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Purpose: Accurately analyzing the rapid structural evolution of human brain in the first year of life
is a key step in early brain development studies, which requires accurate deformable image registra-
tion. However, due to (a) dynamic appearance and (b) large anatomical changes, very few methods in
the literature can work well for the registration of two infant brain MR images acquired at two arbi-
trary development phases, such as birth and one-year-old.
Methods: To address these challenging issues, we propose a learning-based registration method,
which can handle the anatomical structures and the appearance changes between the two infant brain
MR images with possible time gap. Specifically, in the training stage, we employ a multioutput ran-
dom forest regression and auto-context model to learn the evolution of anatomical shape and appear-
ance from a training set of longitudinal infant images. To make the learning procedure more robust,
we further harness the multimodal MR imaging information. Then, in the testing stage, for register-
ing the two new infant images scanned at two different development phases, the learned model will
be used to predict both the deformation field and appearance changes between the images under reg-
istration. After that, it becomes much easier to deploy any conventional image registration method to
complete the remaining registration since the above-mentioned challenges for state-of-the-art registra-
tion methods have been well addressed.
Results: We have applied our proposed registration method to intersubject registration of infant
brain MR images acquired at 2-week-old, 3-month-old, 6-month-old, and 9-month-old with the
images acquired at 12-month-old. Promising registration results have been achieved in terms of regis-
tration accuracy, compared with the counterpart nonlearning based registration methods.
Conclusions: The proposed new learning-based registration method have tackled the challenging
issues in registering infant brain images acquired from the first year of life, by leveraging the multi-
output random forest regression with auto-context model, which can learn the evolution of shape and
appearance from a training set of longitudinal infant images. Thus, for the new infant image, its
deformation field to the template and also its template-like appearances can be predicted by the
learned models. We have extensively compared our method with state-of-the-art deformable registra-
tion methods, as well as multiple variants of our method, which show that our method can achieve
higher accuracy even for the difficult cases with large appearance and shape changes between subject
and template images. © 2017 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.12578]
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1. INTRODUCTION

Deformable registration of infant brain MR images can estab-
lish accurate anatomical correspondences for mapping brain
structures and functions, which is important for quantifying
brain development from a set of individual subjects. Spe-
cially, intersubject registration is challenging and quite
important for analyzing infant brain images for population
study. Note that the goal of intersubject registration here is to
reduce anatomical variability across subjects by establishing
one-to-one correspondences or dense deformation field in the
three-dimensional (3D) brain image space. This enables rep-
resenting the entire group of subjects in the common space,
or comparing brain structures and functions between different
groups, e.g., patients vs. normal controls.1,2 To measure brain
development and evolution during the first year of life, accu-
rate deformable image registration for different subjects is of
high demand. However, the accurate registration of infant
brain images is challenging, since the brain structures
develop very fast and also the appearances of gray matter
(GM), white matter (WM), and cerebral spinal fluid (CSF)
changes dynamically during the early development. More-
over, besides the expansion of whole brain volume, the fold-
ing patterns in cortical regions also develop rapidly from
birth to 1-year-old,3–5 as shown by the examples of two infant
subjects in Fig. 1, each with its respective T1-weighted MRI,
T2-weighted MRI and tissue segmentation map provided in
the top, middle and bottom rows. Hence, it requires a regis-
tration algorithm to deal with the complex appearance differ-
ences and large anatomical changes, when registering the two
infant MR images scanned at two different time-points with
possibly large age gap.

Although many registration methods have been proposed
for deformable image registration, most of them are devel-
oped to align images with similar appearances or struc-
tures,6–23 which have limited power to solve the challenging
infant brain registration problem. In general, most of the
deformable image registration methods fall into the following
categories:

1. Intensity-based methods. This category of deformable
registration methods builds the local image matching
based on the image intensities via different similarity
measures, e.g., mutual information (MI-based),13,14

cross-correlation (CC-based),15,16 and others.17,24,25

Large Deformation Diffeomorphic Metric Mapping
(LDDMM) algorithm19 uses a steepest gradient descent
approach to estimate the velocity field with the time-
dependent diffeomorphic transformation. Demons17 is
a popular intensity-based image registration method,
which is widely used in clinical applications. During
registration, it performs diffusion process, which

iteratively estimates the displacements with the regular-
ization, to obtain the final transformation. However, it
cannot be directly applied to infant brain registration,
since the intensity relationship between infant brain
images scanned at different time-points are quite vari-
able. Other intensity-based image registration methods
also mainly focus on image intensities or local appear-
ances,13–18 thus these methods can also hardly handle
the deformable registration of infant brain images with
such dynamic appearance changes over time.

