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Abstract

Background

Claudin-2, ZO-1, and occludin are major components of tight junctions (TJs) in the proximal

tubule. However, their roles in maintaining paracellular permeability as leaky epithelia have

yet to be defined.

Methods

To investigate the contributory role of TJ proteins in the leaky proximal tubule, we xamined

the effect of inhibiting claudin-2, occludin, and ZO-1 expression on transepithelial electrical

resistance (TER) and paracellular permeability using the immortalized human proximal

tubule epithelial cell line HK-2. For this, small-interfering RNAs (siRNAs) against claudin-2,

occludin and ZO-1 were transfected into HK-2 cells. TER and transepithelial flux rates of

dextrans (4 and 70 kDa) were determined after 24 h.

Results

Transfection of siRNAs (25 nM) knocked down TJ protein expression. Control HK-2 mono-

layers achieved a steady-state TER of 6–8Ω�cm2 when grown in 12-well Transwell filters,

which are compatible with leaky epithelia. Knockdown of claudin-2 decreased in TER and

increased occludin expression. Transfection with siRNA against either occludin or ZO-1

increased TER and decreased claudin-2 expression. TER was decreased by co-inhibition of

claudin-2 and ZO-1 but increased by co-inhibition of claudin-2 and occludin. TER was sup-

pressed when claudin-2, occludin, and ZO-1 were all inhibited. Dextran flux rate was

increased by claudin-2, occludin, or ZO-1 siRNA transfection. Increased dextran flux was

enhanced by co-transfection of claudin-2, ZO-1, and occludin siRNA.

Conclusions

The depletion of claudin-2, occludin and ZO-1 in HK-2 cells had differential effects on TER

and macromolecule flux. We demonstrated that integration of claudin-2, occludin and ZO-1

is necessary for maintaining the function of the proximal tubular epithelium.
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Introduction

Different renal tubular segments have specific epithelial characteristics and functions. For

paracellular transport, the proximal tubule has leaky epithelia, whereas collecting ducts have

more effective tight junctions (TJs). Paracellular permeability decreases from the proximal

tubule to the collecting ducts because of a unique array of claudins expressed in each segment,

with higher levels of occludin and ZO-1 in distal tubules [1]. Although claudin-2, occludin,

and zonula occludens (ZO)-1 are major components of TJs in proximal tubules [2], their roles

in maintaining “loose” epithelia have yet to be defined. Previous studies mainly focused on

“tight” epithelia in collecting ducts.

TJs are multiprotein complexes of integral membrane proteins (claudins and occludin) and

cytoplasmic scaffolding proteins (ZO-1, ZO-2 and ZO-3). Claudins are the backbone of TJ

complexes involved in the selectivity of the paracellular conductance of ions. A number of

claudins are expressed as barriers in the distal tubules and collecting ducts [3]. In contrast,

claudin-2 may have a different function in loose epithelia because it is highly expressed in the

proximal tubule [2].

Recent studies have shown that claudin-2 forms paracellular channels for small cations

such as sodium and potassium and for water [4]. Occludin and ZO proteins interact to deter-

mine TJ structural organization and to create a classical barrier to the diffusion of solutes

through the paracellular pathway [5, 6]. However, in the proximal tubule where high perme-

ability is required for 70% of glomerular filtration reabsorption, the functions of occludin and

ZO-1 remain unclear.

Traditionally, TJs have mainly been recognized as paracellular diffusion barriers. Recent

studies established the involvement of TJ proteins in the formation of pores that serve as TJ

pathways for the flux of small solutes and ions [7]. TJ proteins form a barrier-like structure

through cis-interactions with other TJs in the same cell and trans-interactions with TJs in adja-

cent cells. Pore pathways are mainly involved in ionic and fluid transport and function under

normal physiological conditions [8]. The pore functions of the TJ pathway are likely more

important in the proximal tuble, in contrast with the barrier function in the distal nephron.

In this study, we used HK-2 cells as an immortalized proximal tubule epithelial cell line

from normal adult human kidneys [9]. We investigated the pore and barrier functions of TJ

proteins in leaky proximal tubule epithelial cells. For this, proximal tubule TJ proteins were

selectively knocked down by small-interfering RNA (siRNA) transfection into HK-2 cells [10].

The inhibitory effects on endogenous expression of claudin-2, occludin and ZO-1 in HK-2

cells were examined by measuring transepithelial electrical resistance (TER) and dextran flux

rates.

