vector of M�1 weighting
factors, wi, applied to the eigenvectors.

Ci ¼ Wþ
XM�1

k¼1

wi
kuk (5)

The eigenvectors form a subspace of the entire image
space where images similar to the training images are clus-
tered.

This idea of applying PCA to images was popularized for
use in facial recognition by Turk and Pentland, which can be
referenced for additional implementation details.11 They
referred to the eigenvectors from a training set of face images
as eigenfaces. In a similar manner, we refer to eigenbreasts
for our application in breast phantoms.12

PCA has also become widely utilized in computer vision
and medical imaging for statistical shape13 and active appear-
ance models.14 There has been limited use of PCA to generate
synthetic medical images. Rose and Taylor (who helped pio-
neer statistical shape and active appearance models)

FIG. 1. Population of existing breast phantoms developed from segmenting breast CT data into six materials. The segmentations are displayed as a middepth
coronal slice and ordered from small to large.
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performed PCA on a small number of low resolution mam-
mograms to develop a generative model of mammographic
appearance using a steerable pyramid decomposition.15 Berks
et al. also used PCA to simulate breast masses.16 To the best
of our knowledge, this is the first study where PCA was per-
formed on a large training set of 3D patient based breast
phantoms. The use of 3D breast phantoms contains additional
structural information that is not present in mammography.
This separation of structural information along with the use
of clean segmented images allowed for the use of PCA
directly in contrast to the decomposition required for mam-
mographic images by Rose and Taylor.

2. METHODS

2.A. Existing set of breast phantoms

The training set selected from our existing population of
patient-based breast phantoms3 represents a diverse range of
breast sizes and fibroglandular densities as seen in Table I.

These breast phantoms represented the fibroglandular tis-
sue with four tissue classes in addition to adipose and skin
classes. The material classes were arranged from least to most
attenuating where the intermediate classes were defined to
have compositions of 25%, 50%, 75%, and 100% fibroglan-
dular tissue. These material classes were represented in the
phantoms with six integer intensities as seen in Table II.

The fibroglandular density of the breast phantom was cal-
culated as:

Fibroglandular Density ¼ :25 V2 þ :5 V3 þ :75 V4 þ V5

Vbreast

(6)

where Vi indicates the volume of tissue designated as belong-
ing to class i and Vbreast represents the volume of the breast
excluding the skin.

2.B. Template compressed breasts

To facilitate PCA, the overall size and shape variation had
to be controlled. The presence or absence of breast tissue in
corresponding areas, due to differences in size and shape,
would dominate the eigen analysis and corrupt the texture dif-
ferences we are interested in. Thus, the differences in overall
size and shape were removed by mapping all the breasts to a
consistent (template) breast geometry. However, since the
breast volume varied so greatly, it was deemed more appro-
priate to create multiple subgroups of patients rather than
mapping small and large breasts to a single size. The template

breast was essentially the outer shell of a typical breast
selected from each of the subgroups of breast phantoms.

The template breasts were deformed to a compressed
geometry, using the finite element method described in Stur-
geon et al.4 This compressed geometry would facilitate use
in VCTs for breast tomosynthesis or mammography. Details
of the mapping between the patient and template geometries
will be described in Section 2.D.

2.C. Size/density clusters

In order to determine how to group the breast phantoms
with template shapes of various compressed thicknesses it
was necessary to approximate the compressed thickness of
the breast phantoms. Information on compressed thickness
was not available for the bCT dataset that the phantoms were
base on.

The relationship between compressed thickness (breast
size) and fibroglandular density has been well established
through the work of Dance et al.17 When grouping the breast
phantoms, we decided to include breast density and target
points on the Dance curve at compressed thicknesses of 5, 6,
7, and 8 cm to serve as the centers of our groups. We refer to
these clusters centered at points on the Dance curve as size/
density clusters. As a surrogate for compressed thickness, the
mean breast thickness was scaled by a constant factor, deter-
mined empirically, to achieve the best fit between our data
and that observed by Dance et al.

Each size/density cluster was selected to contain the 40
nearest neighbors to a point on the Dance curve correspond-
ing to target thickness. The fibroglandular density and breast
thickness were both normalized based on the observed ranges
prior to calculating distances between the training cases and
the target cluster centers. The choice to use a quantity of 40
training cases per cluster was influenced by the availability
and distribution of the training cases along with memory lim-
itations when computing the eigenbreasts.