2. Feature-based methods. For feature-based registration
methods, the estimation of deformation field is driven
by robust feature matching, instead of simple compar-
ison of image intensities. HAMMER26 is a typical fea-
ture-based registration method, which uses geometric
moments for all tissue types as the morphological sig-
nature to represent each voxel. Xue et al.27 propose a
longitudinal feature-based registration method by
establishing longitudinal spatial correspondences of
cerebral cortices for the developing infant brain
images. Shi et al.28 further take the advantage of high
tissue contrast at later ages for obtaining a subject-spe-
cific tissue probability atlas to guide tissue segmenta-
tion at earlier ages, along with iterative bias correction
for registration. However, to obtain accurate registra-
tion results, the accurate tissue segmentation is neces-
sary for these methods, which is actually also a
challenging task for the infant brain MR images.

3. Learning-based methods. Csapo et al.29 propose a
model-based image similarity measurement to learn
the intensity changes for longitudinal image registra-
tion, and obtain better results than the MI-based
registration method. Wang et al.30 propose a sparsity-
learning-based strategy to tackle the longitudinal
registration of infant brain images, by utilizing a sparse
learning technique to identify correspondences in the
intermediate images at the same age. Wu et al.31 also
propose a sparse-representation-based image registra-
tion method for infant brain images, by learning the
growth trajectory from a set of training longitudinal
images to guide the registration of two different time-
point images with significant image appearance differ-
ences. Kim et al.32 use the spatial intensity growth
maps (IGM) to compensate the local appearance inho-
mogeneity for capturing the expected intensity
changes. Cao et al.33,34 propose to use random forest
to eliminate the appearance difference in order to facili-
tate accurate and effective multimodal image registra-
tion. Most of these previous methods rely on the
learning of appearance changes, without jointly consid-
ering the possible anatomical changes as shown in
Fig. 1.
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FIG. 1. Examples of two infant subjects with images scanned at five time-points: 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old (from
left to right) in each of two subject panels. In each panel, the top, middle and bottom rows show the axial slices of T1-weighted MRI, T2-weighted MRI, and the
tissue segmentation map, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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We also develop a learning-based image registration
method35 by employing random forest regression to learn
both appearance and shape evolution for the infant brain
images, and obtain reasonable deformable registration results.
In particular, two random forest regression models are
learned separately: (a) appearance–displacement model
(AD-Model), to learn the relationship between local image
appearance and its displacement toward the template, (b)
appearance–appearance model (AA-Model), to learn the local
appearance changes between any two arbitrary time-points.
However, there are still some limitations of this method: (a)
only one imaging modality is used, thus insufficient to steer the
complex learning procedure for the cases of large shape and
dynamic appearance changes. (b) the displacement vector is
independently predicted based on the local patch, while the cru-
cial spatial constraint is ignored, which may lead to geometric
issues in the estimated deformation field.

To address two above issues and further improve the accu-
racy of the learned mapping models, in this paper, we further
exploit the learning-based registration method by proposing
the following three novel strategies. (a) We use multimodal
MRI, i.e., TI-weighted and T2-weighted MRI (with enhanced
anatomical details), to learn the AD-model and AA-model
respectively. (b) We leverage the high-level context features
(i.e., the relative location information) to further improve the
prediction of displacements and patch-wise appearances. (c)
We use a multioutput learning strategy to jointly learn both
the AD-model and AA-model. We validate our method
against: (a) MI-based deformable registration, (b) CC-based
deformable registration, (c) 3D-HAMMER, and (d) our pre-
vious work for infant brain registration. The experimental
results demonstrate that our proposed method can obtain
higher performance, compared with the state-of-the-art regis-
tration methods.

2. METHODS

2.A. Overview

Our goal here is to improve the learning-based registration
method35 for registering any infant image S in the first year
of life (with possible large age gap) to a predefined template
image T, for the cases of either same subject (intrasubject) or
different subjects (intersubject). In our proposed method,
image registration will be performed in two steps. The first
step is the learning of both appearance and displacement
models with respective regression forests, for alleviating the
shape and appearance variations between infant brain images
acquired at different development stages which facilitates the
subsequent deformable registration. The second step is using
a conventional deformable registration method, e.g., HAM-
MER, Demons, or other methods, to further estimate the
remaining deformations in an effective manner. In the follow-
ing subsections, we will first briefly describe our previous
work of the learning-based registration method,35 and then
introduce our new proposed learning method, i.e., multiout-
put random forest regression with auto-context model.