Materials and methods

Cell culture and siRNA transfection

HK-2 human renal proximal tubular epithelial cells (American Type Culture Collection,

Manassas, VA) were cultured in Dulbecco’s modified Eagle’s and Ham’s F-12 medium

(DMEM/F12, GIBCO) supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and

100 mg/mL streptomycin. For depletion of TJ genes, siRNAs against claudin-2 (Cat No.

1032301 Duplex, Bioneer, Daejeon, Korea), ZO-1 (Cat No. 1151510 Duplex, Bioneer, Daejeon,

Korea), and occludin (Cat No. L-187897-00-0005, Dharmacon, Lafayette, CO) were trans-

fected into HK-2 cells using DharmaFect transfection reagents (Dharmacon, Lafayette, CO).

Cells were grown to subconfluency at 37˚C with 5% CO2 and treated with 10, 25, 50 or 100

nM of siRNA for 72 h.

Tight junction proteins in HK-2 cells
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Immunoblot analysis

TJ protein levels were tested using semiquantitative immunoblotting. HK-2 cells were plated

onto 100 mm-Petri dishes at 0.5 ~ 1 × 105 cells/mL and cultured for siRNA transfection. Cells

were harvested and lysed in lysis buffer (Santacruz, Heidelberg, Germany) containing protease

inhibitor cocktail (Roche, Basel, Switzerland) for 30 min on ice. Cell lysates were centrifuged

at 14,000 x g for 20 min at 4˚C and protein concentrations measured using Bradford protein

assay kits (Bio-Rad Laboratories, Hercules, CA). Equal amounts of protein were electropho-

resed on SDS-polyacrylamide gels, transferred onto nitrocellulose membranes and blocked in

5% skim milk in PBST (80 mM Na2HPO4, 20 mM NaH2PO4, 100 mM NaCl, 0.1% Tween-20,

pH 7.5) for 1 h. Membranes were probed overnight at 4˚C with primary antibodies: rabbit

polyclonal anti-occludin, rabbit polyclonal anti-ZO-1 or mouse monoclonal anti-claudin-2

(Zymed Labs, Jerusalem, Israel). Secondary antibodies were goat anti-rabbit or goat anti-

mouse IgG conjugated to horseradish peroxidase (Jackson ImmunoResearch, West Grove,

PA). Sites of antibody-antigen reaction were viewed using enhanced chemiluminescence

(GenDEPOT, Barker, TX), and band densities were quantified by densitometry using a laser

scanner and Quantity One Software (Basic version 4.6.9, Bio-Rad, Hercules, CA).

Immunofluorescence microscopy of HK-2 cells

HK-2 cells were grown to confluence in transwell chambers (0.4-μm pore size, Transwell Per-

meable Supports, Cat No. 3460, Corning) for 3 days. On day 4, HK-2 cells were treated with

vehicle or 10, 25, 50 or 100 nM siRNA for 72 h and fixed with 4% paraformaldehyde in PBS,

pH 7.4 for 20 min at room temperature. After fixation, cells were washed twice in PBS and per-

meabilized with 0.3% Triton X-100 in PBS at room temperature for 15 min. Cells were washed

and labeled with anti-claudin-2, anti-occludin or anti-ZO-1. After incubation, cells were

washed in PBS and incubated with goat anti-rabbit IgG Alexa Fluor 488 secondary antibody

(A11008, Molecular Probes) or donkey anti-mouse IgG Alexa Fluor 488 secondary antibody

(A21202, Molecular Probes) for 2 h at room temperature. Immunolocalization used a laser

scanning confocal microscope (Zeiss LSM 5 EXCITER, Jena, Germany) [11].

Transepithelial electrical resistance

The intactness of paracellular pathways of HK-2 monolayers to small ions was monitored by

measurement of TER using the EVOM apparatus (World Precision Instruments, Sarasota,

FL). HK-2 cells that were seeded onto Transwell filters (diameter 12 mm, pore size 0.4 μM;

Corning, NY) to measure TER after exposure to siRNA for 72 hours in apical chambers. TER

was normalized to the area of the filter after removal of background resistance of a blank filter

with medium only. TER was calculated as ohms × cm2 (O�cm2), after subtracting values for

resistance of membrane support alone [12].

Paracellular permeability

Effects of TJ siRNA transfection on HK-2 cell paracellular permeability were determined using

Fluorescein isothiocyanate (FITC)-conjugated 4 and 70 kDa dextran (Sigma, Saint Louis,

MO). Transwell filters of epithelial monolayers were transferred to 6-well culture dishes and

FITC-dextran was added to apical compartments. After 24 h at 37˚C, fluorescence was mea-

sured for aliquots of basolateral medium using a fluorimeter (Tecan Systems, San Jose, CA)

[13].