Since breast density tends to decrease after menopause,
Dance et al. used two separate age groups to represent the
premenopausal and postmenopausal women. We used the
curve for the younger age group. This would result in denser
breasts at a given compressed thickness, which would in turn
yield a more challenging detection task.

2.D. Mapping to the template shapes

Each breast in the size/density cluster was mapped to the
corresponding compressed template shape. This removed the
size and shape variation within the cluster. The mapping was
performed utilizing the mesh scheme developed for our finite

TABLE I. Distribution of volume and fibroglandular density of the 177 breast
phantoms used in training.

Min Max Mean Std.

Volume (mL) 25 1576 613 285

Fibroglandular density (%) 4.3 61.6 20.8 12.4

TABLE II. Breast phantom material classes.

1 2 3 4 5 6

Adipose 25/75 50/50 75/25 100/0 Skin

Where x/x represents fibroglandular/adipose
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element modeling application, which automatically dis-
cretized the domain (interior volume) of a given breast phan-
tom with a hexahedral mesh consisting of approximately
60,000 elements.4 This essentially created point correspon-
dences and facilitated an element-by-element mapping
between the current uncompressed breast and the desired
compressed shape.

When mapping from the segmented bCT to a compressed
template shape, it was important to consider breast geometry.
Of our initial set of 200 phantoms, 23 were excluded due to
geometric issues including: the breast bottoming out (10),
prominent concavities (12) or motion artifacts (1).

2.E. Eigen analysis for statistical breast phantoms

Once each cluster of breast phantoms was mapped to a
consistent shape, the size and shape variation had been
removed. So, the variation in anatomical textures within each
cluster could then be analyzed through PCA. The MATLAB
(MathWorks, Natick, MA, USA) function eig was used to
perform the PCA, comparable functions are available in other
scientific computing packages. This provides orthonormal
basis image volumes (eigenbreasts), which can compactly
represent the training set of images and their variation. Recall
from Eq. (5) that each of the training images could be repre-
sented efficiently in the M�1 dimensional eigenspace as a
weighted sum of the eigenbreasts and the mean image. This
can be represented graphically as seen in Fig. 2.

The eigenbreasts are the orthogonal basis images, which
represent the principal modes of variation observed in the
training set of breast phantoms. Due to the orthogonality, the
eigenbreasts can also be thought of as the axes of a high
dimensional eigenspace. The weights, representing the train-
ing images, form a cluster in M�1-dimensions, which can be
thought of as the ‘breastspace’ or an area in the eigenspace
where breast-like objects could be found. New weights corre-
sponding to new breast phantoms were obtained by sampling
the weighting factors observed in the training set of breast
phantoms. The weighting factors were assumed to have a nor-
mal distribution, where the mean and standard deviation
observed in the training set were used as an estimate for the
population. The distribution of the newly synthesized breast
phantoms can be represented in the ‘breastspace’ as illus-
trated in Fig. 3.

Ordinarily, neighboring points in the eigenspace would
not necessarily correspond to breasts of similar densities. To
help improve the grouping by breast density, the breast com-
position (percentage of voxels in each fibroglandular level)
was concatenated to the vector of voxel intensities per

phantom, prior to the eigen decomposition. The breast com-
position terms were also used to threshold the float image
(created from sampling the eigenspace) while enforcing the
desired distribution of fibroglandular classes.

One-hundred and fifty new breast phantoms were created
for each of the four clusters, resulting in a total of 600 statisti-
cally generated (synthesized) breast phantoms.

2.F. Validation of the synthesized breast phantoms

2.F.1 Fibroglandular density

The synthesized breast phantoms should have a similar
distribution of fibroglandular density as the training set. To
verify this, a Student’s t-test was performed for each cluster.

2.F.2 Noise power spectra

It has been shown that the anatomical noise in mammo-
graphic images have a noise power spectra (NPS) that can be
modeled by a power law: S fð Þ ¼ a=f b.18 Despite its limita-
tions,19 b has been used as a measure of realism or a metric
to compare breast phantoms to breast imaging data.20–22 We
will continue is use.

Rather than determining the b for projection images, we
have compared the 3D power law noise of the phantoms in
order to validate their utility for tomographic imaging as well
as mammography. The b to describe anatomical noise in bCT
has a bbCT = bmammo � 1 relationship to the b of mammog-
raphy.23 To determine the power law exponent b, the 3D NPS
was measured in the phantoms for 50 cubic VOIs, with an
edge length of 16 mm, randomly placed to lie entirely within
the breast. The power law was fit to the NPS over frequencies
from 0.07 to 0.45 cycles/mm.