Since there are significant shape and appearance changes
for the infant MR images under registration, we leverage the
regression forest36–38 to learn two complex mappings in a
patch-wise manner: (a) Patch-wise appearance–displacement
model. This model characterizes the mapping from the
patch-wise image appearance to the displacement vector of
the center voxel of the input image patch; (b) Patch-wise
appearance–appearance model. This model will eventually
encode the appearance evolution during early brain develop-
ment, by learning a complex appearance mapping from the
patch-wise appearance of one brain development stage to the
patch-wise appearance of the template image (i.e., from
another early brain development stage). In the application
stage, before registering the new infant image to the template,
for each voxel in the new infant image, we will first predict its
initial displacement to the template by using the learned
patch-wise appearance–displacement model. Then, a dense
deformation field will be obtained to initialize the registration
of the new infant image to the template. Next, we will further
apply the learned patch-wise appearance–appearance model
to predict the template-like appearance for the new infant
image. After that, the appearance difference can be elimi-
nated, and also the large shape variations have been partially
handled with the estimated initial deformation field. In this
way, many conventional registration methods can be used to
refine the final deformation field between the warped new
infant image and the template, and eventually obtain accurate
registration results.

2.B. Training stage: integration of multioutput
random forest regression and auto-context model

The training dataset includes N groups of infant MR
image sequences fItnjn ¼ 1; . . .;N; t ¼ 1; . . .;Mg, which
were scanned at 2-week-old, 3-month-old, 6-month-old, 9-
month-old, and 12-month-old (M = 5). Each training group
includes both T1-weighted and T2-weighted MR images. We
obtain the deformation field Wt

n ¼ wt
nðuÞju 2 XItn

� �
from

each training image Itn to the template by using their tissue
segmentation images39 for guiding accurate registration.
Since each subject in the training dataset has both structural
MRI and DTI scans at 2-week-old, 3-month-old, 6-month-
old, and 9-month-old and 12-month-old, we can obtain its
deformation fields by (a) using multimodal longitudinal seg-
mentation method39 to segment images at all time points
simultaneously into WM, GM, and CSF and (b) using 4D-
HAMMER registration method40 to estimate temporal
deformation fields via segmentation images. In this way,
we can regard those estimated deformation fields as the
ground truth to evaluate deformation prediction for training
the appearance–displacement model. Besides, for each
voxel u in the training image Itn, we know its correspond-
ing location uþ wt

nðuÞ in the template image. In this way,
the corresponding appearances in each training image and
the template image can be used to train the patch-wise
appearance–appearance model. In the following, we will
introduce the details of how to train both the patch-wise
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appearance–displacement and appearance–appearance
regression models, from any time-point t to the template
time-point t

0
(t 6¼ t

0
).

2.B.1. Patch-wise appearance–displacement model

(1) Random forest regression (RFR) for appearance–
displacement model: The training data are structured by
pairs of the randomly sampled local image patch Pt

nðuÞ
extracted at the location u of the training image Itn and the
corresponding image patch PT uþ wt

nðuÞ
� �

extracted at the
location uþ wt

nðuÞ of the template T. The local image patch
Pt
nðuÞ extracted at voxel u of the training image Itn and its dis-

placement vector wt
nðuÞ are used for training the patch-wise

appearance–displacement model. In this paper, random forest
regression36,37 is used to learn the relationship between local
image patch Pt

nðuÞ and its corresponding displacement vector
wt
nðuÞ. Specifically, we calculate two kinds of patch-wise

image features from Pt
n uð Þ, including (a) the intensity fea-

tures, and (b) the 3-D Haar-like features. Here, the intensity
features include the original intensity values of the image
patch, along with the coordinates of the patch center location
for providing more spatial information. The 3-D Haar-like
features are kinds of one- and two-block Haar-like features,
which are obtained by calculating the average intensity at a
location of the local patch or the average intensity difference
between two locations within the local patch respectively.
The mathematical definition of Haar-like features can be for-
mulated as:41,42

f ðIX c1; s1; c2; s2j Þ ¼ 1

ð2s1 þ 1Þ3
X

ky�c1k� s1
IXðyÞ

� k

ð2s2 þ 1Þ3
X

ky�c2k� s2
IXðyÞ; (1)

where f IX c1; s1; c2; s2jð Þ is a Haar-like feature with parame-
ters c1, s1, c2, s2. c1 and s1 are the center and size of the posi-
tive block respectively. c2 and s2 are the center and size of the
negative block respectively. k 2 (0, 1) is the controller for
one- and two-block Haar-like features. Particularly, k = 0
indicates one-block Haar-like features, and k = 1 indicates
two-block Haar-like features. In addition, these features are
extracted in a multiresolution manner. That is, each original
image is down-sampled to cover a wider neighborhood, thus
both the global and local information can be included for
each sampled voxel.