Tight junction proteins in HK-2 cells
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Statistics

Statistical analyses were performed with GraphPad Prism 5 (GraphPad Software, California,

USA). Data were expressed as means ± standard deviation of experiments with at least three

independent treatments per group. Differences between groups were analyzed by Student’s t-
test for unpaired data. Statistical significance was defined as P<0.05.

Results

siRNA knockdown of claudin-2, occludin and ZO-1 in HK-2 cells

siRNA-induced knockdown of TJ proteins in HK-2 cells are in Fig 1. Expression of claudin-2,

occludin and ZO-1 was examined by immunoblotting after treatment with 10, 25, 50 or 100

Fig 1. Results of transfection into HK-2 cells of siRNA against claudin-2, occludin or ZO-1. A:

Immunoblots using cells treated with 10, 25, 50 of 100 nM of indicated siRNA for 72 h. Each lane contained

protein from a different Transwell filter support of HK-2 cells. Immunoblots were treated with anti-claudin-2

(~22 kDa), anti-occludin (~65 kDa) or anti-ZO-1 (~210 kDa). B: Immunofluorescence microscopy of HK-2

monolayers with junctional localization of claudin-2, occludin and ZO-1 depleted by siRNA transfection.

Magnification, x40.

https://doi.org/10.1371/journal.pone.0189221.g001

Tight junction proteins in HK-2 cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0189221 December 18, 2017 4 / 11

https://doi.org/10.1371/journal.pone.0189221.g001
https://doi.org/10.1371/journal.pone.0189221


nM siRNA. Transfection with siRNA against claudin-2, ZO-1, or occludin reduced the respec-

tive TJ protein (Fig 1A). At 25 nM siRNA, silencing efficiency was confirmed by immunofluo-

rescence microscopy (Fig 1B).

We found that siRNA-induced knockdown of claudin-2, occludin or ZO-1 accompanied

alteration of the expression of other TJ proteins in HK-2 cells (Fig 2). Claudin-2 protein

expression was significantly reduced by claudin-2 siRNA (14 ± 6%, P< 0.05) or transfection

of siRNA against occludin (59 ± 6%, P< 0.05) or ZO-1 (45 ± 1%, P< 0.05). Occludin protein

Fig 2. Effects of claudin-2, occludin and ZO-1 siRNA transfection on expression of other tight

junction proteins in HK-2 cells. A: Immunoblots with antibodies to claudin-2, occludin, or ZO-1 using cells

transfected with 25 nM indicated siRNAs for 72 h. GAPDH was the loading control. B: Densitometric analysis

showing claudin-2, occludin, or ZO-1 siRNA significant decreased claudin-2 protein. C: Overexpression of

occludin protein induced by claudin-2 siRNA transfection. D: Expression of ZO-1 protein was not affected in

HK-2 cells by claudin-2 or occludin siRNA transfection. Quantification of data is % volume difference in protein

expression, expressed as mean ± SD from 3 independent experiments. *P < 0.05 by Student’s t-test for

unpaired data.

https://doi.org/10.1371/journal.pone.0189221.g002
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expression was significantly decreased by occludin siRNA (53 ± 1%, P< 0.05) and significantly

elevated by siRNA transfection against claudin-2 (257 ± 37%, P< 0.05). ZO-1 expression was

significantly suppressed by ZO-1 siRNA (8 ± 1%, P< 0.05), but not affected by either claudin-

2 or occludin siRNA transfection.

Effects of claudin-2, occludin and ZO-1 siRNA transfection on TER and

dextran permeability

To examine the function of TJ proteins in maintenance of HK-2 cell monolayers, TER was

compared after inhibition of claudin-2, ZO-1, or occludin expression (Fig 3). Vehicle-treated

control HK-2 monolayers achieved a steady-state TER of 6–8 O�cm2 when grown on 12-well

Transwell filters, compatible with leaky epithelia. Transfection with siRNA against claudin-2

significantly decreased TER compared with controls (4.75 ± 0.32 vs. 7.70 ± 0.48 O�cm2,

P< 0.05). On the other hand, TER was significantly increased by transfection with siRNA

against occludin (14.03 ± 0.48 O�cm2, P< 0.05) or ZO-1 (11.61 ± 0.18 O�cm2, P< 0.05).