2.F.3 Realism/observer study

To validate the appearance and realism of the statistically
generated breast phantoms, a two-alternative forced-choice
(2AFC) observer study was conducted with three medical
physicists/senior medical imaging researchers. In this study,
participants were shown ROIs, 3.8 cm by 3.8 cm, of pseudo
mammographic projections (parallel projections without
x-ray physics) and informed that one image came from a
phantom based on real patient data and the other from a sta-
tistically generated model. They were then asked to choose
which image was from the real patient data.

The four size/density clusters were treated as separate
observer studies such that the thickness and fibroglandular

FIG. 2. Graphical representation of Eq. (5), showing that any of the training images could be represented as a weighted sum of the eigenbreasts and the mean
image. For illustration, a simple projection of the volumetric images was shown.
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densities were consistent within each study. Each observer
study consisted of 40 pairs of patient-based and statistically
generated phantoms.

3. RESULTS

3.A. Size/density clusters

A scaling factor of 0.81 was found to provide the best fit
between our phantoms and the cubic relationship between
breast thickness and fibroglandular density observed by
Dance et al.17 as seen in Fig. 4. This scaling factor was used
to provide an estimate of the compressed thickness based on
the mean uncompressed thickness of the breast.

The target thicknesses of 5, 6, 7, and 8 cm and corre-
sponding fibroglandular densities were used to create clus-
ters of the 40 nearest training cases. Using this clustering
scheme it was possible for training cases to be included

in multiple clusters. The resulting clusters can be seen in
Fig. 4.

3.B. Creation of eigenbreasts

Sample eigenbreasts can be seen in Fig. 5. For illustrative
purposes, they were shown as a pseudo mammographic pro-
jection (simple summation of gray levels in the craniocaudal
direction without x-ray physics).

3.C. Synthesized breast phantoms

A total of 600 new synthesized breast phantoms composed
of four breast density groups were generated as a weighted
summation of the eigenbreasts and the mean image. The
weighting factors applied to each eigenbreast was uniformly
sampled from the distribution observed in the training cases.
The algorithm was implemented in MATLAB and took
approximately 25 s to generate a new case with an Intel
3.4 GHz processor and 32 GB of RAM.

Examples of the sample training cases in Fig. 6 can be
seen along with synthesized breast phantoms in Fig. 7. When
comparing the central slice images, the fine structures in the
synthesized cases can be seen to be less connected than in the
training cases. Despite these differences, the synthesized
breast phantoms demonstrate a high degree of realism as con-
firmed by an observer study in Section 3.F. The population
of synthesized breast phantoms also closely matches the den-
sity profiles of the training set.

3.D. Fibroglandular density

The fibroglandular density of the synthesized breast phan-
toms compared well with the training set of phantoms as seen
in Table III. There was no statistically significant difference
between the distributions of fibroglandular densities for any
of the size/density clusters. The p values varied across the

FIG. 3. Simplified illustration of the 39-D eigenspace (shown as a projection
to the first 3 eigenvectors/eigenbreasts). Weights corresponding to the train-
ing image are shown as dots along with 300 synthesized cases shown as x’s.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. The 4 size/density clusters are shown along with a sample case from each cluster mapped to their corresponding compressed template at thicknesses of 5,
6, 7, and 8 cm. The relationship between breast thickness and fibroglandular density observed by Dance et al. is also shown. [Color figure can be viewed at
wileyonlinelibrary.com]
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breast thicknesses, but this could be explained largely by the
differences in the distribution of fibroglandular densities
observed in each training set as seen in Fig. 4.

3.E. Noise power spectra

The power law exponent b was found to agree closely with
the published value of 2.06 observed for segmented bCT
data.23 The values for b can be compared for the training sets
and synthesized phantoms in Table IV. Here, the standard
error includes the variation within the 50 VOIs per case as well
as the variation across cases, 2,000 VOIs per thickness in the
training set and 7,500 VOIs per thickness in the synthesized.

3.F Observer study

The observer study, summarized in Table V, demonstrated
that it was difficult to tell the difference between the

synthesized phantoms and the patient based ones, with two
of three observers having no significant difference than
chance. This indicates that the synthesized phantoms had a
high degree of realism. A sample case from the observer
study can be seen in Fig. 8.