To learn the appearance–displacement model, multiple
regression trees are trained independently using the con-
cept of bagging. In terms of the tree structure, a regres-
sion tree comprises of two types of nodes, i.e., split node
and leaf nodes. During the tree growth, the split node (in-
cluding a set of samples) can be split to the left and right
subnodes by selecting a feature element f and optimizing
its threshold th. Let Θ denotes the split node in a random
regression tree, and thus the f and th can be determined
by maximizing the information gain (G), as defined
below:

ff ; thg ¼ maxG ¼ max rðHÞ �
X

i2fL;Rg
Ci

C
rðHiÞ

� �
;

(2)

where Θi (i 2 L;Rf g) denotes the left/right (L/R) subnode of
the split node Θ. Ci and C denote the number of training sam-
ples at the left/right subnode and the number of training sam-
ples at the node Θ respectively.

Recent works on both multitask learning43 and multiout-
put random forest42,44 show that, using a shared representa-
tion simultaneously learn the related tasks could improve the
generalization of the learned model. Inspired by these, we
incorporate the Jacobian determinant J of the deformation
field into the regression output, to constrain the volumetric
changes for the learned deformation field. The Jacobian
determinant J of the deformation field can be defined as:

JðuÞ ¼ det
@h
@u

� �
; (3)

where h is the displacement vector at voxel u. Then, Eq. (2)
can be calculated for the two targets. r(Θ) is the variance cal-
culated from all training samples at the node Θ, which can be
defined as:

rðHÞ ¼ 1
C

X
ðu;nÞ2ZðHÞ kw

t
nðuÞ � �dk22; (4)

�d ¼ 1
C

X
ðu;nÞ2ZðHÞ w

t
nðuÞ; (5)

where Z(Θ) is the training set at the node Θ, and �d is the mean
of all training displacement vector samples at the node Θ for
displacement vector target as well as the mean of all training
Jacobian determinant samples at the node Θ for Jacobian deter-
minant target. By maximizing Eq. (2), all training samples are
split into the left and right subnodes with the determined fea-
tures and threshold. The same splitting process is recursively
conducted on the left and right subnodes until the maximal tree
depth is reached or the number of training samples falling into
one node is less than a predefined number. The node, which is
no longer splitting, is regarded as the leaf node. It stores both
the mean displacement and the mean Jacobian determinant,
which can be used for prediction during the testing stage.

Specifically, both the original deformation field and its
Jacobian determinant J will be used as two tasks to help learn
the same appearance–displacement model, for better predict-
ing the deformation field.

The respective objective function of multioutput random
forest can be formulated as follows:

maxf ;th
X

i
wiGi; (6)

where f, th are the optimized feature and threshold of current
node, wi and is the weight for each task. Gi is the information
gain of each task by using ff ; thg. For our case of two tasks,
G1 is the information gain obtained by the displacement
regression, and G2 is the information gain obtained by the
Jacobian determinant regression. In this paper, we use the
same weight for each task (i.e., w1 = w2 = 0.5).
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(2) Auto-context model (ACM) for appearance–
displacement model: It is obvious that the above-proposed
RFR model learning only uses the low-level image appearance
features. Since the image contrast in the infant brain images is
relatively low, some high-level feature representations are of
high necessity to further improve the prediction accuracy of the
deformation field. Specifically, we employ the context features
that describe the spatial relationship of displacement vectors in
the local brain regions. These context features can be extracted
from both the prediction displacement vector map and the Jaco-
bian determinant map by using the same manner as extracting
features from the intensity image (as shown in Fig. 2, where
the intensity features and 3-D Haar-like features are extracted
from the x, y, z displacement maps and the Jacobian determi-
nant map respectively). Then, we can use these context features
as additional features, along with the original appearance fea-
tures, to train the next layer of RFR for further refining the
appearance–displacement model.

Since these high-level context features are used to refine
the RFR, the predicted displacement can be updated (along
with the updated context features), as shown in the red box in
Fig. 2. By repeating these steps (i.e., re-calculating the con-
text features and training the new random forest) until conver-
gence, the prediction accuracy can be improved iteratively.

(3) Topology preservation on estimated deformation
fields: Since the initial deformation field estimated by the
above proposed method is obtained independently for each
voxel without regularization, it may contain the regions with
violated topology. To address this issue, we enforce topology
preservation on the estimated deformation fields when esti-
mating the initial deformation field. Considering the Jacobian
constraint can enforce the topology preservation and also
smooth a given deformation field, we employ Jacobian con-
straint to preserve the topology of the deformation field,

without removing any important morphologic characteris-
tics.9,45,46 The effect of this method is demonstrated in Fig. 3,
which shows the histograms of Jacobian determinants of dif-
ferent deformation fields, i.e., (a) the ground-truth deforma-
tion field, (b) the learned deformation field, and (c) the
learned deformation field after smoothing with Jacobian con-
straints. It is apparent to see the effectiveness of the method
for topology preservation on estimated deformation fields.