To estimate paracellular permeability of HK-2 epithelial monolayers, apical-to-basolateral

transepithelial flux rates of FITC-labeled dextran (4 and 70 kDa) were determined. Permeabil-

ity of HK-2 cells on Transwell inserts to 4-kDa FITC-dextran is presented in Fig 4A. Com-

pared with controls (100 ± 2%), 4-kDa dextran permeability measured at 24 h was significantly

increased by siRNA transfection against occludin (113 ± 4%, P< 0.05) or ZO-1 (119 ± 5%,

P< 0.05). However, permeability was not significantly affected by transfection with siRNA

against claudin-2 (101 ± 3%). The results of 70-kDa FITC-dextran permeability are in Fig 4B.

Compared with controls (100 ± 6%), 70-kDa dextran permeability measured at 24 h was signif-

icantly increased by siRNA transfection against claudin-2 (134 ± 8%), occludin (118 ± 14%) or

ZO-1 (168 ± 7%).

Effects of multiple TJ protein knockdown on TER and dextran

permeability

We tested whether further changes in TER and dextran permeability were induced by multiple

inhibition of claudin-2, ZO-1, or occludin expression in HK-2 cells. Compared with vehicle-

treated controls, cotransfection of siRNA against claudin-2 and ZO-1 significantly decreased

Fig 3. Effects of claudin-2, occludin or ZO-1 siRNA transfection on transepithelial electrical

resistance (TER) in HK-2 cell monolayers. TER was significantly decreased by claudin-2 siRNA

transfection, but significantly increased by siRNA transfection against occludin or ZO-1. Data are

means ± SD. *P < 0.05 by Student’s t-test for unpaired data.

https://doi.org/10.1371/journal.pone.0189221.g003
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TER (6.2 ± 0.4 vs. 7.7 ± 0.5 O�cm2, P< 0.05). No significant change in TER was induced by

cotransfection of siRNA against ZO-1 and occludin (8.1 ± 0.5 O�cm2). TER was significantly

increased by co-transfection of siRNA against occludin and claudin-2 (14.9 ± 0.6 O�cm2,

P< 0.05). When all three TJ proteins were inhibited, TER was suppressed (3.5 ± 0.6 O�cm2,

P< 0.05) compared with vehicle-treated controls (Fig 5).

The effects of multiple inhibitions of TJ proteins on dextran permeability in HK-2 cell

monolayers are shown in Fig 6. Compared with controls (100 ± 3.8%), cotransfection of

siRNA against occludin and ZO-1 significantly increased 4 kDa FITC-dextran flux (113 ±
6.3%, P< 0.05). Flux of 70-kDa FITC-dextran in Fig 6B was consistent with previous single-

knockdown experiment (Fig 4B). Thus, 70-kDa FITC-dextran flux was increased by cotrans-

fection of siRNA against claudin-2 and ZO-1 (162 ± 6%, P< 0.05), claudin-2 and occludin

(146± 4%, P< 0.05) or occludin and ZO-1 (149 ± 10%, P< 0.05). Flux of 4-kDa (134 ± 4.1%,

P< 0.05) and 70-kDa (218 ± 15%, P< 0.05) FITC-dextran flux increased further when all

three TJ proteins were knocked down.

Fig 4. Effects of claudin-2, occludin and ZO-1 siRNA transfection on dextran permeability of HK-2 cell

monolayers. A: Flux of 4-kDa FITC-dextran, measured at 24 h, was significantly increased by transfection of

siRNA against claudin-2 or occludin. B: Flux of 70-kDa FITC-dextran at 24 h measured epithelial permeability

and was significantly increased by siRNA against claudin-2, occludin or ZO-1. Data are mean ± SD. *P < 0.05

by Student’s t-test for unpaired data.

https://doi.org/10.1371/journal.pone.0189221.g004
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Discussion

In this study, we demonstrated that claudin-2, occludin, and ZO-1 were strongly expressed

and had functional capacity in HK-2 cells, representing the renal proximal tubular epithelium.

The siRNA-induced knockdown of claudin-2, occludin or ZO-1 induced changes in TER and

paracellular permeability. Furthermore, it accompanied alteration of other adjacent TJ protein

expression in HK-2 cells.