3.G. Sample ROIs

The realism and variability of the synthesized breast phan-
toms can best be appreciated visually. A representative sam-
ple of ROIs are shown in Fig. 9.

4. DISCUSSION

There is increasing interest in using anthropomorphic vir-
tual phantoms in medical imaging.24–29 In breast imaging,
such phantoms may be used in model observer studies to
optimize several new technologies now in various stages of

FIG. 5. The first eight of the 39 eigenbreasts (created from the 8 cm cluster of breasts) are shown in a pseudo mammographic projection, with a simple summa-
tion of the 3D image in the craniocaudal direction. The eigenbreasts were float images containing positive and negative values.

FIG. 6. Sample training cases, from the 8 cm cluster, shown as a simple projection (without x-ray physics) in the top half and a central slice of the volumetric
image in the bottom half. Only a subset of the 40 training breasts are shown.
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clinical adoption such as digital breast tomosynthesis, con-
trast-enhanced mammography, and dedicated breast CT.30–36

The US FDA has allowed for the use of virtual simulation
techniques for a model observer study in medical device
clearance, such as the Siemens SAFIRE CT reconstruction
algorithm.37 However, the incorporation of anatomical varia-
tions into a model observer study for regulatory evaluation of

breast imaging has not been realized and it is still a work in
progress. The development of the virtual breast phantom in
this work is one step closer to realizing the important goal.
In previous work, we presented a cohort of approximately
200 patient-based phantoms.3 Although that dataset is the
largest of its type, VCTs may require cases numbering in the
thousands or even tens of thousands.5–7 It would be pro-
hibitively difficult to acquire and process images from such
large numbers of actual human subjects. Instead, the method
presented to synthesize new breast phantoms has the potential
to augment the limited availability of patient-based 3D phan-
toms. Compared to the patient-based phantoms from which
they were developed, the synthesized phantoms agreed in
several key metrics including: fibroglandular density, noise
power spectra, and visual appearance of pseudo mammo-
graphic projections.

FIG. 7. Synthesized breast phantoms generated from the eigenbreasts illustrated in Fig. 5. To give a sense of the 3D voxelized structure of these phantoms, a sim-
ple projection (without x-ray physics) is shown for the top half of each breast along with a central slice in the bottom half.

TABLE III. Fibroglandular density for the training sets and synthesized phan-
toms.

5 cm 6 cm 7 cm 8 cm

Mean SE Mean SE Mean SE Mean SE

Training set 0.33 0.09 0.28 0.07 0.20 0.04 0.14 0.04

Synthesized 0.33 0.07 0.29 0.05 0.21 0.03 0.14 0.03

P value 0.90 0.58 0.32 0.19

TABLE IV. Power-law noise b for the training sets and synthesized breast
phantoms.

5 cm 6 cm 7 cm 8 cm

Mean SE Mean SE Mean SE Mean SE

Training set 2.09 0.46 2.09 0.44 2.01 0.44 1.86 0.46

Synthesized 1.98 0.28 1.97 0.29 1.89 0.32 1.78 0.36

TABLE V. Observer performance of correctly identifying the patient based
simulated mammogram from the synthesized image.

Percent correct/P value

5 cm 6 cm 7 cm 8 cm Overall

Observer 1 0.50/1.00 0.50/1.00 0.58/0.43 0.55/0.64 0.53/0.48

Observer 2 0.63/0.15 0.13/1.4 E�6 0.30/0.02 0.48/0.87 0.38/3.3 E�3

Observer 3 0.60/0.27 0.40/0.27 0.53/0.87 0.53/0.87 0.51/0.81

Bold values indicates a performance that was statistically different from chance.
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It would be difficult to claim that our synthesized breast
phantoms are truly representative of the population as a
whole due to the limited number of cases available for train-
ing. However, this work demonstrated the ability to create

multiple subpopulations of synthesized breast phantoms
based on targeted clusters of training cases. Both the breast
volume and density could potentially be further diversified, if
appropriate training cases were available, to represent any
arbitrary study sample.

The 5 cm cluster included a wider range of compressed
thicknesses and fibroglandular densities than the other clus-
ters of breast phantoms for training as indicated by the larger
diameter in Fig. 4. This region seems to be rather sparsely
sampled and clearly there were not enough training cases in
this region to justify a 4 cm cluster of breast phantoms. It
could be beneficial to obtain additional patient training sets
to provide a better sampling of this region. Including addi-
tional cases will also provide more modes of variation in the
eigen analysis and thus greater variability in the synthesized
breast phantoms.