2.B.2. Patch-wise appearance–appearance model

(1) Random forest regression (RFR) for appearance–
appearance model: Again, similar as the above, the training
data are structured by pairs of the randomly sampled local
image patch Pt

nðuÞ at voxel u of the training image Itn and
the corresponding image patch PT uþ wt

nðuÞ
� �

extracted at
the corresponding location uþ wt

nðuÞ of the template T. The
learning procedure of the patch-wise appearance–appear-
ance model is the same as the procedure in Section 2.B.1 pro-
posed for learning the patch-wise appearance–displacement
model. It is worth noting that, different from the appearance–
displacement model that utilizes the displacement vector and
its Jacobian determinant as the regression targets, the regres-
sion targets of this appearance–appearance model are the
template-like image patch and its gradient map, where the
mean patch intensity and the gradient value will be stored in
the leaf nodes of the trained random forest for final predic-
tion, respectively.

(2) Auto-context model (ACM) for appearance–
appearance model: For the appearance–appearance model,
it is straightforward to apply the same ACM strategy to
enhance the accuracy of the predicted results, by integrating
the context features as additional features for refining the
patch-wise appearance–appearance model. Besides using
just the template image as a regression task, we further use its

FIG. 2. The schematic illustration of using auto-context model (ACM) in the appearance–displacement model. [Color figure can be viewed at wileyonlinelibrar-
y.com]
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gradient map as a second task to jointly learn the appear-
ance–appearance model with the multioutput random forest
as also used in Section 2.B.1. Figure 4 shows the use of
ACM for learning the appearance–appearance model.

2.C. Application stage

In the application stage, the trained patch-wise appear-
ance–displacement model will be used to predict the dis-
placement vector for each voxel of a new infant image, while
the trained patch-wise appearance–appearance model will
be used to predict the intensity/appearance for each voxel of a
new infant image, in order to make its appearances similar to
the template image.

Three steps for registering a new infant subject S with the
predefined template T, which can be summarized below and
also illustrated in Fig. 5.

(1) First, we visit each voxel u of a given new infant sub-
ject S (u 2 Ωs), with S1 (T1-weighted) and S2 (T2-weighted)
images, which have been affine aligned to the template image
in the preprocessing stage, and use the learned patch-wise
appearance–displacement model to predict the displacement

at the voxel u for generating the dense deformation field
F ¼ ff ðvÞjv 2 XTg defined in the template image space.

(2) Then, the patch-wise appearance–appearance model
is used to predicate a template-like appearance image after
deforming the subject images S1 and S2.

(3) Finally, the conventional deformable registration
method, i.e., diffeomorphic Demons17 or HAMMER,26 is
employed to estimate the remaining deformation G for refin-
ing the final deformation filed Φ from the subject image S to
the template image T, i.e., by Φ = F ∘ G, where ‘∘’ stands for
the deformation composition.47

2.D. Performance evaluation

(1) Dice Similarity Coefficient (DSC). DSC is used to
evaluate the registration accuracy, which can be defined as:

DSC ¼ 2kATBk
kAk þ kBk ; (7)

For the case of measuring the DSC for the combined WM
and GM regions, A and B in Eq. (7) are the voxel sets of the
template image and the registered subject images

FIG. 3. Comparison of histograms of Jacobian determinants from three different deformation fields: (a) the target (ground-truth) deformation field, (b) the learned
deformation field, and (c) the learned deformation field after smoothing under Jacobian constraints. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. The schematic illustration of using auto-context model in the appearance–appearance model. [Color figure can be viewed at wileyonlinelibrary.com]
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respectively. Besides, we also calculate DSC for the hip-
pocampus after registration. In this case, A and B in Eq. (7)
are the hippocampus voxel sets of the template image and the
registered subject images respectively.

(2) Peak Signal to Noise Ratio (PSNR). PSNR is also used
to quantitatively characterize the predicted displacement and
appearance performance, which can be defined as:

PSNR ¼ 10log10
V2

1
Nv
kT � T̂k2

 !
; (8)

where T is the template image, T̂ is the registered image, V is
the maximal intensity value of the images and T̂ , and Nv is
the number of voxels in each image. The better prediction
result should have higher PSNR.

(3) Normalized Mutual Information (NMI). NMI is further
used to quantitatively characterize the performance of the dis-
placement and appearance prediction, and can also be used to
measure the registration results, which can be defined as:

NMIðŜ; TÞ ¼ 2 �MIðŜ; TÞ ðHðŜÞ þ HðTÞÞ�
; (9)

Where Ŝ is the learned image, MIðŜ; TÞ is the mutual
information between Ŝ and T, and Hð�Þ is the information
entropy. The better prediction and registration results should
have higher NMI.