We used HK-2 cells to study TJ proteins in the kidney because paracellular transport is

important for the iso-osmotic absorption of NaCl in the proximal tubule [14]. In the distal

nephron, where transport is predominantly transcellular, tight epithelia may be more important

[15]. We previously showed that distal renal TJ proteins are dysregulated in cyclosporine neph-

rotoxicity [16]. This study suggested different functions for TJ proteins in HK-2 cells. When the

claudin-2 gene was depleted, TER decreased. This result was unexpected because TER is lower

when claudin-2 is introduced into the MDCK I renal cell line, which lacks claudin-2 [17]. We

speculate that endogenous claudin-2 protein in HK-2 cells may have different properties from

exogenous claudin-2 overexpression in MDCK I cells. Interestingly, the expression of claudin-2

protein was suppressed by transfection of siRNA against occludin or ZO-1. These interactions

suggested that claudin-2 may be directly or indirectly affected by other TJ proteins. The sup-

pression of claudin-2 protein expression was associated with increased 70-kDa FITC-dextran

flux, but the direction of change in TER was inconsistent. Our results appear to be compatible

with the concept that in the kidney, paracellular permeability is principally determined by clau-

dins that are differentially expressed in each tubule segment [2].

Few previous studies investigated the roles of occludin and ZO-1 in HK-2 cells. Occludin is

ubiquitously expressed for barrier formation against macromolecule passage, but its function

in the TJ barrier has not yet been elucidated [18]. We showed that TER was enhanced when

the occludin gene was inhibited. This finding was unexpected because occludin increases TER

in overexpression experiments in MDCK cells [19]. According to Raleigh et al., occludin S408

Fig 5. Effects of siRNA-induced multiple knockdown of tight junction proteins on transepithelial

electrical resistance (TER) in HK-2 cell monolayers. TER was significantly decreased by claudin-2/ZO-1

siRNA cotransfection, but significantly increased by occluding/claudin-2 siRNA co-transfection. When

claudin-2, occludin, and ZO-1 were simultaneously inhibited, TER was suppressed. Data are mean ± SD.

*P<0.05 vs. vehicle; by Student’s t-test for unpaired data.

https://doi.org/10.1371/journal.pone.0189221.g005
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phosphorylation decreases TER in Caco-2 cells [20]. They concluded that beyond regulating

the TJ leak pathway, occludin contributes to control of pore pathway permeability. In contrast,

transepithelial permeability measured by dextran flux increased with inhibition of the occludin

gene. This discrepancy between paracellular permeability and TER was compatible with results

from Balda et al. [21]. Thus, the function of endogenous occludin in HK-2 cells would differ

from exogenous occludin in MDCK cells.

Fig 6. Effects of siRNA-induced multiple knockdown of tight junction proteins on dextran

permeability in HK-2 cell monolayers. A: Measurements of 4-kDa FITC-dextran flux at 24 h with significant

increases with siRNA cotransfection against occludin and ZO-1 or claudin-2 and occludin/ZO-1. B: Flux at 24

hrs of 70 kDa FITC-dextran flux was used to measure epithelial permeability, and was significantly increased

by transfection with all combinations of siRNA. Data are means ± SD. *P< 0.05 vs. vehicle; by Student’s t-test

for unpaired data.

https://doi.org/10.1371/journal.pone.0189221.g006
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We found that expression of occludin increased with transfection of siRNA against clau-

din-2 into HK-2 cells. Interaction between claudin-2 and occludin might be possible, although

the occludin cytoplasmic tail is not reported to interact directly with claudins [20]. TER results

after claudin-2 gene depletion (or increased occludin protein expression) are compatible with

those from occludin gene inhibition in this study.

ZO-1 is a TJ protein that interacts with both occludin and claudins [22]. In our experi-

ments, ZO-1 gene depletion decreased the expression of claudin-2 protein but did not change

the expression of occludin protein. These results were associated with increased TER, suggest-

ing that claudin-2 was critical for transepithelial resistance in HK-2 cells. Among claudin inter-

actions, binding of claudins to ZO-1 is critical for tight junction assembly [23].

We also examined the effects of simultaneous depletion of TJ proteins in HK-2 cells. Our

results of multiple inhibition of claudin-2, occludin, and ZO-1 expression were difficult to

interpret. TER responded variably to transfection of different combinations of siRNA into

HK-2 cells. The 70-kDa FITC-dextran flux increased with all possible combinations of siRNA

transfection, however. TER was markedly decreased when all three genes for TJ proteins were

inhibited. This change was associated with increased flux of 4-kDa and 70-kDa FITC-dextran,

suggesting that integration of claudin-2, ZO-1 and occludin is necessary for maintaining the

function of the proximal tubular epithelium.
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