The clustering of the size/density groups by targeting a
prespecified compressed thickness and corresponding

FIG. 8. Sample case from the observer study with the real patient-based case
shown on the left.

FIG. 9. Simulated mammographic projection from the synthetic breast phantoms are shown to scale (top) with ROIs indicating the region shown for 52 unique
cases in each of the 4 clusters (bottom). [Color figure can be viewed at wileyonlinelibrary.com]
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fibroglandular density was just one possible method of
choosing subgroups of the training ensemble. This method
took advantage of compressed template geometries that were
already available and allowed for training sets with an equal
number of cases. An alternative would be to use a k-means
clustering of all the data in order to not have repeated or
excluded cases between groups.

There was an inherent difference in the methods to esti-
mate breast density between our bCT based phantoms and
population of patient mammograms of Dance et al. This
difference could result a shift in the estimated compressed
thicknesses, which were obtained by fitting our data to the
Dance curve. However, this shift would likely be relatively
small compared to the range of compressed thicknesses
included in a given size/density cluster. In future studies,
we intend to use a higher resolution bCT dataset, which
have corresponding mammograms and known compressed
thicknesses.

Each of the synthesized phantoms are currently fixed to an
template breast shape for each size-density cluster, but other
breast shapes can be selected from the existing patient-based
phantoms or specified by rule-based techniques.8,10,20 In
addition, breast densities are currently based on empirical
measurements from the patient-based phantoms, but those
values can be varied simply by re-scaling to increase or
decrease the overall density to provide variations on the same
underlying parenchymal pattern.

The power law exponent, b, for the synthesized phantoms
was generally within the range observed in the training set.
However, the mean b values of the synthesized phantoms
were consistently lower than that of their corresponding train-
ing sets. This may be caused by the loss of larger, lower fre-
quency anatomical details that are not as well represented by
the current PCA approach. The differences are relatively
small and fall within the typical variability of power law stud-
ies, but this relationship is an area for future study.

Fine structures in individual slices tended to become dis-
continuous as seen when comparing Figs. 6 and 7. If a fine
fibroglandular structure is isolated in a training case where
all/most of the other cases have a uniform adipose region,
then this structure could be well preserved in one of the
eigenbreasts. However, in practice these structures do tend to
become somewhat discontinuous. These differences were less
apparent when projecting through the phantoms to create the
simulated mammograms. Visual inspection of the synthe-
sized breast phantoms demonstrated a high degree of realism.
This was confirmed by an observer study which showed sim-
ulated mammograms from the patient-based and synthesized
phantoms to be nearly indistinguishable for two of the three
medical physicists. The level of experience for these physi-
cists was sufficient for this general task.

The bCT images used in this study had a mean voxel size
of 258 lm, which makes the simulated mammographic pro-
jections seem blurry when compared to actual mammograms
with pixel sizes of 70 to 100 lm. To supplement the inher-
ently lower resolution phantoms, these statistically generated
synthetic phantoms may be augmented with rule-based

models of coopers ligaments and vasculature such as devel-
oped by Elangovan, Graff, or Bakic.8,10,20,38

We have used 3D printing to develop some physical breast
phantoms based on our segmented bCT datasets.21,39 How-
ever, due to the relatively high cost of the 3D printing it is
unlikely that the need for diverse physical breast phantoms
will exceed the number of virtual breast phantoms available
from segmented bCT images. So, the eigenbreast technique is
more appropriate for model observer studies where large
quantities of cases are evaluated.

In future work, much larger numbers of additional cases
will be generated for an upcoming virtual trial of lesion
detectability in digital breast tomosynthesis. At which time,
the required training set size and local statistical properties of
the resulting phantoms will be evaluated in the context of the
observer study.

5. CONCLUSIONS

This work represents the first use of PCA to create a large
set of realistic breast phantoms from a relatively smaller set
of patient based data. The statistically generated breast
phantoms were similar to the original patient-based phantoms
in terms of density and power law beta value, and were
indistinguishable by two out of three experienced physicist
observers.

We have also demonstrated that the patient based training
sets can be designed to target specified fibroglandular density
profiles. The resulting ensembles of statistically generated
computational phantoms have the potential to support future
VCTs for breast imaging evaluation.
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