3. EXPERIMENTS AND DISCUSSION

3.A. Dataset description and data preprocessing

The experimental dataset consists of totally 24 infant sub-
jects, each of which includes T1-weighted and T2-weighted
MR images at five time points (i.e., 2-week-old, 3-, 6-, 9- and
12-month-old). The size of T1-weighted images is 256 9

256 9 198 with the resolution of 1 9 1 9 1 mm3 and the
size of T2-weighted images is 256 9 256 9 198 with the
resolution of 1.25 9 1.25 9 1.95 mm3. For each subject,
the T2-weighted MR image was linearly aligned to the T1-
weighted MR image at the same acquisition time-point using
FSL’s linear registration tool (FLIRT).48 Hippocampal
regions were manually segmented for the images of all time-
points of 10 infant subjects.

Since our work mainly focuses on the more challenging
intersubject registration with large age gap, for the total 24
subjects, we select one subject as the template. For the
remaining 23 subjects, the leave-one-out cross-validation is
performed to train the appearance–displacement and appear-
ance–appearance models. Then, the 2-week-old, 3-month-
old, 6-month-old and 9-month-old of each testing subject are
registered to the 12-month-old template image.

Each subject in the training dataset has structural MRI as
well as DTI (diffusion tensor imaging, which will be used for
guiding the tissue segmentation for the training subjects) at
the 2-week-old, 3-month-old, 6-month-old, 9-month-old, and
12-month-old. The image preprocessing includes three steps.
(a) Skull-stripping and bias correction. Skull stripping is per-
formed to remove nonbrain tissues,49 while bias correction50

is performed by a nonparametric nonuniform intensity nor-
malization method to reduce the intensity nonuniformity in
the MR images. (b) Affine image registration. Since the brain
size increases significantly due to fast brain development in
the first year of life, the global affine transformation is per-
formed to handle the global changes, i.e., registering all other
time-point images to the 12-month-old image of the same
subject. Furthermore, all subjects are affine aligned to the
selected template image space by FLIRT in FSL package
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).51 Since there are
dynamic appearance changes in the first year of life, we use

FIG. 5. The schematic illustration of the proposed registration process with three steps: (1) Estimating the initial deformation field; (2) Producing the template-
like image and also obtaining the remaining deformation field; (3) Composing the initial deformation field and the estimated remaining deformation field as the
final deformation field. [Color figure can be viewed at wileyonlinelibrary.com]
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mutual information as the similarity metric for affine registra-
tion. (c) Image segmentation. Since it is very difficult to seg-
ment infant images accurately, especially for the 6-month-old
images, in the preprocessing stage, we use multimodal MR
images (including T1-weighted MRI, T2-weighted MRI, and
DTI) and longitudinal images for multimodal longitudinal
infant image segmentation,39,52 thus obtaining reasonable tis-
sue segmentation maps of each time-point for WM, GM, and
CSF. Since these segmentation images are without appear-
ance changes, we can estimate the accurate deformation fields
by the longitudinal image registration method40 for each

training image at every time-point to the predefined template
image T. These estimated deformation fields (based on the
segmentation images) are used as the ground truth for both
training and validation in our experiments.

3.B. Parameter setting

The input patch size is 7*7*7, where 300 Haar-like fea-
tures are extracted. The number of candidate thresholds is
100. Totally, 50 trees are trained for each model, with the tree
depth setting to 30. The minimum number of samples in each

FIG. 6. Intersubject registration results on infant brain images. The first row shows the template. The registration results are obtained by directly using FLIRT
(2nd row), MI (3rd row), CC (4th row), 3D-HAMMER (5th row), RFR with no ACM and single output (6th row), RFR with ACM and single output (7th row),
and RFR with ACM and multioutput (8th row) respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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leaf node is 8 for both appearance–displacement model and
appearance–appearance model. In ACM, two iterations are
used for each model.

3.C. Comparing the visual registration results

We can visually check the registration results in Fig. 6.
The first row shows the same template at different columns.
The second row shows the 2-week-old, 3-month-old, 6-
month-old, and 9-month-old T1-weight MR images of one
subject after preprocessing. Since the T1 MR image has bet-
ter tissue contrast for 12-month-old, we need to estimate the
new T1 MR images from the 2-week-old, 3-month-old, 6-
month-old, and 9-month-old, using their respective T1 and
T2 images, and then register all these estimated new T1 MR
images to the 12-month-old T1 MR image of the template.
The 3rd–8th rows show the registration results by SyN (using
MI on original images), SyN (using CC on original images),
3D-HAMMER, our method with no ACM and single output,
our method with ACM and single output), and our method
with ACM and multioutput respectively. It is apparent that (a)
our learning-based registration method achieves much better
registration results than directly using conventional registra-
tion method (SyN), (b) the registration performance is further
improved by our new proposed learning-based method, (c)
the registration results from 2-week-old and 3-month-old to
12-month-old are not satisfactory, indicating the necessity of
further improving the intersubject registration.

3.D. Comparing the DSC of combined WM/GM and
hippocampus

We compare the registration accuracy of different proce-
dures in our method with several state-of-the-art deformable
registration methods. (a) Intensity-based image registration
methods such as SyN, which uses MI14 and CC16 as the
similarity measurement. (b) Feature-based image registration
method such as HAMMER.26 (c) Our previous proposed
learning-based image registration method.35,53 We use DSC
as the measurement to evaluate the overlap degree between
the registered infant image and the template image. Actually,
when we evaluate the registration performance based on tis-
sue segmentation maps, the DSC value of infant brain is
always lower than that of adult brain due to the following
two reasons. (a) For the infant brain images, the ground
truth of gray matter and white matter is often very difficult
to obtain accurately, and often has some errors because of
fast growth of infant brain in the first year of life. (b) The
local shapes of infant brain are also quite variable across
different ages of even the same subject. In this way, com-
pared with the registration performance on adult brain
images as reported in the literature,20 the absolute DSC
value reported here is still acceptable, although it is a little
bit lower.

Table I shows the mean DSC (with standard deviation) of
the combined GM and WM. To further evaluate the registra-
tion performance on small brain region, the mean DSC values

TABLE II. The mean DSC with standard deviation on the hippocampus after intersubject image registration by MI, CC, 3D-HAMMER, and three variants of our
learning-based method such as (a) RFR with no ACM and single output, (b) RFR with ACM and single output, and (c) RFR with ACM and multi-output. The
best result for each column is shown in bold.

Method
2-week-old to
12-month-old

3-month-old to
12-month-old

6-month-old to
12-month-old

9-month-old to
12-month-old

MI 0.437 � 0.073* 0.465 � 0.072* 0.569 � 0.058* 0.631 � 0.061*

CC 0.442 � 0.081* 0.471 � 0.078* 0.573 � 0.053* 0.627 � 0.053*

3D-HAMMER 0.461 � 0.071* 0.512 � 0.069* 0.568 � 0.062* 0.621 � 0.050*

RFR with no ACM and single output 0.480 � 0.078* 0.537 � 0.059* 0.590 � 0.050* 0.628 � 0.079*

RFR with ACM and single output 0.485 � 0.086* 0.543 � 0.046* 0.593 � 0.060* 0.630 � 0.071*

RFR with ACM and multioutput 0.488 � 0.064 0.560 � 0.060 0.598 � 0.063 0.633 � 0.067

TABLE I. The mean DSC with standard deviation on the combined WM and GM after intersubject image registration by MI, CC, and 3D-HAMMER, and three
variants of our learning-based method such as (a) RFR with no ACM and single output, (b) RFR with ACM and single output, and (c) RFR with ACM and mul-
ti-output from the 2-week-old, 3-, 6-, 9-month-old images to the 12-month-old image. The best result for each column is shown in bold.

Method
2-week-old to
12-month-old

3-month-old to
12-month-old

6-month-old to
12-month-old

9-month-old to
12-month-old

MI 0.614 � 0.025* 0.602 � 0.022* 0.675 � 0.030* 0.717 � 0.022*

CC 0.643 � 0.030* 0.618 � 0.025* 0.684 � 0.024* 0.722 � 0.020*

3D-HAMMER 0.662 � 0.023* 0.642 � 0.026* 0.688 � 0.025* 0.715 � 0.023*

RFR with no ACM and single output 0.692 � 0.035* 0.684 � 0.037* 0.726 � 0.067* 0.766 � 0.033*

RFR with ACM and single output 0.707 � 0.013* 0.703 � 0.018 0.731 � 0.015* 0.776 � 0.012*

RFR with ACM and multi-output 0.710 � 0.012 0.701 � 0.024 0.735 � 0.026 0.780 � 0.006
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(with standard deviation) of hippocampus are also provided
in Table II. From these results, we can observe: (a) our pro-
posed learning-based registration method achieves much bet-
ter results than directly using either intensity-based or
feature-based registration method; (b) the registration results
are further improved by our extended learning-based meth-
ods. This also demonstrates that the proposed multioutput
random forest with ACM-based refinement can build more
accurate and robust appearance–displacement model and ap-
pearance–appearance model, which eventually lead to higher
registration performance. It is also apparent that our proposed
method achieves better overlap ratio, where ‘*’ indicates the
statistically significant improvement of our method over the
counterpart methods based on the paired t-test (P < 0.05,
two-tailed).

3.E. Evaluating the contribution of ACM and
multioutput regression forest

We further evaluate the contribution of ACM-based refine-
ment on both appearance–displacement and appearance–
appearance models. Figure 7 shows the learned deformation
fields by different learning-based procedures, compared with

the ground-truth deformation field (in the last rectangle), by
using different number of iterations (from 0 to 2 iterations in
the orange rectangle) for the ACM. It can be observed that,
the quality of the learned deformation field is gradually
improved as more layers of random forest are trained with
additional context features. Note that the final deformation
field is obtained by composing the predicted deformation
field with the estimated remaining deformation field.

The contribution of ACM in predicting appearance
changes is demonstrated in Fig. 8. The image in the last rect-
angle shows the 12-month-old template T1-weighted MR
image T. Images in the orange rectangles show the predicted
appearance changes using 0 to 2 iterations in ACM, for the 2-
week-old, 3-month-old, 6-month-old, and 9-month-old
images respectively. The learned appearances become more
and more similar to the template image (in the right end), as
more layers of random forest are trained with additional con-
text features.

Figure 9 shows both PSNR and NMI values after registra-
tion from the 2-week-old, 3-month-old, 6-month-old, and 9-
month-old images to the 12-month-old template, where ‘*’
indicates the statistically significant improvement based on
the paired t-test (P < 0.05, two-tailed). These results also

FIG. 7. Demonstration of the contribution of auto-context model (ACM) in predicting the deformation field. Subject S are the 2-week-old with T1-weighted and
T2-weighted MR images. Template T is the 1-year-old with T1-weighted image. The deformation field in the first three rectangles shows the progress of the pre-
dicted deformation field with iteration in ACM. The deformation field in the fourth rectangle shows the composed deformation field by integrating the predicted
deformation field with the estimated remaining deformation field. The deformation field in last rectangle shows the ground-truth deformation field. [Color figure
can be viewed at wileyonlinelibrary.com]

FIG. 8. Demonstration of the contribution of ACM in predicting the appearance changes. Subject S is the 2-week-old with T1-weighted and T2-weighted MR
images. Template T is the 1-year-old with T1-weighted MR image. The images in each rectangles show the predicted appearance changes from 0 to 2 iterations
in the ACM. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 9. Demonstration of contribution of ACM in our proposed learning models. (a) and (b) show PSNR and NMI values for the results of registering the
2-week-old, 3-month-old, 6-month-old, and 9-month-old images to the template, using 0 to 2 iterations in ACM. [Color figure can be viewed at wileyonlinelibrar-
y.com]
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show the contribution of ACM in our proposed learning
models.

All the above experimental results show that the ACM is
very useful in building accurate and robust appearance–
displacement and appearance–appearance models for guid-
ing accurate registration.

We further evaluate our method by comparing it with other
three variants of our method, such as (a) our method without
ACM, (b) our method with ACM, and (c) our method with
ACM and multioutput, to demonstrate the importance of two
proposed strategies, i.e., ACM and multioutput random for-
est. Figure 10 shows the NMI between the registered images
and the template image after registration from the 2-week-
old, 3-month-old, 6-month-old, and 9-month-old to the tem-
plate,where ‘*’ indicates the statistically significant improve-
ment based on the paired t-test (P < 0.05, two-tailed).
Apparently, both ACM and multioutput random forest can
further refine the prediction results, reflected by the improved
registration accuracy.

4. CONCLUSION

We have proposed a new learning-based registration
method to tackle the challenging issues in registering infant
brain images acquired from the first year of life, by leveraging
the multioutput random forest regression with auto-context
model to learn the evolution of shape and appearance from a
training set of longitudinal infant images. Thus, for the new

infant image, its deformation field to the template and also
its template-like appearances can be predicted by the learned
models. We have extensively compared our method with
MI-based, CC-based, and 3D-HAMMER deformable regis-
tration methods, as well as multiple variants of our method.
Experimental results have shown that our method can
achieve higher accuracy even for the difficult cases with
large appearance and shape changes between the subject and
template images.

In this paper, we utilize random forest regression to train
the appearance–displacement and appearance–appearance
models for guiding infant MR image registration. This formu-
lation is general and can be implemented with other learning
models. In recent years, deep learning algorithms, particu-
larly the Convolutional Neural Network (CNN), have been
proven effective in medical images analysis.54 In the future
work, we will investigate how the CNN can be used to
replace the random forest for training more effective appear-
ance–displacement and appearance–appearance models to
guide better registration.
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